| author | wenzelm | 
| Fri, 14 Mar 2025 23:03:58 +0100 | |
| changeset 82276 | d22e9c5b5dc6 | 
| parent 80084 | 173548e4d5d0 | 
| permissions | -rw-r--r-- | 
| 65435 | 1 | (* Title: HOL/Computational_Algebra/Factorial_Ring.thy | 
| 63924 | 2 | Author: Manuel Eberl, TU Muenchen | 
| 60804 | 3 | Author: Florian Haftmann, TU Muenchen | 
| 4 | *) | |
| 5 | ||
| 6 | section \<open>Factorial (semi)rings\<close> | |
| 7 | ||
| 8 | theory Factorial_Ring | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 9 | imports | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 10 | Main | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
66276diff
changeset | 11 | "HOL-Library.Multiset" | 
| 63498 | 12 | begin | 
| 13 | ||
| 76700 
c48fe2be847f
added lifting_forget as suggested by Peter Lammich
 blanchet parents: 
74885diff
changeset | 14 | unbundle multiset.lifting | 
| 
c48fe2be847f
added lifting_forget as suggested by Peter Lammich
 blanchet parents: 
74885diff
changeset | 15 | |
| 63924 | 16 | subsection \<open>Irreducible and prime elements\<close> | 
| 63498 | 17 | |
| 18 | context comm_semiring_1 | |
| 62499 | 19 | begin | 
| 20 | ||
| 63498 | 21 | definition irreducible :: "'a \<Rightarrow> bool" where | 
| 22 | "irreducible p \<longleftrightarrow> p \<noteq> 0 \<and> \<not>p dvd 1 \<and> (\<forall>a b. p = a * b \<longrightarrow> a dvd 1 \<or> b dvd 1)" | |
| 23 | ||
| 24 | lemma not_irreducible_zero [simp]: "\<not>irreducible 0" | |
| 25 | by (simp add: irreducible_def) | |
| 26 | ||
| 27 | lemma irreducible_not_unit: "irreducible p \<Longrightarrow> \<not>p dvd 1" | |
| 28 | by (simp add: irreducible_def) | |
| 29 | ||
| 30 | lemma not_irreducible_one [simp]: "\<not>irreducible 1" | |
| 31 | by (simp add: irreducible_def) | |
| 32 | ||
| 33 | lemma irreducibleI: | |
| 34 | "p \<noteq> 0 \<Longrightarrow> \<not>p dvd 1 \<Longrightarrow> (\<And>a b. p = a * b \<Longrightarrow> a dvd 1 \<or> b dvd 1) \<Longrightarrow> irreducible p" | |
| 35 | by (simp add: irreducible_def) | |
| 36 | ||
| 37 | lemma irreducibleD: "irreducible p \<Longrightarrow> p = a * b \<Longrightarrow> a dvd 1 \<or> b dvd 1" | |
| 38 | by (simp add: irreducible_def) | |
| 39 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 40 | lemma irreducible_mono: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 41 | assumes irr: "irreducible b" and "a dvd b" "\<not>a dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 42 | shows "irreducible a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 43 | proof (rule irreducibleI) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 44 | fix c d assume "a = c * d" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 45 | from assms obtain k where [simp]: "b = a * k" by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 46 | from \<open>a = c * d\<close> have "b = c * d * k" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 47 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 48 | hence "c dvd 1 \<or> (d * k) dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 49 | using irreducibleD[OF irr, of c "d * k"] by (auto simp: mult.assoc) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 50 | thus "c dvd 1 \<or> d dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 51 | by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 52 | qed (use assms in \<open>auto simp: irreducible_def\<close>) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 53 | |
| 80084 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 54 | lemma irreducible_multD: | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 55 | assumes l: "irreducible (a*b)" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 56 | shows "a dvd 1 \<and> irreducible b \<or> b dvd 1 \<and> irreducible a" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 57 | proof- | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 58 | have *: "irreducible b" if l: "irreducible (a*b)" and a: "a dvd 1" for a b :: 'a | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 59 | proof (rule irreducibleI) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 60 | show "\<not>(b dvd 1)" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 61 | proof | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 62 | assume "b dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 63 | hence "a * b dvd 1 * 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 64 | using \<open>a dvd 1\<close> by (intro mult_dvd_mono) auto | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 65 | with l show False | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 66 | by (auto simp: irreducible_def) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 67 | qed | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 68 | next | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 69 | fix x y assume "b = x * y" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 70 | have "a * x dvd 1 \<or> y dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 71 | using l by (rule irreducibleD) (use \<open>b = x * y\<close> in \<open>auto simp: mult_ac\<close>) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 72 | thus "x dvd 1 \<or> y dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 73 | by auto | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 74 | qed (use l a in auto) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 75 | |
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 76 | from irreducibleD[OF assms refl] have "a dvd 1 \<or> b dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 77 | by (auto simp: irreducible_def) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 78 | with *[of a b] *[of b a] l show ?thesis | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 79 | by (auto simp: mult.commute) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 80 | qed | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 81 | |
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 82 | lemma irreducible_power_iff [simp]: | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 83 | "irreducible (p ^ n) \<longleftrightarrow> irreducible p \<and> n = 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 84 | proof | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 85 | assume *: "irreducible (p ^ n)" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 86 | have "irreducible p" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 87 | using * by (induction n) (auto dest!: irreducible_multD) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 88 | hence [simp]: "\<not>p dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 89 | using * by (auto simp: irreducible_def) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 90 | |
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 91 | consider "n = 0" | "n = 1" | "n > 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 92 | by linarith | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 93 | thus "irreducible p \<and> n = 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 94 | proof cases | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 95 | assume "n > 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 96 | hence "p ^ n = p * p ^ (n - 1)" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 97 | by (cases n) auto | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 98 | with * \<open>\<not> p dvd 1\<close> have "p ^ (n - 1) dvd 1" | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 99 | using irreducible_multD[of p "p ^ (n - 1)"] by auto | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 100 | with \<open>\<not>p dvd 1\<close> and \<open>n > 1\<close> have False | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 101 | by (meson dvd_power dvd_trans zero_less_diff) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 102 | thus ?thesis .. | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 103 | qed (use * in auto) | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 104 | qed auto | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 105 | |
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 106 | |
| 63633 | 107 | definition prime_elem :: "'a \<Rightarrow> bool" where | 
| 108 | "prime_elem p \<longleftrightarrow> p \<noteq> 0 \<and> \<not>p dvd 1 \<and> (\<forall>a b. p dvd (a * b) \<longrightarrow> p dvd a \<or> p dvd b)" | |
| 63498 | 109 | |
| 63633 | 110 | lemma not_prime_elem_zero [simp]: "\<not>prime_elem 0" | 
| 111 | by (simp add: prime_elem_def) | |
| 63498 | 112 | |
| 63633 | 113 | lemma prime_elem_not_unit: "prime_elem p \<Longrightarrow> \<not>p dvd 1" | 
| 114 | by (simp add: prime_elem_def) | |
| 63498 | 115 | |
| 63633 | 116 | lemma prime_elemI: | 
| 117 | "p \<noteq> 0 \<Longrightarrow> \<not>p dvd 1 \<Longrightarrow> (\<And>a b. p dvd (a * b) \<Longrightarrow> p dvd a \<or> p dvd b) \<Longrightarrow> prime_elem p" | |
| 118 | by (simp add: prime_elem_def) | |
| 63498 | 119 | |
| 63633 | 120 | lemma prime_elem_dvd_multD: | 
| 121 | "prime_elem p \<Longrightarrow> p dvd (a * b) \<Longrightarrow> p dvd a \<or> p dvd b" | |
| 122 | by (simp add: prime_elem_def) | |
| 63498 | 123 | |
| 63633 | 124 | lemma prime_elem_dvd_mult_iff: | 
| 125 | "prime_elem p \<Longrightarrow> p dvd (a * b) \<longleftrightarrow> p dvd a \<or> p dvd b" | |
| 126 | by (auto simp: prime_elem_def) | |
| 63498 | 127 | |
| 63633 | 128 | lemma not_prime_elem_one [simp]: | 
| 129 | "\<not> prime_elem 1" | |
| 130 | by (auto dest: prime_elem_not_unit) | |
| 63498 | 131 | |
| 63633 | 132 | lemma prime_elem_not_zeroI: | 
| 133 | assumes "prime_elem p" | |
| 63498 | 134 | shows "p \<noteq> 0" | 
| 135 | using assms by (auto intro: ccontr) | |
| 136 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 137 | lemma prime_elem_dvd_power: | 
| 63633 | 138 | "prime_elem p \<Longrightarrow> p dvd x ^ n \<Longrightarrow> p dvd x" | 
| 139 | by (induction n) (auto dest: prime_elem_dvd_multD intro: dvd_trans[of _ 1]) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 140 | |
| 63633 | 141 | lemma prime_elem_dvd_power_iff: | 
| 142 | "prime_elem p \<Longrightarrow> n > 0 \<Longrightarrow> p dvd x ^ n \<longleftrightarrow> p dvd x" | |
| 143 | by (auto dest: prime_elem_dvd_power intro: dvd_trans) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 144 | |
| 63633 | 145 | lemma prime_elem_imp_nonzero [simp]: | 
| 146 | "ASSUMPTION (prime_elem x) \<Longrightarrow> x \<noteq> 0" | |
| 147 | unfolding ASSUMPTION_def by (rule prime_elem_not_zeroI) | |
| 63498 | 148 | |
| 63633 | 149 | lemma prime_elem_imp_not_one [simp]: | 
| 150 | "ASSUMPTION (prime_elem x) \<Longrightarrow> x \<noteq> 1" | |
| 63498 | 151 | unfolding ASSUMPTION_def by auto | 
| 152 | ||
| 153 | end | |
| 154 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 155 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 156 | lemma (in normalization_semidom) irreducible_cong: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 157 | assumes "normalize a = normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 158 | shows "irreducible a \<longleftrightarrow> irreducible b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 159 | proof (cases "a = 0 \<or> a dvd 1") | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 160 | case True | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 161 | hence "\<not>irreducible a" by (auto simp: irreducible_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 162 | from True have "normalize a = 0 \<or> normalize a dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 163 | by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 164 | also note assms | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 165 | finally have "b = 0 \<or> b dvd 1" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 166 | hence "\<not>irreducible b" by (auto simp: irreducible_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 167 | with \<open>\<not>irreducible a\<close> show ?thesis by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 168 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 169 | case False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 170 | hence b: "b \<noteq> 0" "\<not>is_unit b" using assms | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 171 | by (auto simp: is_unit_normalize[of b]) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 172 | show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 173 | proof | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 174 | assume "irreducible a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 175 | thus "irreducible b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 176 | by (rule irreducible_mono) (use assms False b in \<open>auto dest: associatedD2\<close>) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 177 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 178 | assume "irreducible b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 179 | thus "irreducible a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 180 | by (rule irreducible_mono) (use assms False b in \<open>auto dest: associatedD1\<close>) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 181 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 182 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 183 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 184 | lemma (in normalization_semidom) associatedE1: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 185 | assumes "normalize a = normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 186 | obtains u where "is_unit u" "a = u * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 187 | proof (cases "a = 0") | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 188 | case [simp]: False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 189 | from assms have [simp]: "b \<noteq> 0" by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 190 | show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 191 | proof (rule that) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 192 | show "is_unit (unit_factor a div unit_factor b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 193 | by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 194 | have "unit_factor a div unit_factor b * b = unit_factor a * (b div unit_factor b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 195 | using \<open>b \<noteq> 0\<close> unit_div_commute unit_div_mult_swap unit_factor_is_unit by metis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 196 | also have "b div unit_factor b = normalize b" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 197 | finally show "a = unit_factor a div unit_factor b * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 198 | by (metis assms unit_factor_mult_normalize) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 199 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 200 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 201 | case [simp]: True | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 202 | hence [simp]: "b = 0" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 203 | using assms[symmetric] by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 204 | show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 205 | by (intro that[of 1]) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 206 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 207 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 208 | lemma (in normalization_semidom) associatedE2: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 209 | assumes "normalize a = normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 210 | obtains u where "is_unit u" "b = u * a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 211 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 212 | from assms have "normalize b = normalize a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 213 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 214 | then obtain u where "is_unit u" "b = u * a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 215 | by (elim associatedE1) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 216 | thus ?thesis using that by blast | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 217 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 218 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 219 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 220 | (* TODO Move *) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 221 | lemma (in normalization_semidom) normalize_power_normalize: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 222 | "normalize (normalize x ^ n) = normalize (x ^ n)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 223 | proof (induction n) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 224 | case (Suc n) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 225 | have "normalize (normalize x ^ Suc n) = normalize (x * normalize (normalize x ^ n))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 226 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 227 | also note Suc.IH | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 228 | finally show ?case by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 229 | qed auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 230 | |
| 62499 | 231 | context algebraic_semidom | 
| 60804 | 232 | begin | 
| 233 | ||
| 63633 | 234 | lemma prime_elem_imp_irreducible: | 
| 235 | assumes "prime_elem p" | |
| 63498 | 236 | shows "irreducible p" | 
| 237 | proof (rule irreducibleI) | |
| 238 | fix a b | |
| 239 | assume p_eq: "p = a * b" | |
| 240 | with assms have nz: "a \<noteq> 0" "b \<noteq> 0" by auto | |
| 241 | from p_eq have "p dvd a * b" by simp | |
| 63633 | 242 | with \<open>prime_elem p\<close> have "p dvd a \<or> p dvd b" by (rule prime_elem_dvd_multD) | 
| 63498 | 243 | with \<open>p = a * b\<close> have "a * b dvd 1 * b \<or> a * b dvd a * 1" by auto | 
| 244 | thus "a dvd 1 \<or> b dvd 1" | |
| 245 | by (simp only: dvd_times_left_cancel_iff[OF nz(1)] dvd_times_right_cancel_iff[OF nz(2)]) | |
| 63633 | 246 | qed (insert assms, simp_all add: prime_elem_def) | 
| 63498 | 247 | |
| 63924 | 248 | lemma (in algebraic_semidom) unit_imp_no_irreducible_divisors: | 
| 249 | assumes "is_unit x" "irreducible p" | |
| 250 | shows "\<not>p dvd x" | |
| 251 | proof (rule notI) | |
| 252 | assume "p dvd x" | |
| 253 | with \<open>is_unit x\<close> have "is_unit p" | |
| 254 | by (auto intro: dvd_trans) | |
| 255 | with \<open>irreducible p\<close> show False | |
| 256 | by (simp add: irreducible_not_unit) | |
| 257 | qed | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 258 | |
| 63924 | 259 | lemma unit_imp_no_prime_divisors: | 
| 260 | assumes "is_unit x" "prime_elem p" | |
| 261 | shows "\<not>p dvd x" | |
| 262 | using unit_imp_no_irreducible_divisors[OF assms(1) prime_elem_imp_irreducible[OF assms(2)]] . | |
| 263 | ||
| 63633 | 264 | lemma prime_elem_mono: | 
| 265 | assumes "prime_elem p" "\<not>q dvd 1" "q dvd p" | |
| 266 | shows "prime_elem q" | |
| 63498 | 267 | proof - | 
| 268 | from \<open>q dvd p\<close> obtain r where r: "p = q * r" by (elim dvdE) | |
| 269 | hence "p dvd q * r" by simp | |
| 63633 | 270 | with \<open>prime_elem p\<close> have "p dvd q \<or> p dvd r" by (rule prime_elem_dvd_multD) | 
| 63498 | 271 | hence "p dvd q" | 
| 272 | proof | |
| 273 | assume "p dvd r" | |
| 274 | then obtain s where s: "r = p * s" by (elim dvdE) | |
| 275 | from r have "p * 1 = p * (q * s)" by (subst (asm) s) (simp add: mult_ac) | |
| 63633 | 276 | with \<open>prime_elem p\<close> have "q dvd 1" | 
| 63498 | 277 | by (subst (asm) mult_cancel_left) auto | 
| 278 | with \<open>\<not>q dvd 1\<close> show ?thesis by contradiction | |
| 279 | qed | |
| 280 | ||
| 281 | show ?thesis | |
| 63633 | 282 | proof (rule prime_elemI) | 
| 63498 | 283 | fix a b assume "q dvd (a * b)" | 
| 284 | with \<open>p dvd q\<close> have "p dvd (a * b)" by (rule dvd_trans) | |
| 63633 | 285 | with \<open>prime_elem p\<close> have "p dvd a \<or> p dvd b" by (rule prime_elem_dvd_multD) | 
| 63498 | 286 | with \<open>q dvd p\<close> show "q dvd a \<or> q dvd b" by (blast intro: dvd_trans) | 
| 287 | qed (insert assms, auto) | |
| 62499 | 288 | qed | 
| 289 | ||
| 63498 | 290 | lemma irreducibleD': | 
| 291 | assumes "irreducible a" "b dvd a" | |
| 292 | shows "a dvd b \<or> is_unit b" | |
| 293 | proof - | |
| 294 | from assms obtain c where c: "a = b * c" by (elim dvdE) | |
| 295 | from irreducibleD[OF assms(1) this] have "is_unit b \<or> is_unit c" . | |
| 296 | thus ?thesis by (auto simp: c mult_unit_dvd_iff) | |
| 297 | qed | |
| 60804 | 298 | |
| 63498 | 299 | lemma irreducibleI': | 
| 300 | assumes "a \<noteq> 0" "\<not>is_unit a" "\<And>b. b dvd a \<Longrightarrow> a dvd b \<or> is_unit b" | |
| 301 | shows "irreducible a" | |
| 302 | proof (rule irreducibleI) | |
| 303 | fix b c assume a_eq: "a = b * c" | |
| 304 | hence "a dvd b \<or> is_unit b" by (intro assms) simp_all | |
| 305 | thus "is_unit b \<or> is_unit c" | |
| 306 | proof | |
| 307 | assume "a dvd b" | |
| 308 | hence "b * c dvd b * 1" by (simp add: a_eq) | |
| 309 | moreover from \<open>a \<noteq> 0\<close> a_eq have "b \<noteq> 0" by auto | |
| 310 | ultimately show ?thesis by (subst (asm) dvd_times_left_cancel_iff) auto | |
| 311 | qed blast | |
| 312 | qed (simp_all add: assms(1,2)) | |
| 60804 | 313 | |
| 63498 | 314 | lemma irreducible_altdef: | 
| 315 | "irreducible x \<longleftrightarrow> x \<noteq> 0 \<and> \<not>is_unit x \<and> (\<forall>b. b dvd x \<longrightarrow> x dvd b \<or> is_unit b)" | |
| 316 | using irreducibleI'[of x] irreducibleD'[of x] irreducible_not_unit[of x] by auto | |
| 60804 | 317 | |
| 63633 | 318 | lemma prime_elem_multD: | 
| 319 | assumes "prime_elem (a * b)" | |
| 60804 | 320 | shows "is_unit a \<or> is_unit b" | 
| 321 | proof - | |
| 63633 | 322 | from assms have "a \<noteq> 0" "b \<noteq> 0" by (auto dest!: prime_elem_not_zeroI) | 
| 323 | moreover from assms prime_elem_dvd_multD [of "a * b"] have "a * b dvd a \<or> a * b dvd b" | |
| 60804 | 324 | by auto | 
| 325 | ultimately show ?thesis | |
| 326 | using dvd_times_left_cancel_iff [of a b 1] | |
| 327 | dvd_times_right_cancel_iff [of b a 1] | |
| 328 | by auto | |
| 329 | qed | |
| 330 | ||
| 63633 | 331 | lemma prime_elemD2: | 
| 332 | assumes "prime_elem p" and "a dvd p" and "\<not> is_unit a" | |
| 60804 | 333 | shows "p dvd a" | 
| 334 | proof - | |
| 335 | from \<open>a dvd p\<close> obtain b where "p = a * b" .. | |
| 63633 | 336 | with \<open>prime_elem p\<close> prime_elem_multD \<open>\<not> is_unit a\<close> have "is_unit b" by auto | 
| 60804 | 337 | with \<open>p = a * b\<close> show ?thesis | 
| 338 | by (auto simp add: mult_unit_dvd_iff) | |
| 339 | qed | |
| 340 | ||
| 63830 | 341 | lemma prime_elem_dvd_prod_msetE: | 
| 63633 | 342 | assumes "prime_elem p" | 
| 63830 | 343 | assumes dvd: "p dvd prod_mset A" | 
| 63633 | 344 | obtains a where "a \<in># A" and "p dvd a" | 
| 345 | proof - | |
| 346 | from dvd have "\<exists>a. a \<in># A \<and> p dvd a" | |
| 347 | proof (induct A) | |
| 348 | case empty then show ?case | |
| 349 | using \<open>prime_elem p\<close> by (simp add: prime_elem_not_unit) | |
| 350 | next | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63633diff
changeset | 351 | case (add a A) | 
| 63830 | 352 | then have "p dvd a * prod_mset A" by simp | 
| 353 | with \<open>prime_elem p\<close> consider (A) "p dvd prod_mset A" | (B) "p dvd a" | |
| 63633 | 354 | by (blast dest: prime_elem_dvd_multD) | 
| 355 | then show ?case proof cases | |
| 356 | case B then show ?thesis by auto | |
| 357 | next | |
| 358 | case A | |
| 359 | with add.hyps obtain b where "b \<in># A" "p dvd b" | |
| 360 | by auto | |
| 361 | then show ?thesis by auto | |
| 362 | qed | |
| 363 | qed | |
| 364 | with that show thesis by blast | |
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 365 | |
| 63633 | 366 | qed | 
| 367 | ||
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 368 | context | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 369 | begin | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 370 | |
| 74542 
d592354c4a26
removed some 'private' modifiers from HOL-Computational_Algebra
 Manuel Eberl <manuel@pruvisto.org> parents: 
74362diff
changeset | 371 | lemma prime_elem_powerD: | 
| 63633 | 372 | assumes "prime_elem (p ^ n)" | 
| 373 | shows "prime_elem p \<and> n = 1" | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 374 | proof (cases n) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 375 | case (Suc m) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 376 | note assms | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 377 | also from Suc have "p ^ n = p * p^m" by simp | 
| 63633 | 378 | finally have "is_unit p \<or> is_unit (p^m)" by (rule prime_elem_multD) | 
| 379 | moreover from assms have "\<not>is_unit p" by (simp add: prime_elem_def is_unit_power_iff) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 380 | ultimately have "is_unit (p ^ m)" by simp | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 381 | with \<open>\<not>is_unit p\<close> have "m = 0" by (simp add: is_unit_power_iff) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 382 | with Suc assms show ?thesis by simp | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 383 | qed (insert assms, simp_all) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 384 | |
| 63633 | 385 | lemma prime_elem_power_iff: | 
| 386 | "prime_elem (p ^ n) \<longleftrightarrow> prime_elem p \<and> n = 1" | |
| 387 | by (auto dest: prime_elem_powerD) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 388 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 389 | end | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 390 | |
| 63498 | 391 | lemma irreducible_mult_unit_left: | 
| 392 | "is_unit a \<Longrightarrow> irreducible (a * p) \<longleftrightarrow> irreducible p" | |
| 393 | by (auto simp: irreducible_altdef mult.commute[of a] is_unit_mult_iff | |
| 394 | mult_unit_dvd_iff dvd_mult_unit_iff) | |
| 395 | ||
| 63633 | 396 | lemma prime_elem_mult_unit_left: | 
| 397 | "is_unit a \<Longrightarrow> prime_elem (a * p) \<longleftrightarrow> prime_elem p" | |
| 398 | by (auto simp: prime_elem_def mult.commute[of a] is_unit_mult_iff mult_unit_dvd_iff) | |
| 63498 | 399 | |
| 63633 | 400 | lemma prime_elem_dvd_cases: | 
| 401 | assumes pk: "p*k dvd m*n" and p: "prime_elem p" | |
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 402 | shows "(\<exists>x. k dvd x*n \<and> m = p*x) \<or> (\<exists>y. k dvd m*y \<and> n = p*y)" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 403 | proof - | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 404 | have "p dvd m*n" using dvd_mult_left pk by blast | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 405 | then consider "p dvd m" | "p dvd n" | 
| 63633 | 406 | using p prime_elem_dvd_mult_iff by blast | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 407 | then show ?thesis | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 408 | proof cases | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 409 | case 1 then obtain a where "m = p * a" by (metis dvd_mult_div_cancel) | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 410 | then have "\<exists>x. k dvd x * n \<and> m = p * x" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 411 | using p pk by (auto simp: mult.assoc) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 412 | then show ?thesis .. | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 413 | next | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 414 | case 2 then obtain b where "n = p * b" by (metis dvd_mult_div_cancel) | 
| 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 415 | with p pk have "\<exists>y. k dvd m*y \<and> n = p*y" | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 416 | by (metis dvd_mult_right dvd_times_left_cancel_iff mult.left_commute mult_zero_left) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 417 | then show ?thesis .. | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 418 | qed | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 419 | qed | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 420 | |
| 63633 | 421 | lemma prime_elem_power_dvd_prod: | 
| 422 | assumes pc: "p^c dvd m*n" and p: "prime_elem p" | |
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 423 | shows "\<exists>a b. a+b = c \<and> p^a dvd m \<and> p^b dvd n" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 424 | using pc | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 425 | proof (induct c arbitrary: m n) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 426 | case 0 show ?case by simp | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 427 | next | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 428 | case (Suc c) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 429 | consider x where "p^c dvd x*n" "m = p*x" | y where "p^c dvd m*y" "n = p*y" | 
| 63633 | 430 | using prime_elem_dvd_cases [of _ "p^c", OF _ p] Suc.prems by force | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 431 | then show ?case | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 432 | proof cases | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 433 | case (1 x) | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 434 | with Suc.hyps[of x n] obtain a b where "a + b = c \<and> p ^ a dvd x \<and> p ^ b dvd n" by blast | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 435 | with 1 have "Suc a + b = Suc c \<and> p ^ Suc a dvd m \<and> p ^ b dvd n" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 436 | by (auto intro: mult_dvd_mono) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 437 | thus ?thesis by blast | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 438 | next | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 439 | case (2 y) | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 440 | with Suc.hyps[of m y] obtain a b where "a + b = c \<and> p ^ a dvd m \<and> p ^ b dvd y" by blast | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 441 | with 2 have "a + Suc b = Suc c \<and> p ^ a dvd m \<and> p ^ Suc b dvd n" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 442 | by (auto intro: mult_dvd_mono) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 443 | with Suc.hyps [of m y] show "\<exists>a b. a + b = Suc c \<and> p ^ a dvd m \<and> p ^ b dvd n" | 
| 68606 
96a49db47c97
removal of smt and certain refinements
 paulson <lp15@cam.ac.uk> parents: 
67051diff
changeset | 444 | by blast | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 445 | qed | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 446 | qed | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 447 | |
| 63633 | 448 | lemma prime_elem_power_dvd_cases: | 
| 63924 | 449 | assumes "p ^ c dvd m * n" and "a + b = Suc c" and "prime_elem p" | 
| 450 | shows "p ^ a dvd m \<or> p ^ b dvd n" | |
| 451 | proof - | |
| 452 | from assms obtain r s | |
| 453 | where "r + s = c \<and> p ^ r dvd m \<and> p ^ s dvd n" | |
| 454 | by (blast dest: prime_elem_power_dvd_prod) | |
| 455 | moreover with assms have | |
| 456 | "a \<le> r \<or> b \<le> s" by arith | |
| 457 | ultimately show ?thesis by (auto intro: power_le_dvd) | |
| 458 | qed | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 459 | |
| 63633 | 460 | lemma prime_elem_not_unit' [simp]: | 
| 461 | "ASSUMPTION (prime_elem x) \<Longrightarrow> \<not>is_unit x" | |
| 462 | unfolding ASSUMPTION_def by (rule prime_elem_not_unit) | |
| 63498 | 463 | |
| 63633 | 464 | lemma prime_elem_dvd_power_iff: | 
| 465 | assumes "prime_elem p" | |
| 62499 | 466 | shows "p dvd a ^ n \<longleftrightarrow> p dvd a \<and> n > 0" | 
| 63633 | 467 | using assms by (induct n) (auto dest: prime_elem_not_unit prime_elem_dvd_multD) | 
| 62499 | 468 | |
| 469 | lemma prime_power_dvd_multD: | |
| 63633 | 470 | assumes "prime_elem p" | 
| 62499 | 471 | assumes "p ^ n dvd a * b" and "n > 0" and "\<not> p dvd a" | 
| 472 | shows "p ^ n dvd b" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 473 | using \<open>p ^ n dvd a * b\<close> and \<open>n > 0\<close> | 
| 63633 | 474 | proof (induct n arbitrary: b) | 
| 62499 | 475 | case 0 then show ?case by simp | 
| 476 | next | |
| 477 | case (Suc n) show ?case | |
| 478 | proof (cases "n = 0") | |
| 63633 | 479 | case True with Suc \<open>prime_elem p\<close> \<open>\<not> p dvd a\<close> show ?thesis | 
| 480 | by (simp add: prime_elem_dvd_mult_iff) | |
| 62499 | 481 | next | 
| 482 | case False then have "n > 0" by simp | |
| 63633 | 483 | from \<open>prime_elem p\<close> have "p \<noteq> 0" by auto | 
| 62499 | 484 | from Suc.prems have *: "p * p ^ n dvd a * b" | 
| 485 | by simp | |
| 486 | then have "p dvd a * b" | |
| 487 | by (rule dvd_mult_left) | |
| 63633 | 488 | with Suc \<open>prime_elem p\<close> \<open>\<not> p dvd a\<close> have "p dvd b" | 
| 489 | by (simp add: prime_elem_dvd_mult_iff) | |
| 63040 | 490 | moreover define c where "c = b div p" | 
| 62499 | 491 | ultimately have b: "b = p * c" by simp | 
| 492 | with * have "p * p ^ n dvd p * (a * c)" | |
| 493 | by (simp add: ac_simps) | |
| 494 | with \<open>p \<noteq> 0\<close> have "p ^ n dvd a * c" | |
| 495 | by simp | |
| 496 | with Suc.hyps \<open>n > 0\<close> have "p ^ n dvd c" | |
| 497 | by blast | |
| 498 | with \<open>p \<noteq> 0\<close> show ?thesis | |
| 499 | by (simp add: b) | |
| 500 | qed | |
| 501 | qed | |
| 502 | ||
| 63633 | 503 | end | 
| 504 | ||
| 63924 | 505 | |
| 506 | subsection \<open>Generalized primes: normalized prime elements\<close> | |
| 507 | ||
| 63633 | 508 | context normalization_semidom | 
| 509 | begin | |
| 510 | ||
| 63924 | 511 | lemma irreducible_normalized_divisors: | 
| 512 | assumes "irreducible x" "y dvd x" "normalize y = y" | |
| 513 | shows "y = 1 \<or> y = normalize x" | |
| 514 | proof - | |
| 515 | from assms have "is_unit y \<or> x dvd y" by (auto simp: irreducible_altdef) | |
| 516 | thus ?thesis | |
| 517 | proof (elim disjE) | |
| 518 | assume "is_unit y" | |
| 519 | hence "normalize y = 1" by (simp add: is_unit_normalize) | |
| 520 | with assms show ?thesis by simp | |
| 521 | next | |
| 522 | assume "x dvd y" | |
| 523 | with \<open>y dvd x\<close> have "normalize y = normalize x" by (rule associatedI) | |
| 524 | with assms show ?thesis by simp | |
| 525 | qed | |
| 526 | qed | |
| 527 | ||
| 63633 | 528 | lemma irreducible_normalize_iff [simp]: "irreducible (normalize x) = irreducible x" | 
| 529 | using irreducible_mult_unit_left[of "1 div unit_factor x" x] | |
| 530 | by (cases "x = 0") (simp_all add: unit_div_commute) | |
| 531 | ||
| 532 | lemma prime_elem_normalize_iff [simp]: "prime_elem (normalize x) = prime_elem x" | |
| 533 | using prime_elem_mult_unit_left[of "1 div unit_factor x" x] | |
| 534 | by (cases "x = 0") (simp_all add: unit_div_commute) | |
| 535 | ||
| 536 | lemma prime_elem_associated: | |
| 537 | assumes "prime_elem p" and "prime_elem q" and "q dvd p" | |
| 538 | shows "normalize q = normalize p" | |
| 539 | using \<open>q dvd p\<close> proof (rule associatedI) | |
| 540 | from \<open>prime_elem q\<close> have "\<not> is_unit q" | |
| 541 | by (auto simp add: prime_elem_not_unit) | |
| 542 | with \<open>prime_elem p\<close> \<open>q dvd p\<close> show "p dvd q" | |
| 543 | by (blast intro: prime_elemD2) | |
| 544 | qed | |
| 545 | ||
| 546 | definition prime :: "'a \<Rightarrow> bool" where | |
| 547 | "prime p \<longleftrightarrow> prime_elem p \<and> normalize p = p" | |
| 548 | ||
| 549 | lemma not_prime_0 [simp]: "\<not>prime 0" by (simp add: prime_def) | |
| 550 | ||
| 551 | lemma not_prime_unit: "is_unit x \<Longrightarrow> \<not>prime x" | |
| 552 | using prime_elem_not_unit[of x] by (auto simp add: prime_def) | |
| 553 | ||
| 554 | lemma not_prime_1 [simp]: "\<not>prime 1" by (simp add: not_prime_unit) | |
| 555 | ||
| 556 | lemma primeI: "prime_elem x \<Longrightarrow> normalize x = x \<Longrightarrow> prime x" | |
| 557 | by (simp add: prime_def) | |
| 558 | ||
| 559 | lemma prime_imp_prime_elem [dest]: "prime p \<Longrightarrow> prime_elem p" | |
| 560 | by (simp add: prime_def) | |
| 561 | ||
| 562 | lemma normalize_prime: "prime p \<Longrightarrow> normalize p = p" | |
| 563 | by (simp add: prime_def) | |
| 564 | ||
| 565 | lemma prime_normalize_iff [simp]: "prime (normalize p) \<longleftrightarrow> prime_elem p" | |
| 566 | by (auto simp add: prime_def) | |
| 567 | ||
| 568 | lemma prime_power_iff: | |
| 569 | "prime (p ^ n) \<longleftrightarrow> prime p \<and> n = 1" | |
| 570 | by (auto simp: prime_def prime_elem_power_iff) | |
| 571 | ||
| 572 | lemma prime_imp_nonzero [simp]: | |
| 573 | "ASSUMPTION (prime x) \<Longrightarrow> x \<noteq> 0" | |
| 574 | unfolding ASSUMPTION_def prime_def by auto | |
| 575 | ||
| 576 | lemma prime_imp_not_one [simp]: | |
| 577 | "ASSUMPTION (prime x) \<Longrightarrow> x \<noteq> 1" | |
| 578 | unfolding ASSUMPTION_def by auto | |
| 579 | ||
| 580 | lemma prime_not_unit' [simp]: | |
| 581 | "ASSUMPTION (prime x) \<Longrightarrow> \<not>is_unit x" | |
| 582 | unfolding ASSUMPTION_def prime_def by auto | |
| 583 | ||
| 584 | lemma prime_normalize' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> normalize x = x" | |
| 585 | unfolding ASSUMPTION_def prime_def by simp | |
| 586 | ||
| 587 | lemma unit_factor_prime: "prime x \<Longrightarrow> unit_factor x = 1" | |
| 588 | using unit_factor_normalize[of x] unfolding prime_def by auto | |
| 589 | ||
| 590 | lemma unit_factor_prime' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> unit_factor x = 1" | |
| 591 | unfolding ASSUMPTION_def by (rule unit_factor_prime) | |
| 592 | ||
| 593 | lemma prime_imp_prime_elem' [simp]: "ASSUMPTION (prime x) \<Longrightarrow> prime_elem x" | |
| 594 | by (simp add: prime_def ASSUMPTION_def) | |
| 595 | ||
| 596 | lemma prime_dvd_multD: "prime p \<Longrightarrow> p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b" | |
| 597 | by (intro prime_elem_dvd_multD) simp_all | |
| 598 | ||
| 64631 
7705926ee595
removed dangerous simp rule: prime computations can be excessively long
 haftmann parents: 
64272diff
changeset | 599 | lemma prime_dvd_mult_iff: "prime p \<Longrightarrow> p dvd a * b \<longleftrightarrow> p dvd a \<or> p dvd b" | 
| 63633 | 600 | by (auto dest: prime_dvd_multD) | 
| 601 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 602 | lemma prime_dvd_power: | 
| 63633 | 603 | "prime p \<Longrightarrow> p dvd x ^ n \<Longrightarrow> p dvd x" | 
| 604 | by (auto dest!: prime_elem_dvd_power simp: prime_def) | |
| 605 | ||
| 606 | lemma prime_dvd_power_iff: | |
| 607 | "prime p \<Longrightarrow> n > 0 \<Longrightarrow> p dvd x ^ n \<longleftrightarrow> p dvd x" | |
| 608 | by (subst prime_elem_dvd_power_iff) simp_all | |
| 609 | ||
| 63830 | 610 | lemma prime_dvd_prod_mset_iff: "prime p \<Longrightarrow> p dvd prod_mset A \<longleftrightarrow> (\<exists>x. x \<in># A \<and> p dvd x)" | 
| 63633 | 611 | by (induction A) (simp_all add: prime_elem_dvd_mult_iff prime_imp_prime_elem, blast+) | 
| 612 | ||
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 613 | lemma prime_dvd_prod_iff: "finite A \<Longrightarrow> prime p \<Longrightarrow> p dvd prod f A \<longleftrightarrow> (\<exists>x\<in>A. p dvd f x)" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 614 | by (auto simp: prime_dvd_prod_mset_iff prod_unfold_prod_mset) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 615 | |
| 63633 | 616 | lemma primes_dvd_imp_eq: | 
| 617 | assumes "prime p" "prime q" "p dvd q" | |
| 618 | shows "p = q" | |
| 619 | proof - | |
| 620 | from assms have "irreducible q" by (simp add: prime_elem_imp_irreducible prime_def) | |
| 621 | from irreducibleD'[OF this \<open>p dvd q\<close>] assms have "q dvd p" by simp | |
| 622 | with \<open>p dvd q\<close> have "normalize p = normalize q" by (rule associatedI) | |
| 623 | with assms show "p = q" by simp | |
| 624 | qed | |
| 625 | ||
| 63830 | 626 | lemma prime_dvd_prod_mset_primes_iff: | 
| 63633 | 627 | assumes "prime p" "\<And>q. q \<in># A \<Longrightarrow> prime q" | 
| 63830 | 628 | shows "p dvd prod_mset A \<longleftrightarrow> p \<in># A" | 
| 63633 | 629 | proof - | 
| 63830 | 630 | from assms(1) have "p dvd prod_mset A \<longleftrightarrow> (\<exists>x. x \<in># A \<and> p dvd x)" by (rule prime_dvd_prod_mset_iff) | 
| 63633 | 631 | also from assms have "\<dots> \<longleftrightarrow> p \<in># A" by (auto dest: primes_dvd_imp_eq) | 
| 632 | finally show ?thesis . | |
| 633 | qed | |
| 634 | ||
| 63830 | 635 | lemma prod_mset_primes_dvd_imp_subset: | 
| 636 | assumes "prod_mset A dvd prod_mset B" "\<And>p. p \<in># A \<Longrightarrow> prime p" "\<And>p. p \<in># B \<Longrightarrow> prime p" | |
| 63633 | 637 | shows "A \<subseteq># B" | 
| 638 | using assms | |
| 639 | proof (induction A arbitrary: B) | |
| 640 | case empty | |
| 641 | thus ?case by simp | |
| 642 | next | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63633diff
changeset | 643 | case (add p A B) | 
| 63633 | 644 | hence p: "prime p" by simp | 
| 645 |   define B' where "B' = B - {#p#}"
 | |
| 63830 | 646 | from add.prems have "p dvd prod_mset B" by (simp add: dvd_mult_left) | 
| 63633 | 647 | with add.prems have "p \<in># B" | 
| 63830 | 648 | by (subst (asm) (2) prime_dvd_prod_mset_primes_iff) simp_all | 
| 63633 | 649 |   hence B: "B = B' + {#p#}" by (simp add: B'_def)
 | 
| 650 | from add.prems p have "A \<subseteq># B'" by (intro add.IH) (simp_all add: B) | |
| 651 | thus ?case by (simp add: B) | |
| 652 | qed | |
| 653 | ||
| 63830 | 654 | lemma prod_mset_dvd_prod_mset_primes_iff: | 
| 63633 | 655 | assumes "\<And>x. x \<in># A \<Longrightarrow> prime x" "\<And>x. x \<in># B \<Longrightarrow> prime x" | 
| 63830 | 656 | shows "prod_mset A dvd prod_mset B \<longleftrightarrow> A \<subseteq># B" | 
| 657 | using assms by (auto intro: prod_mset_subset_imp_dvd prod_mset_primes_dvd_imp_subset) | |
| 63633 | 658 | |
| 63830 | 659 | lemma is_unit_prod_mset_primes_iff: | 
| 63633 | 660 | assumes "\<And>x. x \<in># A \<Longrightarrow> prime x" | 
| 63830 | 661 |   shows   "is_unit (prod_mset A) \<longleftrightarrow> A = {#}"
 | 
| 63924 | 662 | by (auto simp add: is_unit_prod_mset_iff) | 
| 663 | (meson all_not_in_conv assms not_prime_unit set_mset_eq_empty_iff) | |
| 63498 | 664 | |
| 63830 | 665 | lemma prod_mset_primes_irreducible_imp_prime: | 
| 666 | assumes irred: "irreducible (prod_mset A)" | |
| 63633 | 667 | assumes A: "\<And>x. x \<in># A \<Longrightarrow> prime x" | 
| 668 | assumes B: "\<And>x. x \<in># B \<Longrightarrow> prime x" | |
| 669 | assumes C: "\<And>x. x \<in># C \<Longrightarrow> prime x" | |
| 63830 | 670 | assumes dvd: "prod_mset A dvd prod_mset B * prod_mset C" | 
| 671 | shows "prod_mset A dvd prod_mset B \<or> prod_mset A dvd prod_mset C" | |
| 63498 | 672 | proof - | 
| 63830 | 673 | from dvd have "prod_mset A dvd prod_mset (B + C)" | 
| 63498 | 674 | by simp | 
| 675 | with A B C have subset: "A \<subseteq># B + C" | |
| 63830 | 676 | by (subst (asm) prod_mset_dvd_prod_mset_primes_iff) auto | 
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 677 | define A1 and A2 where "A1 = A \<inter># B" and "A2 = A - A1" | 
| 63498 | 678 | have "A = A1 + A2" unfolding A1_def A2_def | 
| 679 | by (rule sym, intro subset_mset.add_diff_inverse) simp_all | |
| 680 | from subset have "A1 \<subseteq># B" "A2 \<subseteq># C" | |
| 681 | by (auto simp: A1_def A2_def Multiset.subset_eq_diff_conv Multiset.union_commute) | |
| 63830 | 682 | from \<open>A = A1 + A2\<close> have "prod_mset A = prod_mset A1 * prod_mset A2" by simp | 
| 683 | from irred and this have "is_unit (prod_mset A1) \<or> is_unit (prod_mset A2)" | |
| 63498 | 684 | by (rule irreducibleD) | 
| 685 |   with A have "A1 = {#} \<or> A2 = {#}" unfolding A1_def A2_def
 | |
| 63830 | 686 | by (subst (asm) (1 2) is_unit_prod_mset_primes_iff) (auto dest: Multiset.in_diffD) | 
| 63498 | 687 | with dvd \<open>A = A1 + A2\<close> \<open>A1 \<subseteq># B\<close> \<open>A2 \<subseteq># C\<close> show ?thesis | 
| 63830 | 688 | by (auto intro: prod_mset_subset_imp_dvd) | 
| 63498 | 689 | qed | 
| 690 | ||
| 63830 | 691 | lemma prod_mset_primes_finite_divisor_powers: | 
| 63633 | 692 | assumes A: "\<And>x. x \<in># A \<Longrightarrow> prime x" | 
| 693 | assumes B: "\<And>x. x \<in># B \<Longrightarrow> prime x" | |
| 63498 | 694 |   assumes "A \<noteq> {#}"
 | 
| 63830 | 695 |   shows   "finite {n. prod_mset A ^ n dvd prod_mset B}"
 | 
| 63498 | 696 | proof - | 
| 697 |   from \<open>A \<noteq> {#}\<close> obtain x where x: "x \<in># A" by blast
 | |
| 698 | define m where "m = count B x" | |
| 63830 | 699 |   have "{n. prod_mset A ^ n dvd prod_mset B} \<subseteq> {..m}"
 | 
| 63498 | 700 | proof safe | 
| 63830 | 701 | fix n assume dvd: "prod_mset A ^ n dvd prod_mset B" | 
| 702 | from x have "x ^ n dvd prod_mset A ^ n" by (intro dvd_power_same dvd_prod_mset) | |
| 63498 | 703 | also note dvd | 
| 63830 | 704 | also have "x ^ n = prod_mset (replicate_mset n x)" by simp | 
| 63498 | 705 | finally have "replicate_mset n x \<subseteq># B" | 
| 63830 | 706 | by (rule prod_mset_primes_dvd_imp_subset) (insert A B x, simp_all split: if_splits) | 
| 63498 | 707 | thus "n \<le> m" by (simp add: count_le_replicate_mset_subset_eq m_def) | 
| 60804 | 708 | qed | 
| 63498 | 709 |   moreover have "finite {..m}" by simp
 | 
| 710 | ultimately show ?thesis by (rule finite_subset) | |
| 711 | qed | |
| 712 | ||
| 63924 | 713 | end | 
| 63498 | 714 | |
| 63924 | 715 | |
| 67051 | 716 | subsection \<open>In a semiring with GCD, each irreducible element is a prime element\<close> | 
| 63498 | 717 | |
| 718 | context semiring_gcd | |
| 719 | begin | |
| 720 | ||
| 63633 | 721 | lemma irreducible_imp_prime_elem_gcd: | 
| 63498 | 722 | assumes "irreducible x" | 
| 63633 | 723 | shows "prime_elem x" | 
| 724 | proof (rule prime_elemI) | |
| 63498 | 725 | fix a b assume "x dvd a * b" | 
| 726 | from dvd_productE[OF this] obtain y z where yz: "x = y * z" "y dvd a" "z dvd b" . | |
| 727 | from \<open>irreducible x\<close> and \<open>x = y * z\<close> have "is_unit y \<or> is_unit z" by (rule irreducibleD) | |
| 728 | with yz show "x dvd a \<or> x dvd b" | |
| 729 | by (auto simp: mult_unit_dvd_iff mult_unit_dvd_iff') | |
| 730 | qed (insert assms, auto simp: irreducible_not_unit) | |
| 731 | ||
| 63633 | 732 | lemma prime_elem_imp_coprime: | 
| 733 | assumes "prime_elem p" "\<not>p dvd n" | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 734 | shows "coprime p n" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 735 | proof (rule coprimeI) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 736 | fix d assume "d dvd p" "d dvd n" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 737 | show "is_unit d" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 738 | proof (rule ccontr) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 739 | assume "\<not>is_unit d" | 
| 63633 | 740 | from \<open>prime_elem p\<close> and \<open>d dvd p\<close> and this have "p dvd d" | 
| 741 | by (rule prime_elemD2) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 742 | from this and \<open>d dvd n\<close> have "p dvd n" by (rule dvd_trans) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 743 | with \<open>\<not>p dvd n\<close> show False by contradiction | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 744 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 745 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 746 | |
| 63633 | 747 | lemma prime_imp_coprime: | 
| 748 | assumes "prime p" "\<not>p dvd n" | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 749 | shows "coprime p n" | 
| 63633 | 750 | using assms by (simp add: prime_elem_imp_coprime) | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 751 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 752 | lemma prime_elem_imp_power_coprime: | 
| 67051 | 753 | "prime_elem p \<Longrightarrow> \<not> p dvd a \<Longrightarrow> coprime a (p ^ m)" | 
| 754 | by (cases "m > 0") (auto dest: prime_elem_imp_coprime simp add: ac_simps) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 755 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 756 | lemma prime_imp_power_coprime: | 
| 67051 | 757 | "prime p \<Longrightarrow> \<not> p dvd a \<Longrightarrow> coprime a (p ^ m)" | 
| 758 | by (rule prime_elem_imp_power_coprime) simp_all | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 759 | |
| 63633 | 760 | lemma prime_elem_divprod_pow: | 
| 761 | assumes p: "prime_elem p" and ab: "coprime a b" and pab: "p^n dvd a * b" | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 762 | shows "p^n dvd a \<or> p^n dvd b" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 763 | using assms | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 764 | proof - | 
| 67051 | 765 | from p have "\<not> is_unit p" | 
| 766 | by simp | |
| 767 | with ab p have "\<not> p dvd a \<or> \<not> p dvd b" | |
| 768 | using not_coprimeI by blast | |
| 769 | with p have "coprime (p ^ n) a \<or> coprime (p ^ n) b" | |
| 770 | by (auto dest: prime_elem_imp_power_coprime simp add: ac_simps) | |
| 771 | with pab show ?thesis | |
| 772 | by (auto simp add: coprime_dvd_mult_left_iff coprime_dvd_mult_right_iff) | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 773 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 774 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 775 | lemma primes_coprime: | 
| 63633 | 776 | "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q" | 
| 777 | using prime_imp_coprime primes_dvd_imp_eq by blast | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 778 | |
| 63498 | 779 | end | 
| 780 | ||
| 781 | ||
| 63924 | 782 | subsection \<open>Factorial semirings: algebraic structures with unique prime factorizations\<close> | 
| 783 | ||
| 63498 | 784 | class factorial_semiring = normalization_semidom + | 
| 785 | assumes prime_factorization_exists: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 786 | "x \<noteq> 0 \<Longrightarrow> \<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> normalize (prod_mset A) = normalize x" | 
| 63924 | 787 | |
| 788 | text \<open>Alternative characterization\<close> | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 789 | |
| 63924 | 790 | lemma (in normalization_semidom) factorial_semiring_altI_aux: | 
| 791 |   assumes finite_divisors: "\<And>x. x \<noteq> 0 \<Longrightarrow> finite {y. y dvd x \<and> normalize y = y}"
 | |
| 792 | assumes irreducible_imp_prime_elem: "\<And>x. irreducible x \<Longrightarrow> prime_elem x" | |
| 793 | assumes "x \<noteq> 0" | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 794 | shows "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> normalize (prod_mset A) = normalize x" | 
| 63924 | 795 | using \<open>x \<noteq> 0\<close> | 
| 796 | proof (induction "card {b. b dvd x \<and> normalize b = b}" arbitrary: x rule: less_induct)
 | |
| 797 | case (less a) | |
| 798 |   let ?fctrs = "\<lambda>a. {b. b dvd a \<and> normalize b = b}"
 | |
| 799 | show ?case | |
| 800 | proof (cases "is_unit a") | |
| 801 | case True | |
| 802 |     thus ?thesis by (intro exI[of _ "{#}"]) (auto simp: is_unit_normalize)
 | |
| 803 | next | |
| 804 | case False | |
| 805 | show ?thesis | |
| 806 | proof (cases "\<exists>b. b dvd a \<and> \<not>is_unit b \<and> \<not>a dvd b") | |
| 807 | case False | |
| 808 | with \<open>\<not>is_unit a\<close> less.prems have "irreducible a" by (auto simp: irreducible_altdef) | |
| 809 | hence "prime_elem a" by (rule irreducible_imp_prime_elem) | |
| 810 |       thus ?thesis by (intro exI[of _ "{#normalize a#}"]) auto
 | |
| 811 | next | |
| 812 | case True | |
| 74362 | 813 | then obtain b where b: "b dvd a" "\<not> is_unit b" "\<not> a dvd b" by auto | 
| 63924 | 814 | from b have "?fctrs b \<subseteq> ?fctrs a" by (auto intro: dvd_trans) | 
| 815 | moreover from b have "normalize a \<notin> ?fctrs b" "normalize a \<in> ?fctrs a" by simp_all | |
| 816 | hence "?fctrs b \<noteq> ?fctrs a" by blast | |
| 817 | ultimately have "?fctrs b \<subset> ?fctrs a" by (subst subset_not_subset_eq) blast | |
| 818 | with finite_divisors[OF \<open>a \<noteq> 0\<close>] have "card (?fctrs b) < card (?fctrs a)" | |
| 819 | by (rule psubset_card_mono) | |
| 820 | moreover from \<open>a \<noteq> 0\<close> b have "b \<noteq> 0" by auto | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 821 | ultimately have "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> normalize (prod_mset A) = normalize b" | 
| 63924 | 822 | by (intro less) auto | 
| 74362 | 823 | then obtain A where A: "(\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> normalize (\<Prod>\<^sub># A) = normalize b" | 
| 824 | by auto | |
| 63924 | 825 | |
| 826 | define c where "c = a div b" | |
| 827 | from b have c: "a = b * c" by (simp add: c_def) | |
| 828 | from less.prems c have "c \<noteq> 0" by auto | |
| 829 | from b c have "?fctrs c \<subseteq> ?fctrs a" by (auto intro: dvd_trans) | |
| 830 | moreover have "normalize a \<notin> ?fctrs c" | |
| 831 | proof safe | |
| 832 | assume "normalize a dvd c" | |
| 833 | hence "b * c dvd 1 * c" by (simp add: c) | |
| 834 | hence "b dvd 1" by (subst (asm) dvd_times_right_cancel_iff) fact+ | |
| 835 | with b show False by simp | |
| 836 | qed | |
| 837 | with \<open>normalize a \<in> ?fctrs a\<close> have "?fctrs a \<noteq> ?fctrs c" by blast | |
| 838 | ultimately have "?fctrs c \<subset> ?fctrs a" by (subst subset_not_subset_eq) blast | |
| 839 | with finite_divisors[OF \<open>a \<noteq> 0\<close>] have "card (?fctrs c) < card (?fctrs a)" | |
| 840 | by (rule psubset_card_mono) | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 841 | with \<open>c \<noteq> 0\<close> have "\<exists>A. (\<forall>x. x \<in># A \<longrightarrow> prime_elem x) \<and> normalize (prod_mset A) = normalize c" | 
| 63924 | 842 | by (intro less) auto | 
| 74362 | 843 | then obtain B where B: "(\<forall>x. x \<in># B \<longrightarrow> prime_elem x) \<and> normalize (\<Prod>\<^sub># B) = normalize c" | 
| 844 | by auto | |
| 63924 | 845 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 846 | show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 847 | proof (rule exI[of _ "A + B"]; safe) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 848 | have "normalize (prod_mset (A + B)) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 849 | normalize (normalize (prod_mset A) * normalize (prod_mset B))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 850 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 851 | also have "\<dots> = normalize (b * c)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 852 | by (simp only: A B) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 853 | also have "b * c = a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 854 | using c by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 855 | finally show "normalize (prod_mset (A + B)) = normalize a" . | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 856 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 857 | qed (use A B in auto) | 
| 63924 | 858 | qed | 
| 859 | qed | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 860 | qed | 
| 63924 | 861 | |
| 862 | lemma factorial_semiring_altI: | |
| 863 |   assumes finite_divisors: "\<And>x::'a. x \<noteq> 0 \<Longrightarrow> finite {y. y dvd x \<and> normalize y = y}"
 | |
| 864 | assumes irreducible_imp_prime: "\<And>x::'a. irreducible x \<Longrightarrow> prime_elem x" | |
| 865 |   shows   "OFCLASS('a :: normalization_semidom, factorial_semiring_class)"
 | |
| 866 | by intro_classes (rule factorial_semiring_altI_aux[OF assms]) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 867 | |
| 63924 | 868 | text \<open>Properties\<close> | 
| 869 | ||
| 870 | context factorial_semiring | |
| 63498 | 871 | begin | 
| 872 | ||
| 873 | lemma prime_factorization_exists': | |
| 874 | assumes "x \<noteq> 0" | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 875 | obtains A where "\<And>x. x \<in># A \<Longrightarrow> prime x" "normalize (prod_mset A) = normalize x" | 
| 63498 | 876 | proof - | 
| 877 | from prime_factorization_exists[OF assms] obtain A | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 878 | where A: "\<And>x. x \<in># A \<Longrightarrow> prime_elem x" "normalize (prod_mset A) = normalize x" by blast | 
| 63498 | 879 | define A' where "A' = image_mset normalize A" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 880 | have "normalize (prod_mset A') = normalize (prod_mset A)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 881 | by (simp add: A'_def normalize_prod_mset_normalize) | 
| 63498 | 882 | also note A(2) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 883 | finally have "normalize (prod_mset A') = normalize x" by simp | 
| 63633 | 884 | moreover from A(1) have "\<forall>x. x \<in># A' \<longrightarrow> prime x" by (auto simp: prime_def A'_def) | 
| 63498 | 885 | ultimately show ?thesis by (intro that[of A']) blast | 
| 886 | qed | |
| 887 | ||
| 63633 | 888 | lemma irreducible_imp_prime_elem: | 
| 63498 | 889 | assumes "irreducible x" | 
| 63633 | 890 | shows "prime_elem x" | 
| 891 | proof (rule prime_elemI) | |
| 63498 | 892 | fix a b assume dvd: "x dvd a * b" | 
| 893 | from assms have "x \<noteq> 0" by auto | |
| 894 | show "x dvd a \<or> x dvd b" | |
| 895 | proof (cases "a = 0 \<or> b = 0") | |
| 896 | case False | |
| 897 | hence "a \<noteq> 0" "b \<noteq> 0" by blast+ | |
| 898 | note nz = \<open>x \<noteq> 0\<close> this | |
| 74362 | 899 | from nz[THEN prime_factorization_exists'] obtain A B C | 
| 900 | where ABC: | |
| 901 | "\<And>z. z \<in># A \<Longrightarrow> prime z" | |
| 902 | "normalize (\<Prod>\<^sub># A) = normalize x" | |
| 903 | "\<And>z. z \<in># B \<Longrightarrow> prime z" | |
| 904 | "normalize (\<Prod>\<^sub># B) = normalize a" | |
| 905 | "\<And>z. z \<in># C \<Longrightarrow> prime z" | |
| 906 | "normalize (\<Prod>\<^sub># C) = normalize b" | |
| 907 | by this blast | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 908 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 909 | have "irreducible (prod_mset A)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 910 | by (subst irreducible_cong[OF ABC(2)]) fact | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 911 | moreover have "normalize (prod_mset A) dvd | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 912 | normalize (normalize (prod_mset B) * normalize (prod_mset C))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 913 | unfolding ABC using dvd by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 914 | hence "prod_mset A dvd prod_mset B * prod_mset C" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 915 | unfolding normalize_mult_normalize_left normalize_mult_normalize_right by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 916 | ultimately have "prod_mset A dvd prod_mset B \<or> prod_mset A dvd prod_mset C" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 917 | by (intro prod_mset_primes_irreducible_imp_prime) (use ABC in auto) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 918 | hence "normalize (prod_mset A) dvd normalize (prod_mset B) \<or> | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 919 | normalize (prod_mset A) dvd normalize (prod_mset C)" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 920 | thus ?thesis unfolding ABC by simp | 
| 63498 | 921 | qed auto | 
| 74362 | 922 | qed (use assms in \<open>simp_all add: irreducible_def\<close>) | 
| 63498 | 923 | |
| 924 | lemma finite_divisor_powers: | |
| 925 | assumes "y \<noteq> 0" "\<not>is_unit x" | |
| 926 |   shows   "finite {n. x ^ n dvd y}"
 | |
| 927 | proof (cases "x = 0") | |
| 928 | case True | |
| 929 |   with assms have "{n. x ^ n dvd y} = {0}" by (auto simp: power_0_left)
 | |
| 930 | thus ?thesis by simp | |
| 931 | next | |
| 932 | case False | |
| 933 | note nz = this \<open>y \<noteq> 0\<close> | |
| 74362 | 934 | from nz[THEN prime_factorization_exists'] obtain A B | 
| 935 | where AB: | |
| 936 | "\<And>z. z \<in># A \<Longrightarrow> prime z" | |
| 937 | "normalize (\<Prod>\<^sub># A) = normalize x" | |
| 938 | "\<And>z. z \<in># B \<Longrightarrow> prime z" | |
| 939 | "normalize (\<Prod>\<^sub># B) = normalize y" | |
| 940 | by this blast | |
| 941 | ||
| 63498 | 942 |   from AB assms have "A \<noteq> {#}" by (auto simp: normalize_1_iff)
 | 
| 63830 | 943 | from AB(2,4) prod_mset_primes_finite_divisor_powers [of A B, OF AB(1,3) this] | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 944 |     have "finite {n. prod_mset A ^ n dvd prod_mset B}" by simp
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 945 |   also have "{n. prod_mset A ^ n dvd prod_mset B} =
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 946 |              {n. normalize (normalize (prod_mset A) ^ n) dvd normalize (prod_mset B)}"
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 947 | unfolding normalize_power_normalize by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 948 |   also have "\<dots> = {n. x ^ n dvd y}"
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 949 | unfolding AB unfolding normalize_power_normalize by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 950 | finally show ?thesis . | 
| 63498 | 951 | qed | 
| 952 | ||
| 953 | lemma finite_prime_divisors: | |
| 954 | assumes "x \<noteq> 0" | |
| 63633 | 955 |   shows   "finite {p. prime p \<and> p dvd x}"
 | 
| 63498 | 956 | proof - | 
| 74362 | 957 | from prime_factorization_exists'[OF assms] obtain A | 
| 958 | where A: "\<And>z. z \<in># A \<Longrightarrow> prime z" "normalize (\<Prod>\<^sub># A) = normalize x" by this blast | |
| 63633 | 959 |   have "{p. prime p \<and> p dvd x} \<subseteq> set_mset A"
 | 
| 63498 | 960 | proof safe | 
| 63633 | 961 | fix p assume p: "prime p" and dvd: "p dvd x" | 
| 63498 | 962 | from dvd have "p dvd normalize x" by simp | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 963 | also from A have "normalize x = normalize (prod_mset A)" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 964 | finally have "p dvd prod_mset A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 965 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 966 | thus "p \<in># A" using p A | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 967 | by (subst (asm) prime_dvd_prod_mset_primes_iff) | 
| 63498 | 968 | qed | 
| 969 | moreover have "finite (set_mset A)" by simp | |
| 970 | ultimately show ?thesis by (rule finite_subset) | |
| 60804 | 971 | qed | 
| 972 | ||
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 973 | lemma infinite_unit_divisor_powers: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 974 | assumes "y \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 975 | assumes "is_unit x" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 976 |  shows "infinite {n. x^n dvd y}"
 | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 977 | proof - | 
| 74885 | 978 | from \<open>is_unit x\<close> have "is_unit (x^n)" for n | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 979 | using is_unit_power_iff by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 980 | hence "x^n dvd y" for n | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 981 | by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 982 |  hence "{n. x^n dvd y} = UNIV"
 | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 983 | by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 984 | thus ?thesis | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 985 | by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 986 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 987 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 988 | corollary is_unit_iff_infinite_divisor_powers: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 989 | assumes "y \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 990 |  shows "is_unit x \<longleftrightarrow> infinite {n. x^n dvd y}"
 | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 991 | using infinite_unit_divisor_powers finite_divisor_powers assms by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 992 | |
| 63633 | 993 | lemma prime_elem_iff_irreducible: "prime_elem x \<longleftrightarrow> irreducible x" | 
| 994 | by (blast intro: irreducible_imp_prime_elem prime_elem_imp_irreducible) | |
| 62499 | 995 | |
| 63498 | 996 | lemma prime_divisor_exists: | 
| 997 | assumes "a \<noteq> 0" "\<not>is_unit a" | |
| 63633 | 998 | shows "\<exists>b. b dvd a \<and> prime b" | 
| 63498 | 999 | proof - | 
| 74362 | 1000 | from prime_factorization_exists'[OF assms(1)] | 
| 1001 | obtain A where A: "\<And>z. z \<in># A \<Longrightarrow> prime z" "normalize (\<Prod>\<^sub># A) = normalize a" | |
| 1002 | by this blast | |
| 1003 |   with assms have "A \<noteq> {#}" by auto
 | |
| 63498 | 1004 | then obtain x where "x \<in># A" by blast | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1005 | with A(1) have *: "x dvd normalize (prod_mset A)" "prime x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1006 | by (auto simp: dvd_prod_mset) | 
| 74362 | 1007 | hence "x dvd a" by (simp add: A(2)) | 
| 63539 | 1008 | with * show ?thesis by blast | 
| 63498 | 1009 | qed | 
| 60804 | 1010 | |
| 63498 | 1011 | lemma prime_divisors_induct [case_names zero unit factor]: | 
| 63633 | 1012 | assumes "P 0" "\<And>x. is_unit x \<Longrightarrow> P x" "\<And>p x. prime p \<Longrightarrow> P x \<Longrightarrow> P (p * x)" | 
| 63498 | 1013 | shows "P x" | 
| 1014 | proof (cases "x = 0") | |
| 1015 | case False | |
| 74362 | 1016 | from prime_factorization_exists'[OF this] | 
| 1017 | obtain A where A: "\<And>z. z \<in># A \<Longrightarrow> prime z" "normalize (\<Prod>\<^sub># A) = normalize x" | |
| 1018 | by this blast | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1019 | from A obtain u where u: "is_unit u" "x = u * prod_mset A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1020 | by (elim associatedE2) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1021 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1022 | from A(1) have "P (u * prod_mset A)" | 
| 63498 | 1023 | proof (induction A) | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63633diff
changeset | 1024 | case (add p A) | 
| 63633 | 1025 | from add.prems have "prime p" by simp | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1026 | moreover from add.prems have "P (u * prod_mset A)" by (intro add.IH) simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1027 | ultimately have "P (p * (u * prod_mset A))" by (rule assms(3)) | 
| 63498 | 1028 | thus ?case by (simp add: mult_ac) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1029 | qed (simp_all add: assms False u) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1030 | with A u show ?thesis by simp | 
| 63498 | 1031 | qed (simp_all add: assms(1)) | 
| 1032 | ||
| 1033 | lemma no_prime_divisors_imp_unit: | |
| 63633 | 1034 | assumes "a \<noteq> 0" "\<And>b. b dvd a \<Longrightarrow> normalize b = b \<Longrightarrow> \<not> prime_elem b" | 
| 63498 | 1035 | shows "is_unit a" | 
| 1036 | proof (rule ccontr) | |
| 1037 | assume "\<not>is_unit a" | |
| 74362 | 1038 | from prime_divisor_exists[OF assms(1) this] obtain b where "b dvd a" "prime b" by auto | 
| 63633 | 1039 | with assms(2)[of b] show False by (simp add: prime_def) | 
| 60804 | 1040 | qed | 
| 62499 | 1041 | |
| 63498 | 1042 | lemma prime_divisorE: | 
| 1043 | assumes "a \<noteq> 0" and "\<not> is_unit a" | |
| 63633 | 1044 | obtains p where "prime p" and "p dvd a" | 
| 1045 | using assms no_prime_divisors_imp_unit unfolding prime_def by blast | |
| 63498 | 1046 | |
| 1047 | definition multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" where | |
| 1048 |   "multiplicity p x = (if finite {n. p ^ n dvd x} then Max {n. p ^ n dvd x} else 0)"
 | |
| 1049 | ||
| 1050 | lemma multiplicity_dvd: "p ^ multiplicity p x dvd x" | |
| 1051 | proof (cases "finite {n. p ^ n dvd x}")
 | |
| 1052 | case True | |
| 1053 |   hence "multiplicity p x = Max {n. p ^ n dvd x}"
 | |
| 1054 | by (simp add: multiplicity_def) | |
| 1055 |   also have "\<dots> \<in> {n. p ^ n dvd x}"
 | |
| 1056 | by (rule Max_in) (auto intro!: True exI[of _ "0::nat"]) | |
| 1057 | finally show ?thesis by simp | |
| 1058 | qed (simp add: multiplicity_def) | |
| 1059 | ||
| 1060 | lemma multiplicity_dvd': "n \<le> multiplicity p x \<Longrightarrow> p ^ n dvd x" | |
| 1061 | by (rule dvd_trans[OF le_imp_power_dvd multiplicity_dvd]) | |
| 1062 | ||
| 1063 | context | |
| 1064 | fixes x p :: 'a | |
| 1065 | assumes xp: "x \<noteq> 0" "\<not>is_unit p" | |
| 1066 | begin | |
| 1067 | ||
| 1068 | lemma multiplicity_eq_Max: "multiplicity p x = Max {n. p ^ n dvd x}"
 | |
| 1069 | using finite_divisor_powers[OF xp] by (simp add: multiplicity_def) | |
| 1070 | ||
| 1071 | lemma multiplicity_geI: | |
| 1072 | assumes "p ^ n dvd x" | |
| 1073 | shows "multiplicity p x \<ge> n" | |
| 1074 | proof - | |
| 1075 |   from assms have "n \<le> Max {n. p ^ n dvd x}"
 | |
| 1076 | by (intro Max_ge finite_divisor_powers xp) simp_all | |
| 1077 | thus ?thesis by (subst multiplicity_eq_Max) | |
| 1078 | qed | |
| 1079 | ||
| 1080 | lemma multiplicity_lessI: | |
| 1081 | assumes "\<not>p ^ n dvd x" | |
| 1082 | shows "multiplicity p x < n" | |
| 1083 | proof (rule ccontr) | |
| 1084 | assume "\<not>(n > multiplicity p x)" | |
| 1085 | hence "p ^ n dvd x" by (intro multiplicity_dvd') simp | |
| 1086 | with assms show False by contradiction | |
| 62499 | 1087 | qed | 
| 1088 | ||
| 63498 | 1089 | lemma power_dvd_iff_le_multiplicity: | 
| 1090 | "p ^ n dvd x \<longleftrightarrow> n \<le> multiplicity p x" | |
| 1091 | using multiplicity_geI[of n] multiplicity_lessI[of n] by (cases "p ^ n dvd x") auto | |
| 1092 | ||
| 1093 | lemma multiplicity_eq_zero_iff: | |
| 1094 | shows "multiplicity p x = 0 \<longleftrightarrow> \<not>p dvd x" | |
| 1095 | using power_dvd_iff_le_multiplicity[of 1] by auto | |
| 1096 | ||
| 1097 | lemma multiplicity_gt_zero_iff: | |
| 1098 | shows "multiplicity p x > 0 \<longleftrightarrow> p dvd x" | |
| 1099 | using power_dvd_iff_le_multiplicity[of 1] by auto | |
| 1100 | ||
| 1101 | lemma multiplicity_decompose: | |
| 1102 | "\<not>p dvd (x div p ^ multiplicity p x)" | |
| 1103 | proof | |
| 1104 | assume *: "p dvd x div p ^ multiplicity p x" | |
| 1105 | have "x = x div p ^ multiplicity p x * (p ^ multiplicity p x)" | |
| 1106 | using multiplicity_dvd[of p x] by simp | |
| 1107 | also from * have "x div p ^ multiplicity p x = (x div p ^ multiplicity p x div p) * p" by simp | |
| 1108 | also have "x div p ^ multiplicity p x div p * p * p ^ multiplicity p x = | |
| 1109 | x div p ^ multiplicity p x div p * p ^ Suc (multiplicity p x)" | |
| 1110 | by (simp add: mult_assoc) | |
| 1111 | also have "p ^ Suc (multiplicity p x) dvd \<dots>" by (rule dvd_triv_right) | |
| 1112 | finally show False by (subst (asm) power_dvd_iff_le_multiplicity) simp | |
| 1113 | qed | |
| 1114 | ||
| 1115 | lemma multiplicity_decompose': | |
| 1116 | obtains y where "x = p ^ multiplicity p x * y" "\<not>p dvd y" | |
| 1117 | using that[of "x div p ^ multiplicity p x"] | |
| 1118 | by (simp add: multiplicity_decompose multiplicity_dvd) | |
| 1119 | ||
| 1120 | end | |
| 1121 | ||
| 1122 | lemma multiplicity_zero [simp]: "multiplicity p 0 = 0" | |
| 1123 | by (simp add: multiplicity_def) | |
| 1124 | ||
| 63633 | 1125 | lemma prime_elem_multiplicity_eq_zero_iff: | 
| 1126 | "prime_elem p \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> multiplicity p x = 0 \<longleftrightarrow> \<not>p dvd x" | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1127 | by (rule multiplicity_eq_zero_iff) simp_all | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1128 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1129 | lemma prime_multiplicity_other: | 
| 63633 | 1130 | assumes "prime p" "prime q" "p \<noteq> q" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1131 | shows "multiplicity p q = 0" | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1132 | using assms by (subst prime_elem_multiplicity_eq_zero_iff) (auto dest: primes_dvd_imp_eq) | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1133 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1134 | lemma prime_multiplicity_gt_zero_iff: | 
| 63633 | 1135 | "prime_elem p \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> multiplicity p x > 0 \<longleftrightarrow> p dvd x" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1136 | by (rule multiplicity_gt_zero_iff) simp_all | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1137 | |
| 63498 | 1138 | lemma multiplicity_unit_left: "is_unit p \<Longrightarrow> multiplicity p x = 0" | 
| 1139 | by (simp add: multiplicity_def is_unit_power_iff unit_imp_dvd) | |
| 62499 | 1140 | |
| 63498 | 1141 | lemma multiplicity_unit_right: | 
| 1142 | assumes "is_unit x" | |
| 1143 | shows "multiplicity p x = 0" | |
| 1144 | proof (cases "is_unit p \<or> x = 0") | |
| 1145 | case False | |
| 1146 | with multiplicity_lessI[of x p 1] this assms | |
| 1147 | show ?thesis by (auto dest: dvd_unit_imp_unit) | |
| 1148 | qed (auto simp: multiplicity_unit_left) | |
| 1149 | ||
| 1150 | lemma multiplicity_one [simp]: "multiplicity p 1 = 0" | |
| 1151 | by (rule multiplicity_unit_right) simp_all | |
| 1152 | ||
| 1153 | lemma multiplicity_eqI: | |
| 1154 | assumes "p ^ n dvd x" "\<not>p ^ Suc n dvd x" | |
| 1155 | shows "multiplicity p x = n" | |
| 1156 | proof - | |
| 1157 | consider "x = 0" | "is_unit p" | "x \<noteq> 0" "\<not>is_unit p" by blast | |
| 1158 | thus ?thesis | |
| 1159 | proof cases | |
| 1160 | assume xp: "x \<noteq> 0" "\<not>is_unit p" | |
| 1161 | from xp assms(1) have "multiplicity p x \<ge> n" by (intro multiplicity_geI) | |
| 1162 | moreover from assms(2) xp have "multiplicity p x < Suc n" by (intro multiplicity_lessI) | |
| 1163 | ultimately show ?thesis by simp | |
| 1164 | next | |
| 1165 | assume "is_unit p" | |
| 1166 | hence "is_unit (p ^ Suc n)" by (simp add: is_unit_power_iff del: power_Suc) | |
| 1167 | hence "p ^ Suc n dvd x" by (rule unit_imp_dvd) | |
| 1168 | with \<open>\<not>p ^ Suc n dvd x\<close> show ?thesis by contradiction | |
| 1169 | qed (insert assms, simp_all) | |
| 1170 | qed | |
| 1171 | ||
| 1172 | ||
| 1173 | context | |
| 1174 | fixes x p :: 'a | |
| 1175 | assumes xp: "x \<noteq> 0" "\<not>is_unit p" | |
| 1176 | begin | |
| 1177 | ||
| 1178 | lemma multiplicity_times_same: | |
| 1179 | assumes "p \<noteq> 0" | |
| 1180 | shows "multiplicity p (p * x) = Suc (multiplicity p x)" | |
| 1181 | proof (rule multiplicity_eqI) | |
| 1182 | show "p ^ Suc (multiplicity p x) dvd p * x" | |
| 1183 | by (auto intro!: mult_dvd_mono multiplicity_dvd) | |
| 1184 | from xp assms show "\<not> p ^ Suc (Suc (multiplicity p x)) dvd p * x" | |
| 1185 | using power_dvd_iff_le_multiplicity[OF xp, of "Suc (multiplicity p x)"] by simp | |
| 62499 | 1186 | qed | 
| 1187 | ||
| 1188 | end | |
| 1189 | ||
| 63498 | 1190 | lemma multiplicity_same_power': "multiplicity p (p ^ n) = (if p = 0 \<or> is_unit p then 0 else n)" | 
| 1191 | proof - | |
| 1192 | consider "p = 0" | "is_unit p" |"p \<noteq> 0" "\<not>is_unit p" by blast | |
| 1193 | thus ?thesis | |
| 1194 | proof cases | |
| 1195 | assume "p \<noteq> 0" "\<not>is_unit p" | |
| 1196 | thus ?thesis by (induction n) (simp_all add: multiplicity_times_same) | |
| 1197 | qed (simp_all add: power_0_left multiplicity_unit_left) | |
| 1198 | qed | |
| 62499 | 1199 | |
| 63498 | 1200 | lemma multiplicity_same_power: | 
| 1201 | "p \<noteq> 0 \<Longrightarrow> \<not>is_unit p \<Longrightarrow> multiplicity p (p ^ n) = n" | |
| 1202 | by (simp add: multiplicity_same_power') | |
| 1203 | ||
| 63633 | 1204 | lemma multiplicity_prime_elem_times_other: | 
| 1205 | assumes "prime_elem p" "\<not>p dvd q" | |
| 63498 | 1206 | shows "multiplicity p (q * x) = multiplicity p x" | 
| 1207 | proof (cases "x = 0") | |
| 1208 | case False | |
| 1209 | show ?thesis | |
| 1210 | proof (rule multiplicity_eqI) | |
| 1211 | have "1 * p ^ multiplicity p x dvd q * x" | |
| 1212 | by (intro mult_dvd_mono multiplicity_dvd) simp_all | |
| 1213 | thus "p ^ multiplicity p x dvd q * x" by simp | |
| 62499 | 1214 | next | 
| 63498 | 1215 | define n where "n = multiplicity p x" | 
| 1216 | from assms have "\<not>is_unit p" by simp | |
| 74362 | 1217 | from multiplicity_decompose'[OF False this] | 
| 1218 | obtain y where y [folded n_def]: "x = p ^ multiplicity p x * y" "\<not> p dvd y" . | |
| 63498 | 1219 | from y have "p ^ Suc n dvd q * x \<longleftrightarrow> p ^ n * p dvd p ^ n * (q * y)" by (simp add: mult_ac) | 
| 1220 | also from assms have "\<dots> \<longleftrightarrow> p dvd q * y" by simp | |
| 63633 | 1221 | also have "\<dots> \<longleftrightarrow> p dvd q \<or> p dvd y" by (rule prime_elem_dvd_mult_iff) fact+ | 
| 63498 | 1222 | also from assms y have "\<dots> \<longleftrightarrow> False" by simp | 
| 1223 | finally show "\<not>(p ^ Suc n dvd q * x)" by blast | |
| 62499 | 1224 | qed | 
| 63498 | 1225 | qed simp_all | 
| 1226 | ||
| 63924 | 1227 | lemma multiplicity_self: | 
| 1228 | assumes "p \<noteq> 0" "\<not>is_unit p" | |
| 1229 | shows "multiplicity p p = 1" | |
| 1230 | proof - | |
| 1231 |   from assms have "multiplicity p p = Max {n. p ^ n dvd p}"
 | |
| 1232 | by (simp add: multiplicity_eq_Max) | |
| 1233 | also from assms have "p ^ n dvd p \<longleftrightarrow> n \<le> 1" for n | |
| 1234 | using dvd_power_iff[of p n 1] by auto | |
| 1235 |   hence "{n. p ^ n dvd p} = {..1}" by auto
 | |
| 1236 |   also have "\<dots> = {0,1}" by auto
 | |
| 1237 | finally show ?thesis by simp | |
| 1238 | qed | |
| 1239 | ||
| 1240 | lemma multiplicity_times_unit_left: | |
| 1241 | assumes "is_unit c" | |
| 1242 | shows "multiplicity (c * p) x = multiplicity p x" | |
| 1243 | proof - | |
| 1244 |   from assms have "{n. (c * p) ^ n dvd x} = {n. p ^ n dvd x}"
 | |
| 1245 | by (subst mult.commute) (simp add: mult_unit_dvd_iff power_mult_distrib is_unit_power_iff) | |
| 1246 | thus ?thesis by (simp add: multiplicity_def) | |
| 1247 | qed | |
| 1248 | ||
| 1249 | lemma multiplicity_times_unit_right: | |
| 1250 | assumes "is_unit c" | |
| 1251 | shows "multiplicity p (c * x) = multiplicity p x" | |
| 1252 | proof - | |
| 1253 |   from assms have "{n. p ^ n dvd c * x} = {n. p ^ n dvd x}"
 | |
| 1254 | by (subst mult.commute) (simp add: dvd_mult_unit_iff) | |
| 1255 | thus ?thesis by (simp add: multiplicity_def) | |
| 1256 | qed | |
| 1257 | ||
| 1258 | lemma multiplicity_normalize_left [simp]: | |
| 1259 | "multiplicity (normalize p) x = multiplicity p x" | |
| 1260 | proof (cases "p = 0") | |
| 1261 | case [simp]: False | |
| 1262 | have "normalize p = (1 div unit_factor p) * p" | |
| 1263 | by (simp add: unit_div_commute is_unit_unit_factor) | |
| 1264 | also have "multiplicity \<dots> x = multiplicity p x" | |
| 1265 | by (rule multiplicity_times_unit_left) (simp add: is_unit_unit_factor) | |
| 1266 | finally show ?thesis . | |
| 1267 | qed simp_all | |
| 1268 | ||
| 1269 | lemma multiplicity_normalize_right [simp]: | |
| 1270 | "multiplicity p (normalize x) = multiplicity p x" | |
| 1271 | proof (cases "x = 0") | |
| 1272 | case [simp]: False | |
| 1273 | have "normalize x = (1 div unit_factor x) * x" | |
| 1274 | by (simp add: unit_div_commute is_unit_unit_factor) | |
| 1275 | also have "multiplicity p \<dots> = multiplicity p x" | |
| 1276 | by (rule multiplicity_times_unit_right) (simp add: is_unit_unit_factor) | |
| 1277 | finally show ?thesis . | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1278 | qed simp_all | 
| 63924 | 1279 | |
| 1280 | lemma multiplicity_prime [simp]: "prime_elem p \<Longrightarrow> multiplicity p p = 1" | |
| 1281 | by (rule multiplicity_self) auto | |
| 1282 | ||
| 1283 | lemma multiplicity_prime_power [simp]: "prime_elem p \<Longrightarrow> multiplicity p (p ^ n) = n" | |
| 1284 | by (subst multiplicity_same_power') auto | |
| 1285 | ||
| 63498 | 1286 | lift_definition prime_factorization :: "'a \<Rightarrow> 'a multiset" is | 
| 63633 | 1287 | "\<lambda>x p. if prime p then multiplicity p x else 0" | 
| 73270 | 1288 | proof - | 
| 63498 | 1289 | fix x :: 'a | 
| 63633 | 1290 |   show "finite {p. 0 < (if prime p then multiplicity p x else 0)}" (is "finite ?A")
 | 
| 63498 | 1291 | proof (cases "x = 0") | 
| 1292 | case False | |
| 63633 | 1293 |     from False have "?A \<subseteq> {p. prime p \<and> p dvd x}"
 | 
| 63498 | 1294 | by (auto simp: multiplicity_gt_zero_iff) | 
| 63633 | 1295 |     moreover from False have "finite {p. prime p \<and> p dvd x}"
 | 
| 63498 | 1296 | by (rule finite_prime_divisors) | 
| 1297 | ultimately show ?thesis by (rule finite_subset) | |
| 1298 | qed simp_all | |
| 1299 | qed | |
| 1300 | ||
| 63905 | 1301 | abbreviation prime_factors :: "'a \<Rightarrow> 'a set" where | 
| 1302 | "prime_factors a \<equiv> set_mset (prime_factorization a)" | |
| 1303 | ||
| 63498 | 1304 | lemma count_prime_factorization_nonprime: | 
| 63633 | 1305 | "\<not>prime p \<Longrightarrow> count (prime_factorization x) p = 0" | 
| 63498 | 1306 | by transfer simp | 
| 1307 | ||
| 1308 | lemma count_prime_factorization_prime: | |
| 63633 | 1309 | "prime p \<Longrightarrow> count (prime_factorization x) p = multiplicity p x" | 
| 63498 | 1310 | by transfer simp | 
| 1311 | ||
| 1312 | lemma count_prime_factorization: | |
| 63633 | 1313 | "count (prime_factorization x) p = (if prime p then multiplicity p x else 0)" | 
| 63498 | 1314 | by transfer simp | 
| 1315 | ||
| 63924 | 1316 | lemma dvd_imp_multiplicity_le: | 
| 1317 | assumes "a dvd b" "b \<noteq> 0" | |
| 1318 | shows "multiplicity p a \<le> multiplicity p b" | |
| 1319 | proof (cases "is_unit p") | |
| 1320 | case False | |
| 1321 | with assms show ?thesis | |
| 1322 | by (intro multiplicity_geI ) (auto intro: dvd_trans[OF multiplicity_dvd' assms(1)]) | |
| 1323 | qed (insert assms, auto simp: multiplicity_unit_left) | |
| 63498 | 1324 | |
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1325 | lemma prime_power_inj: | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1326 | assumes "prime a" "a ^ m = a ^ n" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1327 | shows "m = n" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1328 | proof - | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1329 | have "multiplicity a (a ^ m) = multiplicity a (a ^ n)" by (simp only: assms) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1330 | thus ?thesis using assms by (subst (asm) (1 2) multiplicity_prime_power) simp_all | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1331 | qed | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1332 | |
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1333 | lemma prime_power_inj': | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1334 | assumes "prime p" "prime q" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1335 | assumes "p ^ m = q ^ n" "m > 0" "n > 0" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1336 | shows "p = q" "m = n" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1337 | proof - | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1338 | from assms have "p ^ 1 dvd p ^ m" by (intro le_imp_power_dvd) simp | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1339 | also have "p ^ m = q ^ n" by fact | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1340 | finally have "p dvd q ^ n" by simp | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1341 | with assms have "p dvd q" using prime_dvd_power[of p q] by simp | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1342 | with assms show "p = q" by (simp add: primes_dvd_imp_eq) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1343 | with assms show "m = n" by (simp add: prime_power_inj) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1344 | qed | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1345 | |
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1346 | lemma prime_power_eq_one_iff [simp]: "prime p \<Longrightarrow> p ^ n = 1 \<longleftrightarrow> n = 0" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1347 | using prime_power_inj[of p n 0] by auto | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1348 | |
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1349 | lemma one_eq_prime_power_iff [simp]: "prime p \<Longrightarrow> 1 = p ^ n \<longleftrightarrow> n = 0" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1350 | using prime_power_inj[of p 0 n] by auto | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1351 | |
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1352 | lemma prime_power_inj'': | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1353 | assumes "prime p" "prime q" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1354 | shows "p ^ m = q ^ n \<longleftrightarrow> (m = 0 \<and> n = 0) \<or> (p = q \<and> m = n)" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1355 | using assms | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1356 | by (cases "m = 0"; cases "n = 0") | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1357 | (auto dest: prime_power_inj'[OF assms]) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1358 | |
| 63498 | 1359 | lemma prime_factorization_0 [simp]: "prime_factorization 0 = {#}"
 | 
| 1360 | by (simp add: multiset_eq_iff count_prime_factorization) | |
| 1361 | ||
| 1362 | lemma prime_factorization_empty_iff: | |
| 1363 |   "prime_factorization x = {#} \<longleftrightarrow> x = 0 \<or> is_unit x"
 | |
| 1364 | proof | |
| 1365 |   assume *: "prime_factorization x = {#}"
 | |
| 1366 |   {
 | |
| 1367 | assume x: "x \<noteq> 0" "\<not>is_unit x" | |
| 1368 |     {
 | |
| 63633 | 1369 | fix p assume p: "prime p" | 
| 63498 | 1370 | have "count (prime_factorization x) p = 0" by (simp add: *) | 
| 1371 | also from p have "count (prime_factorization x) p = multiplicity p x" | |
| 1372 | by (rule count_prime_factorization_prime) | |
| 1373 | also from x p have "\<dots> = 0 \<longleftrightarrow> \<not>p dvd x" by (simp add: multiplicity_eq_zero_iff) | |
| 1374 | finally have "\<not>p dvd x" . | |
| 1375 | } | |
| 1376 | with prime_divisor_exists[OF x] have False by blast | |
| 1377 | } | |
| 1378 | thus "x = 0 \<or> is_unit x" by blast | |
| 1379 | next | |
| 1380 | assume "x = 0 \<or> is_unit x" | |
| 1381 |   thus "prime_factorization x = {#}"
 | |
| 1382 | proof | |
| 1383 | assume x: "is_unit x" | |
| 1384 |     {
 | |
| 63633 | 1385 | fix p assume p: "prime p" | 
| 63498 | 1386 | from p x have "multiplicity p x = 0" | 
| 1387 | by (subst multiplicity_eq_zero_iff) | |
| 1388 | (auto simp: multiplicity_eq_zero_iff dest: unit_imp_no_prime_divisors) | |
| 1389 | } | |
| 1390 | thus ?thesis by (simp add: multiset_eq_iff count_prime_factorization) | |
| 1391 | qed simp_all | |
| 1392 | qed | |
| 1393 | ||
| 1394 | lemma prime_factorization_unit: | |
| 1395 | assumes "is_unit x" | |
| 1396 |   shows   "prime_factorization x = {#}"
 | |
| 1397 | proof (rule multiset_eqI) | |
| 1398 | fix p :: 'a | |
| 1399 |   show "count (prime_factorization x) p = count {#} p"
 | |
| 63633 | 1400 | proof (cases "prime p") | 
| 63498 | 1401 | case True | 
| 1402 | with assms have "multiplicity p x = 0" | |
| 1403 | by (subst multiplicity_eq_zero_iff) | |
| 1404 | (auto simp: multiplicity_eq_zero_iff dest: unit_imp_no_prime_divisors) | |
| 1405 | with True show ?thesis by (simp add: count_prime_factorization_prime) | |
| 1406 | qed (simp_all add: count_prime_factorization_nonprime) | |
| 1407 | qed | |
| 1408 | ||
| 1409 | lemma prime_factorization_1 [simp]: "prime_factorization 1 = {#}"
 | |
| 1410 | by (simp add: prime_factorization_unit) | |
| 1411 | ||
| 1412 | lemma prime_factorization_times_prime: | |
| 63633 | 1413 | assumes "x \<noteq> 0" "prime p" | 
| 63498 | 1414 |   shows   "prime_factorization (p * x) = {#p#} + prime_factorization x"
 | 
| 1415 | proof (rule multiset_eqI) | |
| 1416 | fix q :: 'a | |
| 63633 | 1417 | consider "\<not>prime q" | "p = q" | "prime q" "p \<noteq> q" by blast | 
| 63498 | 1418 |   thus "count (prime_factorization (p * x)) q = count ({#p#} + prime_factorization x) q"
 | 
| 1419 | proof cases | |
| 63633 | 1420 | assume q: "prime q" "p \<noteq> q" | 
| 63498 | 1421 | with assms primes_dvd_imp_eq[of q p] have "\<not>q dvd p" by auto | 
| 1422 | with q assms show ?thesis | |
| 63633 | 1423 | by (simp add: multiplicity_prime_elem_times_other count_prime_factorization) | 
| 63498 | 1424 | qed (insert assms, auto simp: count_prime_factorization multiplicity_times_same) | 
| 1425 | qed | |
| 1426 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1427 | lemma prod_mset_prime_factorization_weak: | 
| 63498 | 1428 | assumes "x \<noteq> 0" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1429 | shows "normalize (prod_mset (prime_factorization x)) = normalize x" | 
| 63498 | 1430 | using assms | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1431 | proof (induction x rule: prime_divisors_induct) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1432 | case (factor p x) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1433 | have "normalize (prod_mset (prime_factorization (p * x))) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1434 | normalize (p * normalize (prod_mset (prime_factorization x)))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1435 | using factor.prems factor.hyps by (simp add: prime_factorization_times_prime) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1436 | also have "normalize (prod_mset (prime_factorization x)) = normalize x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1437 | by (rule factor.IH) (use factor in auto) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1438 | finally show ?case by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1439 | qed (auto simp: prime_factorization_unit is_unit_normalize) | 
| 63498 | 1440 | |
| 63905 | 1441 | lemma in_prime_factors_iff: | 
| 1442 | "p \<in> prime_factors x \<longleftrightarrow> x \<noteq> 0 \<and> p dvd x \<and> prime p" | |
| 63498 | 1443 | proof - | 
| 63905 | 1444 | have "p \<in> prime_factors x \<longleftrightarrow> count (prime_factorization x) p > 0" by simp | 
| 63633 | 1445 | also have "\<dots> \<longleftrightarrow> x \<noteq> 0 \<and> p dvd x \<and> prime p" | 
| 63498 | 1446 | by (subst count_prime_factorization, cases "x = 0") | 
| 1447 | (auto simp: multiplicity_eq_zero_iff multiplicity_gt_zero_iff) | |
| 1448 | finally show ?thesis . | |
| 1449 | qed | |
| 1450 | ||
| 63905 | 1451 | lemma in_prime_factors_imp_prime [intro]: | 
| 1452 | "p \<in> prime_factors x \<Longrightarrow> prime p" | |
| 1453 | by (simp add: in_prime_factors_iff) | |
| 63498 | 1454 | |
| 63905 | 1455 | lemma in_prime_factors_imp_dvd [dest]: | 
| 1456 | "p \<in> prime_factors x \<Longrightarrow> p dvd x" | |
| 1457 | by (simp add: in_prime_factors_iff) | |
| 63498 | 1458 | |
| 63924 | 1459 | lemma prime_factorsI: | 
| 1460 | "x \<noteq> 0 \<Longrightarrow> prime p \<Longrightarrow> p dvd x \<Longrightarrow> p \<in> prime_factors x" | |
| 1461 | by (auto simp: in_prime_factors_iff) | |
| 1462 | ||
| 1463 | lemma prime_factors_dvd: | |
| 1464 |   "x \<noteq> 0 \<Longrightarrow> prime_factors x = {p. prime p \<and> p dvd x}"
 | |
| 1465 | by (auto intro: prime_factorsI) | |
| 1466 | ||
| 1467 | lemma prime_factors_multiplicity: | |
| 1468 |   "prime_factors n = {p. prime p \<and> multiplicity p n > 0}"
 | |
| 1469 | by (cases "n = 0") (auto simp add: prime_factors_dvd prime_multiplicity_gt_zero_iff) | |
| 63498 | 1470 | |
| 1471 | lemma prime_factorization_prime: | |
| 63633 | 1472 | assumes "prime p" | 
| 63498 | 1473 |   shows   "prime_factorization p = {#p#}"
 | 
| 1474 | proof (rule multiset_eqI) | |
| 1475 | fix q :: 'a | |
| 63633 | 1476 | consider "\<not>prime q" | "q = p" | "prime q" "q \<noteq> p" by blast | 
| 63498 | 1477 |   thus "count (prime_factorization p) q = count {#p#} q"
 | 
| 1478 | by cases (insert assms, auto dest: primes_dvd_imp_eq | |
| 1479 | simp: count_prime_factorization multiplicity_self multiplicity_eq_zero_iff) | |
| 1480 | qed | |
| 1481 | ||
| 63830 | 1482 | lemma prime_factorization_prod_mset_primes: | 
| 63633 | 1483 | assumes "\<And>p. p \<in># A \<Longrightarrow> prime p" | 
| 63830 | 1484 | shows "prime_factorization (prod_mset A) = A" | 
| 63498 | 1485 | using assms | 
| 1486 | proof (induction A) | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63633diff
changeset | 1487 | case (add p A) | 
| 63498 | 1488 | from add.prems[of 0] have "0 \<notin># A" by auto | 
| 63830 | 1489 | hence "prod_mset A \<noteq> 0" by auto | 
| 63498 | 1490 | with add show ?case | 
| 1491 | by (simp_all add: mult_ac prime_factorization_times_prime Multiset.union_commute) | |
| 1492 | qed simp_all | |
| 1493 | ||
| 1494 | lemma prime_factorization_cong: | |
| 1495 | "normalize x = normalize y \<Longrightarrow> prime_factorization x = prime_factorization y" | |
| 1496 | by (simp add: multiset_eq_iff count_prime_factorization | |
| 1497 | multiplicity_normalize_right [of _ x, symmetric] | |
| 1498 | multiplicity_normalize_right [of _ y, symmetric] | |
| 1499 | del: multiplicity_normalize_right) | |
| 1500 | ||
| 1501 | lemma prime_factorization_unique: | |
| 1502 | assumes "x \<noteq> 0" "y \<noteq> 0" | |
| 1503 | shows "prime_factorization x = prime_factorization y \<longleftrightarrow> normalize x = normalize y" | |
| 1504 | proof | |
| 1505 | assume "prime_factorization x = prime_factorization y" | |
| 63830 | 1506 | hence "prod_mset (prime_factorization x) = prod_mset (prime_factorization y)" by simp | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1507 | hence "normalize (prod_mset (prime_factorization x)) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1508 | normalize (prod_mset (prime_factorization y))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1509 | by (simp only: ) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1510 | with assms show "normalize x = normalize y" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1511 | by (simp add: prod_mset_prime_factorization_weak) | 
| 63498 | 1512 | qed (rule prime_factorization_cong) | 
| 1513 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1514 | lemma prime_factorization_normalize [simp]: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1515 | "prime_factorization (normalize x) = prime_factorization x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1516 | by (cases "x = 0", simp, subst prime_factorization_unique) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1517 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1518 | lemma prime_factorization_eqI_strong: | 
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1519 | assumes "\<And>p. p \<in># P \<Longrightarrow> prime p" "prod_mset P = n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1520 | shows "prime_factorization n = P" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1521 | using prime_factorization_prod_mset_primes[of P] assms by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1522 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1523 | lemma prime_factorization_eqI: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1524 | assumes "\<And>p. p \<in># P \<Longrightarrow> prime p" "normalize (prod_mset P) = normalize n" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1525 | shows "prime_factorization n = P" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1526 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1527 | have "P = prime_factorization (normalize (prod_mset P))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1528 | using prime_factorization_prod_mset_primes[of P] assms(1) by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1529 | with assms(2) show ?thesis by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1530 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1531 | |
| 63498 | 1532 | lemma prime_factorization_mult: | 
| 1533 | assumes "x \<noteq> 0" "y \<noteq> 0" | |
| 1534 | shows "prime_factorization (x * y) = prime_factorization x + prime_factorization y" | |
| 1535 | proof - | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1536 | have "normalize (prod_mset (prime_factorization x) * prod_mset (prime_factorization y)) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1537 | normalize (normalize (prod_mset (prime_factorization x)) * | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1538 | normalize (prod_mset (prime_factorization y)))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1539 | by (simp only: normalize_mult_normalize_left normalize_mult_normalize_right) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1540 | also have "\<dots> = normalize (x * y)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1541 | by (subst (1 2) prod_mset_prime_factorization_weak) (use assms in auto) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1542 | finally show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1543 | by (intro prime_factorization_eqI) auto | 
| 62499 | 1544 | qed | 
| 1545 | ||
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1546 | lemma prime_factorization_prod: | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1547 | assumes "finite A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1548 | shows "prime_factorization (prod f A) = (\<Sum>n\<in>A. prime_factorization (f n))" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1549 | using assms by (induction A rule: finite_induct) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1550 | (auto simp: Sup_multiset_empty prime_factorization_mult) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1551 | |
| 63924 | 1552 | lemma prime_elem_multiplicity_mult_distrib: | 
| 1553 | assumes "prime_elem p" "x \<noteq> 0" "y \<noteq> 0" | |
| 1554 | shows "multiplicity p (x * y) = multiplicity p x + multiplicity p y" | |
| 1555 | proof - | |
| 1556 | have "multiplicity p (x * y) = count (prime_factorization (x * y)) (normalize p)" | |
| 1557 | by (subst count_prime_factorization_prime) (simp_all add: assms) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1558 | also from assms | 
| 63924 | 1559 | have "prime_factorization (x * y) = prime_factorization x + prime_factorization y" | 
| 1560 | by (intro prime_factorization_mult) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1561 | also have "count \<dots> (normalize p) = | 
| 63924 | 1562 | count (prime_factorization x) (normalize p) + count (prime_factorization y) (normalize p)" | 
| 1563 | by simp | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1564 | also have "\<dots> = multiplicity p x + multiplicity p y" | 
| 63924 | 1565 | by (subst (1 2) count_prime_factorization_prime) (simp_all add: assms) | 
| 1566 | finally show ?thesis . | |
| 1567 | qed | |
| 1568 | ||
| 1569 | lemma prime_elem_multiplicity_prod_mset_distrib: | |
| 1570 | assumes "prime_elem p" "0 \<notin># A" | |
| 1571 | shows "multiplicity p (prod_mset A) = sum_mset (image_mset (multiplicity p) A)" | |
| 1572 | using assms by (induction A) (auto simp: prime_elem_multiplicity_mult_distrib) | |
| 1573 | ||
| 1574 | lemma prime_elem_multiplicity_power_distrib: | |
| 1575 | assumes "prime_elem p" "x \<noteq> 0" | |
| 1576 | shows "multiplicity p (x ^ n) = n * multiplicity p x" | |
| 1577 | using assms prime_elem_multiplicity_prod_mset_distrib [of p "replicate_mset n x"] | |
| 1578 | by simp | |
| 1579 | ||
| 64272 | 1580 | lemma prime_elem_multiplicity_prod_distrib: | 
| 63924 | 1581 | assumes "prime_elem p" "0 \<notin> f ` A" "finite A" | 
| 64272 | 1582 | shows "multiplicity p (prod f A) = (\<Sum>x\<in>A. multiplicity p (f x))" | 
| 63924 | 1583 | proof - | 
| 64272 | 1584 | have "multiplicity p (prod f A) = (\<Sum>x\<in>#mset_set A. multiplicity p (f x))" | 
| 1585 | using assms by (subst prod_unfold_prod_mset) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1586 | (simp_all add: prime_elem_multiplicity_prod_mset_distrib sum_unfold_sum_mset | 
| 63924 | 1587 | multiset.map_comp o_def) | 
| 1588 | also from \<open>finite A\<close> have "\<dots> = (\<Sum>x\<in>A. multiplicity p (f x))" | |
| 1589 | by (induction A rule: finite_induct) simp_all | |
| 1590 | finally show ?thesis . | |
| 1591 | qed | |
| 1592 | ||
| 1593 | lemma multiplicity_distinct_prime_power: | |
| 1594 | "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> multiplicity p (q ^ n) = 0" | |
| 1595 | by (subst prime_elem_multiplicity_power_distrib) (auto simp: prime_multiplicity_other) | |
| 1596 | ||
| 63498 | 1597 | lemma prime_factorization_prime_power: | 
| 63633 | 1598 | "prime p \<Longrightarrow> prime_factorization (p ^ n) = replicate_mset n p" | 
| 63498 | 1599 | by (induction n) | 
| 1600 | (simp_all add: prime_factorization_mult prime_factorization_prime Multiset.union_commute) | |
| 1601 | ||
| 1602 | lemma prime_factorization_subset_iff_dvd: | |
| 1603 | assumes [simp]: "x \<noteq> 0" "y \<noteq> 0" | |
| 1604 | shows "prime_factorization x \<subseteq># prime_factorization y \<longleftrightarrow> x dvd y" | |
| 1605 | proof - | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1606 | have "x dvd y \<longleftrightarrow> | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1607 | normalize (prod_mset (prime_factorization x)) dvd normalize (prod_mset (prime_factorization y))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1608 | using assms by (subst (1 2) prod_mset_prime_factorization_weak) auto | 
| 63498 | 1609 | also have "\<dots> \<longleftrightarrow> prime_factorization x \<subseteq># prime_factorization y" | 
| 63905 | 1610 | by (auto intro!: prod_mset_primes_dvd_imp_subset prod_mset_subset_imp_dvd) | 
| 63498 | 1611 | finally show ?thesis .. | 
| 1612 | qed | |
| 1613 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1614 | lemma prime_factorization_subset_imp_dvd: | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1615 | "x \<noteq> 0 \<Longrightarrow> (prime_factorization x \<subseteq># prime_factorization y) \<Longrightarrow> x dvd y" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1616 | by (cases "y = 0") (simp_all add: prime_factorization_subset_iff_dvd) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1617 | |
| 63498 | 1618 | lemma prime_factorization_divide: | 
| 1619 | assumes "b dvd a" | |
| 1620 | shows "prime_factorization (a div b) = prime_factorization a - prime_factorization b" | |
| 1621 | proof (cases "a = 0") | |
| 1622 | case [simp]: False | |
| 1623 | from assms have [simp]: "b \<noteq> 0" by auto | |
| 1624 | have "prime_factorization ((a div b) * b) = prime_factorization (a div b) + prime_factorization b" | |
| 1625 | by (intro prime_factorization_mult) (insert assms, auto elim!: dvdE) | |
| 1626 | with assms show ?thesis by simp | |
| 1627 | qed simp_all | |
| 1628 | ||
| 63905 | 1629 | lemma zero_not_in_prime_factors [simp]: "0 \<notin> prime_factors x" | 
| 1630 | by (auto dest: in_prime_factors_imp_prime) | |
| 63498 | 1631 | |
| 63904 | 1632 | lemma prime_prime_factors: | 
| 63905 | 1633 |   "prime p \<Longrightarrow> prime_factors p = {p}"
 | 
| 1634 | by (drule prime_factorization_prime) simp | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1635 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1636 | lemma prime_factors_product: | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1637 | "x \<noteq> 0 \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> prime_factors (x * y) = prime_factors x \<union> prime_factors y" | 
| 63905 | 1638 | by (simp add: prime_factorization_mult) | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1639 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1640 | lemma dvd_prime_factors [intro]: | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1641 | "y \<noteq> 0 \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x \<subseteq> prime_factors y" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1642 | by (intro set_mset_mono, subst prime_factorization_subset_iff_dvd) auto | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1643 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1644 | (* RENAMED multiplicity_dvd *) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1645 | lemma multiplicity_le_imp_dvd: | 
| 63633 | 1646 | assumes "x \<noteq> 0" "\<And>p. prime p \<Longrightarrow> multiplicity p x \<le> multiplicity p y" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1647 | shows "x dvd y" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1648 | proof (cases "y = 0") | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1649 | case False | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1650 | from assms this have "prime_factorization x \<subseteq># prime_factorization y" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1651 | by (intro mset_subset_eqI) (auto simp: count_prime_factorization) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1652 | with assms False show ?thesis by (subst (asm) prime_factorization_subset_iff_dvd) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1653 | qed auto | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1654 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1655 | lemma dvd_multiplicity_eq: | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1656 | "x \<noteq> 0 \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x dvd y \<longleftrightarrow> (\<forall>p. multiplicity p x \<le> multiplicity p y)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1657 | by (auto intro: dvd_imp_multiplicity_le multiplicity_le_imp_dvd) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1658 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1659 | lemma multiplicity_eq_imp_eq: | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1660 | assumes "x \<noteq> 0" "y \<noteq> 0" | 
| 63633 | 1661 | assumes "\<And>p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1662 | shows "normalize x = normalize y" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1663 | using assms by (intro associatedI multiplicity_le_imp_dvd) simp_all | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1664 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1665 | lemma prime_factorization_unique': | 
| 63633 | 1666 | assumes "\<forall>p \<in># M. prime p" "\<forall>p \<in># N. prime p" "(\<Prod>i \<in># M. i) = (\<Prod>i \<in># N. i)" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1667 | shows "M = N" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1668 | proof - | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1669 | have "prime_factorization (\<Prod>i \<in># M. i) = prime_factorization (\<Prod>i \<in># N. i)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1670 | by (simp only: assms) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1671 | also from assms have "prime_factorization (\<Prod>i \<in># M. i) = M" | 
| 63830 | 1672 | by (subst prime_factorization_prod_mset_primes) simp_all | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1673 | also from assms have "prime_factorization (\<Prod>i \<in># N. i) = N" | 
| 63830 | 1674 | by (subst prime_factorization_prod_mset_primes) simp_all | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1675 | finally show ?thesis . | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1676 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1677 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1678 | lemma prime_factorization_unique'': | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1679 | assumes "\<forall>p \<in># M. prime p" "\<forall>p \<in># N. prime p" "normalize (\<Prod>i \<in># M. i) = normalize (\<Prod>i \<in># N. i)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1680 | shows "M = N" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1681 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1682 | have "prime_factorization (normalize (\<Prod>i \<in># M. i)) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1683 | prime_factorization (normalize (\<Prod>i \<in># N. i))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1684 | by (simp only: assms) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1685 | also from assms have "prime_factorization (normalize (\<Prod>i \<in># M. i)) = M" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1686 | by (subst prime_factorization_normalize, subst prime_factorization_prod_mset_primes) simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1687 | also from assms have "prime_factorization (normalize (\<Prod>i \<in># N. i)) = N" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1688 | by (subst prime_factorization_normalize, subst prime_factorization_prod_mset_primes) simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1689 | finally show ?thesis . | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1690 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1691 | |
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1692 | lemma multiplicity_cong: | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1693 | "(\<And>r. p ^ r dvd a \<longleftrightarrow> p ^ r dvd b) \<Longrightarrow> multiplicity p a = multiplicity p b" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1694 | by (simp add: multiplicity_def) | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1695 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 1696 | lemma not_dvd_imp_multiplicity_0: | 
| 63537 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1697 | assumes "\<not>p dvd x" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1698 | shows "multiplicity p x = 0" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1699 | proof - | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1700 | from assms have "multiplicity p x < 1" | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1701 | by (intro multiplicity_lessI) auto | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1702 | thus ?thesis by simp | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1703 | qed | 
| 
831816778409
Removed redundant material related to primes
 eberlm <eberlm@in.tum.de> parents: 
63534diff
changeset | 1704 | |
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 1705 | lemma multiplicity_zero_left [simp]: "multiplicity 0 x = 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 1706 | by (cases "x = 0") (auto intro: not_dvd_imp_multiplicity_0) | 
| 73103 | 1707 | |
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1708 | lemma inj_on_Prod_primes: | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1709 | assumes "\<And>P p. P \<in> A \<Longrightarrow> p \<in> P \<Longrightarrow> prime p" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1710 | assumes "\<And>P. P \<in> A \<Longrightarrow> finite P" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1711 | shows "inj_on Prod A" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1712 | proof (rule inj_onI) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1713 | fix P Q assume PQ: "P \<in> A" "Q \<in> A" "\<Prod>P = \<Prod>Q" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1714 | with prime_factorization_unique'[of "mset_set P" "mset_set Q"] assms[of P] assms[of Q] | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1715 | have "mset_set P = mset_set Q" by (auto simp: prod_unfold_prod_mset) | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1716 | with assms[of P] assms[of Q] PQ show "P = Q" by simp | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1717 | qed | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1718 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1719 | lemma divides_primepow_weak: | 
| 67051 | 1720 | assumes "prime p" and "a dvd p ^ n" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1721 | obtains m where "m \<le> n" and "normalize a = normalize (p ^ m)" | 
| 67051 | 1722 | proof - | 
| 1723 | from assms have "a \<noteq> 0" | |
| 1724 | by auto | |
| 1725 | with assms | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1726 | have "normalize (prod_mset (prime_factorization a)) dvd | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1727 | normalize (prod_mset (prime_factorization (p ^ n)))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1728 | by (subst (1 2) prod_mset_prime_factorization_weak) auto | 
| 67051 | 1729 | then have "prime_factorization a \<subseteq># prime_factorization (p ^ n)" | 
| 1730 | by (simp add: in_prime_factors_imp_prime prod_mset_dvd_prod_mset_primes_iff) | |
| 1731 | with assms have "prime_factorization a \<subseteq># replicate_mset n p" | |
| 1732 | by (simp add: prime_factorization_prime_power) | |
| 1733 | then obtain m where "m \<le> n" and "prime_factorization a = replicate_mset m p" | |
| 1734 | by (rule msubseteq_replicate_msetE) | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1735 | then have *: "normalize (prod_mset (prime_factorization a)) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1736 | normalize (prod_mset (replicate_mset m p))" by metis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1737 | also have "normalize (prod_mset (prime_factorization a)) = normalize a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1738 | using \<open>a \<noteq> 0\<close> by (simp add: prod_mset_prime_factorization_weak) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1739 | also have "prod_mset (replicate_mset m p) = p ^ m" | 
| 67051 | 1740 | by simp | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1741 | finally show ?thesis using \<open>m \<le> n\<close> | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1742 | by (intro that[of m]) | 
| 67051 | 1743 | qed | 
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1744 | |
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1745 | lemma divide_out_primepow_ex: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1746 | assumes "n \<noteq> 0" "\<exists>p\<in>prime_factors n. P p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1747 | obtains p k n' where "P p" "prime p" "p dvd n" "\<not>p dvd n'" "k > 0" "n = p ^ k * n'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1748 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1749 | from assms obtain p where p: "P p" "prime p" "p dvd n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1750 | by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1751 | define k where "k = multiplicity p n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1752 | define n' where "n' = n div p ^ k" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1753 | have n': "n = p ^ k * n'" "\<not>p dvd n'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1754 | using assms p multiplicity_decompose[of n p] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1755 | by (auto simp: n'_def k_def multiplicity_dvd) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1756 | from n' p have "k > 0" by (intro Nat.gr0I) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1757 | with n' p that[of p n' k] show ?thesis by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1758 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1759 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1760 | lemma divide_out_primepow: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1761 | assumes "n \<noteq> 0" "\<not>is_unit n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1762 | obtains p k n' where "prime p" "p dvd n" "\<not>p dvd n'" "k > 0" "n = p ^ k * n'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1763 | using divide_out_primepow_ex[OF assms(1), of "\<lambda>_. True"] prime_divisor_exists[OF assms] assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1764 | prime_factorsI by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: 
68606diff
changeset | 1765 | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 1766 | |
| 63924 | 1767 | subsection \<open>GCD and LCM computation with unique factorizations\<close> | 
| 1768 | ||
| 63498 | 1769 | definition "gcd_factorial a b = (if a = 0 then normalize b | 
| 1770 | else if b = 0 then normalize a | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1771 | else normalize (prod_mset (prime_factorization a \<inter># prime_factorization b)))" | 
| 63498 | 1772 | |
| 1773 | definition "lcm_factorial a b = (if a = 0 \<or> b = 0 then 0 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1774 | else normalize (prod_mset (prime_factorization a \<union># prime_factorization b)))" | 
| 63498 | 1775 | |
| 1776 | definition "Gcd_factorial A = | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1777 |   (if A \<subseteq> {0} then 0 else normalize (prod_mset (Inf (prime_factorization ` (A - {0})))))"
 | 
| 63498 | 1778 | |
| 1779 | definition "Lcm_factorial A = | |
| 1780 |   (if A = {} then 1
 | |
| 1781 |    else if 0 \<notin> A \<and> subset_mset.bdd_above (prime_factorization ` (A - {0})) then
 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1782 | normalize (prod_mset (Sup (prime_factorization ` A))) | 
| 63498 | 1783 | else | 
| 1784 | 0)" | |
| 1785 | ||
| 1786 | lemma prime_factorization_gcd_factorial: | |
| 1787 | assumes [simp]: "a \<noteq> 0" "b \<noteq> 0" | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1788 | shows "prime_factorization (gcd_factorial a b) = prime_factorization a \<inter># prime_factorization b" | 
| 63498 | 1789 | proof - | 
| 1790 | have "prime_factorization (gcd_factorial a b) = | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1791 | prime_factorization (prod_mset (prime_factorization a \<inter># prime_factorization b))" | 
| 63498 | 1792 | by (simp add: gcd_factorial_def) | 
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1793 | also have "\<dots> = prime_factorization a \<inter># prime_factorization b" | 
| 63905 | 1794 | by (subst prime_factorization_prod_mset_primes) auto | 
| 63498 | 1795 | finally show ?thesis . | 
| 1796 | qed | |
| 1797 | ||
| 1798 | lemma prime_factorization_lcm_factorial: | |
| 1799 | assumes [simp]: "a \<noteq> 0" "b \<noteq> 0" | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1800 | shows "prime_factorization (lcm_factorial a b) = prime_factorization a \<union># prime_factorization b" | 
| 63498 | 1801 | proof - | 
| 1802 | have "prime_factorization (lcm_factorial a b) = | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1803 | prime_factorization (prod_mset (prime_factorization a \<union># prime_factorization b))" | 
| 63498 | 1804 | by (simp add: lcm_factorial_def) | 
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1805 | also have "\<dots> = prime_factorization a \<union># prime_factorization b" | 
| 63905 | 1806 | by (subst prime_factorization_prod_mset_primes) auto | 
| 63498 | 1807 | finally show ?thesis . | 
| 1808 | qed | |
| 1809 | ||
| 1810 | lemma prime_factorization_Gcd_factorial: | |
| 1811 |   assumes "\<not>A \<subseteq> {0}"
 | |
| 1812 |   shows   "prime_factorization (Gcd_factorial A) = Inf (prime_factorization ` (A - {0}))"
 | |
| 1813 | proof - | |
| 1814 |   from assms obtain x where x: "x \<in> A - {0}" by auto
 | |
| 1815 |   hence "Inf (prime_factorization ` (A - {0})) \<subseteq># prime_factorization x"
 | |
| 1816 | by (intro subset_mset.cInf_lower) simp_all | |
| 63905 | 1817 |   hence "\<forall>y. y \<in># Inf (prime_factorization ` (A - {0})) \<longrightarrow> y \<in> prime_factors x"
 | 
| 63498 | 1818 | by (auto dest: mset_subset_eqD) | 
| 63905 | 1819 | with in_prime_factors_imp_prime[of _ x] | 
| 63633 | 1820 |     have "\<forall>p. p \<in># Inf (prime_factorization ` (A - {0})) \<longrightarrow> prime p" by blast
 | 
| 63498 | 1821 | with assms show ?thesis | 
| 63830 | 1822 | by (simp add: Gcd_factorial_def prime_factorization_prod_mset_primes) | 
| 63498 | 1823 | qed | 
| 1824 | ||
| 1825 | lemma prime_factorization_Lcm_factorial: | |
| 1826 | assumes "0 \<notin> A" "subset_mset.bdd_above (prime_factorization ` A)" | |
| 1827 | shows "prime_factorization (Lcm_factorial A) = Sup (prime_factorization ` A)" | |
| 1828 | proof (cases "A = {}")
 | |
| 1829 | case True | |
| 1830 |   hence "prime_factorization ` A = {}" by auto
 | |
| 1831 |   also have "Sup \<dots> = {#}" by (simp add: Sup_multiset_empty)
 | |
| 1832 | finally show ?thesis by (simp add: Lcm_factorial_def) | |
| 1833 | next | |
| 1834 | case False | |
| 63633 | 1835 | have "\<forall>y. y \<in># Sup (prime_factorization ` A) \<longrightarrow> prime y" | 
| 63905 | 1836 | by (auto simp: in_Sup_multiset_iff assms) | 
| 63498 | 1837 | with assms False show ?thesis | 
| 63830 | 1838 | by (simp add: Lcm_factorial_def prime_factorization_prod_mset_primes) | 
| 63498 | 1839 | qed | 
| 1840 | ||
| 1841 | lemma gcd_factorial_commute: "gcd_factorial a b = gcd_factorial b a" | |
| 1842 | by (simp add: gcd_factorial_def multiset_inter_commute) | |
| 1843 | ||
| 1844 | lemma gcd_factorial_dvd1: "gcd_factorial a b dvd a" | |
| 1845 | proof (cases "a = 0 \<or> b = 0") | |
| 1846 | case False | |
| 1847 | hence "gcd_factorial a b \<noteq> 0" by (auto simp: gcd_factorial_def) | |
| 1848 | with False show ?thesis | |
| 1849 | by (subst prime_factorization_subset_iff_dvd [symmetric]) | |
| 1850 | (auto simp: prime_factorization_gcd_factorial) | |
| 1851 | qed (auto simp: gcd_factorial_def) | |
| 1852 | ||
| 1853 | lemma gcd_factorial_dvd2: "gcd_factorial a b dvd b" | |
| 1854 | by (subst gcd_factorial_commute) (rule gcd_factorial_dvd1) | |
| 1855 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1856 | lemma normalize_gcd_factorial [simp]: "normalize (gcd_factorial a b) = gcd_factorial a b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1857 | by (simp add: gcd_factorial_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1858 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1859 | lemma normalize_lcm_factorial [simp]: "normalize (lcm_factorial a b) = lcm_factorial a b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1860 | by (simp add: lcm_factorial_def) | 
| 63498 | 1861 | |
| 1862 | lemma gcd_factorial_greatest: "c dvd gcd_factorial a b" if "c dvd a" "c dvd b" for a b c | |
| 1863 | proof (cases "a = 0 \<or> b = 0") | |
| 1864 | case False | |
| 1865 | with that have [simp]: "c \<noteq> 0" by auto | |
| 1866 | let ?p = "prime_factorization" | |
| 1867 | from that False have "?p c \<subseteq># ?p a" "?p c \<subseteq># ?p b" | |
| 1868 | by (simp_all add: prime_factorization_subset_iff_dvd) | |
| 1869 | hence "prime_factorization c \<subseteq># | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 1870 | prime_factorization (prod_mset (prime_factorization a \<inter># prime_factorization b))" | 
| 63905 | 1871 | using False by (subst prime_factorization_prod_mset_primes) auto | 
| 63498 | 1872 | with False show ?thesis | 
| 1873 | by (auto simp: gcd_factorial_def prime_factorization_subset_iff_dvd [symmetric]) | |
| 1874 | qed (auto simp: gcd_factorial_def that) | |
| 1875 | ||
| 1876 | lemma lcm_factorial_gcd_factorial: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1877 | "lcm_factorial a b = normalize (a * b div gcd_factorial a b)" for a b | 
| 63498 | 1878 | proof (cases "a = 0 \<or> b = 0") | 
| 1879 | case False | |
| 1880 | let ?p = "prime_factorization" | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1881 | have 1: "normalize x * normalize y dvd z \<longleftrightarrow> x * y dvd z" for x y z :: 'a | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1882 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1883 | have "normalize (normalize x * normalize y) dvd z \<longleftrightarrow> x * y dvd z" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1884 | unfolding normalize_mult_normalize_left normalize_mult_normalize_right by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1885 | thus ?thesis unfolding normalize_dvd_iff by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1886 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1887 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1888 | have "?p (a * b) = (?p a \<union># ?p b) + (?p a \<inter># ?p b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1889 | using False by (subst prime_factorization_mult) (auto intro!: multiset_eqI) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1890 | hence "normalize (prod_mset (?p (a * b))) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1891 | normalize (prod_mset ((?p a \<union># ?p b) + (?p a \<inter># ?p b)))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1892 | by (simp only:) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1893 | hence *: "normalize (a * b) = normalize (lcm_factorial a b * gcd_factorial a b)" using False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1894 | by (subst (asm) prod_mset_prime_factorization_weak) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1895 | (auto simp: lcm_factorial_def gcd_factorial_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1896 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1897 | have [simp]: "gcd_factorial a b dvd a * b" "lcm_factorial a b dvd a * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1898 | using associatedD2[OF *] by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1899 | from False have [simp]: "gcd_factorial a b \<noteq> 0" "lcm_factorial a b \<noteq> 0" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1900 | by (auto simp: gcd_factorial_def lcm_factorial_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1901 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1902 | show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1903 | by (rule associated_eqI) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1904 | (use * in \<open>auto simp: dvd_div_iff_mult div_dvd_iff_mult dest: associatedD1 associatedD2\<close>) | 
| 63498 | 1905 | qed (auto simp: lcm_factorial_def) | 
| 1906 | ||
| 1907 | lemma normalize_Gcd_factorial: | |
| 1908 | "normalize (Gcd_factorial A) = Gcd_factorial A" | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1909 | by (simp add: Gcd_factorial_def) | 
| 63498 | 1910 | |
| 1911 | lemma Gcd_factorial_eq_0_iff: | |
| 1912 |   "Gcd_factorial A = 0 \<longleftrightarrow> A \<subseteq> {0}"
 | |
| 1913 | by (auto simp: Gcd_factorial_def in_Inf_multiset_iff split: if_splits) | |
| 1914 | ||
| 1915 | lemma Gcd_factorial_dvd: | |
| 1916 | assumes "x \<in> A" | |
| 1917 | shows "Gcd_factorial A dvd x" | |
| 1918 | proof (cases "x = 0") | |
| 1919 | case False | |
| 1920 |   with assms have "prime_factorization (Gcd_factorial A) = Inf (prime_factorization ` (A - {0}))"
 | |
| 1921 | by (intro prime_factorization_Gcd_factorial) auto | |
| 1922 | also from False assms have "\<dots> \<subseteq># prime_factorization x" | |
| 1923 | by (intro subset_mset.cInf_lower) auto | |
| 1924 | finally show ?thesis | |
| 1925 | by (subst (asm) prime_factorization_subset_iff_dvd) | |
| 1926 | (insert assms False, auto simp: Gcd_factorial_eq_0_iff) | |
| 1927 | qed simp_all | |
| 1928 | ||
| 1929 | lemma Gcd_factorial_greatest: | |
| 1930 | assumes "\<And>y. y \<in> A \<Longrightarrow> x dvd y" | |
| 1931 | shows "x dvd Gcd_factorial A" | |
| 1932 | proof (cases "A \<subseteq> {0}")
 | |
| 1933 | case False | |
| 1934 | from False obtain y where "y \<in> A" "y \<noteq> 0" by auto | |
| 1935 | with assms[of y] have nz: "x \<noteq> 0" by auto | |
| 1936 |   from nz assms have "prime_factorization x \<subseteq># prime_factorization y" if "y \<in> A - {0}" for y
 | |
| 1937 | using that by (subst prime_factorization_subset_iff_dvd) auto | |
| 1938 |   with False have "prime_factorization x \<subseteq># Inf (prime_factorization ` (A - {0}))"
 | |
| 1939 | by (intro subset_mset.cInf_greatest) auto | |
| 1940 | also from False have "\<dots> = prime_factorization (Gcd_factorial A)" | |
| 1941 | by (rule prime_factorization_Gcd_factorial [symmetric]) | |
| 1942 | finally show ?thesis | |
| 1943 | by (subst (asm) prime_factorization_subset_iff_dvd) | |
| 1944 | (insert nz False, auto simp: Gcd_factorial_eq_0_iff) | |
| 1945 | qed (simp_all add: Gcd_factorial_def) | |
| 1946 | ||
| 1947 | lemma normalize_Lcm_factorial: | |
| 1948 | "normalize (Lcm_factorial A) = Lcm_factorial A" | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 1949 | by (simp add: Lcm_factorial_def) | 
| 63498 | 1950 | |
| 1951 | lemma Lcm_factorial_eq_0_iff: | |
| 1952 | "Lcm_factorial A = 0 \<longleftrightarrow> 0 \<in> A \<or> \<not>subset_mset.bdd_above (prime_factorization ` A)" | |
| 1953 | by (auto simp: Lcm_factorial_def in_Sup_multiset_iff) | |
| 1954 | ||
| 1955 | lemma dvd_Lcm_factorial: | |
| 1956 | assumes "x \<in> A" | |
| 1957 | shows "x dvd Lcm_factorial A" | |
| 1958 | proof (cases "0 \<notin> A \<and> subset_mset.bdd_above (prime_factorization ` A)") | |
| 1959 | case True | |
| 1960 |   with assms have [simp]: "0 \<notin> A" "x \<noteq> 0" "A \<noteq> {}" by auto
 | |
| 1961 | from assms True have "prime_factorization x \<subseteq># Sup (prime_factorization ` A)" | |
| 1962 | by (intro subset_mset.cSup_upper) auto | |
| 1963 | also have "\<dots> = prime_factorization (Lcm_factorial A)" | |
| 1964 | by (rule prime_factorization_Lcm_factorial [symmetric]) (insert True, simp_all) | |
| 1965 | finally show ?thesis | |
| 1966 | by (subst (asm) prime_factorization_subset_iff_dvd) | |
| 1967 | (insert True, auto simp: Lcm_factorial_eq_0_iff) | |
| 1968 | qed (insert assms, auto simp: Lcm_factorial_def) | |
| 1969 | ||
| 1970 | lemma Lcm_factorial_least: | |
| 1971 | assumes "\<And>y. y \<in> A \<Longrightarrow> y dvd x" | |
| 1972 | shows "Lcm_factorial A dvd x" | |
| 1973 | proof - | |
| 1974 |   consider "A = {}" | "0 \<in> A" | "x = 0" | "A \<noteq> {}" "0 \<notin> A" "x \<noteq> 0" by blast
 | |
| 1975 | thus ?thesis | |
| 1976 | proof cases | |
| 1977 |     assume *: "A \<noteq> {}" "0 \<notin> A" "x \<noteq> 0"
 | |
| 1978 | hence nz: "x \<noteq> 0" if "x \<in> A" for x using that by auto | |
| 1979 | from * have bdd: "subset_mset.bdd_above (prime_factorization ` A)" | |
| 1980 | by (intro subset_mset.bdd_aboveI[of _ "prime_factorization x"]) | |
| 1981 | (auto simp: prime_factorization_subset_iff_dvd nz dest: assms) | |
| 1982 | have "prime_factorization (Lcm_factorial A) = Sup (prime_factorization ` A)" | |
| 1983 | by (rule prime_factorization_Lcm_factorial) fact+ | |
| 1984 | also from * have "\<dots> \<subseteq># prime_factorization x" | |
| 1985 | by (intro subset_mset.cSup_least) | |
| 1986 | (auto simp: prime_factorization_subset_iff_dvd nz dest: assms) | |
| 1987 | finally show ?thesis | |
| 1988 | by (subst (asm) prime_factorization_subset_iff_dvd) | |
| 1989 | (insert * bdd, auto simp: Lcm_factorial_eq_0_iff) | |
| 1990 | qed (auto simp: Lcm_factorial_def dest: assms) | |
| 1991 | qed | |
| 1992 | ||
| 1993 | lemmas gcd_lcm_factorial = | |
| 1994 | gcd_factorial_dvd1 gcd_factorial_dvd2 gcd_factorial_greatest | |
| 1995 | normalize_gcd_factorial lcm_factorial_gcd_factorial | |
| 1996 | normalize_Gcd_factorial Gcd_factorial_dvd Gcd_factorial_greatest | |
| 1997 | normalize_Lcm_factorial dvd_Lcm_factorial Lcm_factorial_least | |
| 1998 | ||
| 60804 | 1999 | end | 
| 2000 | ||
| 63498 | 2001 | class factorial_semiring_gcd = factorial_semiring + gcd + Gcd + | 
| 2002 | assumes gcd_eq_gcd_factorial: "gcd a b = gcd_factorial a b" | |
| 2003 | and lcm_eq_lcm_factorial: "lcm a b = lcm_factorial a b" | |
| 2004 | and Gcd_eq_Gcd_factorial: "Gcd A = Gcd_factorial A" | |
| 2005 | and Lcm_eq_Lcm_factorial: "Lcm A = Lcm_factorial A" | |
| 60804 | 2006 | begin | 
| 2007 | ||
| 63498 | 2008 | lemma prime_factorization_gcd: | 
| 2009 | assumes [simp]: "a \<noteq> 0" "b \<noteq> 0" | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 2010 | shows "prime_factorization (gcd a b) = prime_factorization a \<inter># prime_factorization b" | 
| 63498 | 2011 | by (simp add: gcd_eq_gcd_factorial prime_factorization_gcd_factorial) | 
| 60804 | 2012 | |
| 63498 | 2013 | lemma prime_factorization_lcm: | 
| 2014 | assumes [simp]: "a \<noteq> 0" "b \<noteq> 0" | |
| 63919 
9aed2da07200
# after multiset intersection and union symbol
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63905diff
changeset | 2015 | shows "prime_factorization (lcm a b) = prime_factorization a \<union># prime_factorization b" | 
| 63498 | 2016 | by (simp add: lcm_eq_lcm_factorial prime_factorization_lcm_factorial) | 
| 60804 | 2017 | |
| 63498 | 2018 | lemma prime_factorization_Gcd: | 
| 2019 | assumes "Gcd A \<noteq> 0" | |
| 2020 |   shows   "prime_factorization (Gcd A) = Inf (prime_factorization ` (A - {0}))"
 | |
| 2021 | using assms | |
| 2022 | by (simp add: prime_factorization_Gcd_factorial Gcd_eq_Gcd_factorial Gcd_factorial_eq_0_iff) | |
| 2023 | ||
| 2024 | lemma prime_factorization_Lcm: | |
| 2025 | assumes "Lcm A \<noteq> 0" | |
| 2026 | shows "prime_factorization (Lcm A) = Sup (prime_factorization ` A)" | |
| 2027 | using assms | |
| 2028 | by (simp add: prime_factorization_Lcm_factorial Lcm_eq_Lcm_factorial Lcm_factorial_eq_0_iff) | |
| 2029 | ||
| 66276 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2030 | lemma prime_factors_gcd [simp]: | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2031 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> prime_factors (gcd a b) = | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2032 | prime_factors a \<inter> prime_factors b" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2033 | by (subst prime_factorization_gcd) auto | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2034 | |
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2035 | lemma prime_factors_lcm [simp]: | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2036 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> prime_factors (lcm a b) = | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2037 | prime_factors a \<union> prime_factors b" | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2038 | by (subst prime_factorization_lcm) auto | 
| 
acc3b7dd0b21
More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 2039 | |
| 63498 | 2040 | subclass semiring_gcd | 
| 2041 | by (standard, unfold gcd_eq_gcd_factorial lcm_eq_lcm_factorial) | |
| 2042 | (rule gcd_lcm_factorial; assumption)+ | |
| 2043 | ||
| 2044 | subclass semiring_Gcd | |
| 2045 | by (standard, unfold Gcd_eq_Gcd_factorial Lcm_eq_Lcm_factorial) | |
| 2046 | (rule gcd_lcm_factorial; assumption)+ | |
| 60804 | 2047 | |
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2048 | lemma | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2049 | assumes "x \<noteq> 0" "y \<noteq> 0" | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 2050 | shows gcd_eq_factorial': | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2051 | "gcd x y = normalize (\<Prod>p \<in> prime_factors x \<inter> prime_factors y. | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2052 | p ^ min (multiplicity p x) (multiplicity p y))" (is "_ = ?rhs1") | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2053 | and lcm_eq_factorial': | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2054 | "lcm x y = normalize (\<Prod>p \<in> prime_factors x \<union> prime_factors y. | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2055 | p ^ max (multiplicity p x) (multiplicity p y))" (is "_ = ?rhs2") | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2056 | proof - | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2057 | have "gcd x y = gcd_factorial x y" by (rule gcd_eq_gcd_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2058 | also have "\<dots> = ?rhs1" | 
| 63905 | 2059 | by (auto simp: gcd_factorial_def assms prod_mset_multiplicity | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2060 | count_prime_factorization_prime | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2061 | intro!: arg_cong[of _ _ normalize] dest: in_prime_factors_imp_prime intro!: prod.cong) | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2062 | finally show "gcd x y = ?rhs1" . | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2063 | have "lcm x y = lcm_factorial x y" by (rule lcm_eq_lcm_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2064 | also have "\<dots> = ?rhs2" | 
| 63905 | 2065 | by (auto simp: lcm_factorial_def assms prod_mset_multiplicity | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2066 | count_prime_factorization_prime intro!: arg_cong[of _ _ normalize] | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2067 | dest: in_prime_factors_imp_prime intro!: prod.cong) | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2068 | finally show "lcm x y = ?rhs2" . | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2069 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2070 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2071 | lemma | 
| 63633 | 2072 | assumes "x \<noteq> 0" "y \<noteq> 0" "prime p" | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2073 | shows multiplicity_gcd: "multiplicity p (gcd x y) = min (multiplicity p x) (multiplicity p y)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2074 | and multiplicity_lcm: "multiplicity p (lcm x y) = max (multiplicity p x) (multiplicity p y)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2075 | proof - | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2076 | have "gcd x y = gcd_factorial x y" by (rule gcd_eq_gcd_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2077 | also from assms have "multiplicity p \<dots> = min (multiplicity p x) (multiplicity p y)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2078 | by (simp add: count_prime_factorization_prime [symmetric] prime_factorization_gcd_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2079 | finally show "multiplicity p (gcd x y) = min (multiplicity p x) (multiplicity p y)" . | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2080 | have "lcm x y = lcm_factorial x y" by (rule lcm_eq_lcm_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2081 | also from assms have "multiplicity p \<dots> = max (multiplicity p x) (multiplicity p y)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2082 | by (simp add: count_prime_factorization_prime [symmetric] prime_factorization_lcm_factorial) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2083 | finally show "multiplicity p (lcm x y) = max (multiplicity p x) (multiplicity p y)" . | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2084 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2085 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2086 | lemma gcd_lcm_distrib: | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2087 | "gcd x (lcm y z) = lcm (gcd x y) (gcd x z)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2088 | proof (cases "x = 0 \<or> y = 0 \<or> z = 0") | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2089 | case True | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2090 | thus ?thesis | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2091 | by (auto simp: lcm_proj1_if_dvd lcm_proj2_if_dvd) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2092 | next | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2093 | case False | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2094 | hence "normalize (gcd x (lcm y z)) = normalize (lcm (gcd x y) (gcd x z))" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2095 | by (intro associatedI prime_factorization_subset_imp_dvd) | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 2096 | (auto simp: lcm_eq_0_iff prime_factorization_gcd prime_factorization_lcm | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2097 | subset_mset.inf_sup_distrib1) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2098 | thus ?thesis by simp | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2099 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2100 | |
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2101 | lemma lcm_gcd_distrib: | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2102 | "lcm x (gcd y z) = gcd (lcm x y) (lcm x z)" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2103 | proof (cases "x = 0 \<or> y = 0 \<or> z = 0") | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2104 | case True | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2105 | thus ?thesis | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2106 | by (auto simp: lcm_proj1_if_dvd lcm_proj2_if_dvd) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2107 | next | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2108 | case False | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2109 | hence "normalize (lcm x (gcd y z)) = normalize (gcd (lcm x y) (lcm x z))" | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2110 | by (intro associatedI prime_factorization_subset_imp_dvd) | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65435diff
changeset | 2111 | (auto simp: lcm_eq_0_iff prime_factorization_gcd prime_factorization_lcm | 
| 63534 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2112 | subset_mset.sup_inf_distrib1) | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2113 | thus ?thesis by simp | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2114 | qed | 
| 
523b488b15c9
Overhaul of prime/multiplicity/prime_factors
 eberlm <eberlm@in.tum.de> parents: 
63498diff
changeset | 2115 | |
| 60804 | 2116 | end | 
| 2117 | ||
| 63498 | 2118 | class factorial_ring_gcd = factorial_semiring_gcd + idom | 
| 60804 | 2119 | begin | 
| 2120 | ||
| 63498 | 2121 | subclass ring_gcd .. | 
| 60804 | 2122 | |
| 63498 | 2123 | subclass idom_divide .. | 
| 60804 | 2124 | |
| 2125 | end | |
| 2126 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2127 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2128 | class factorial_semiring_multiplicative = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2129 | factorial_semiring + normalization_semidom_multiplicative | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2130 | begin | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2131 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2132 | lemma normalize_prod_mset_primes: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2133 | "(\<And>p. p \<in># A \<Longrightarrow> prime p) \<Longrightarrow> normalize (prod_mset A) = prod_mset A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2134 | proof (induction A) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2135 | case (add p A) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2136 | hence "prime p" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2137 | hence "normalize p = p" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2138 | with add show ?case by (simp add: normalize_mult) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2139 | qed simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2140 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2141 | lemma prod_mset_prime_factorization: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2142 | assumes "x \<noteq> 0" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2143 | shows "prod_mset (prime_factorization x) = normalize x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2144 | using assms | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2145 | by (induction x rule: prime_divisors_induct) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2146 | (simp_all add: prime_factorization_unit prime_factorization_times_prime | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2147 | is_unit_normalize normalize_mult) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2148 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2149 | lemma prime_decomposition: "unit_factor x * prod_mset (prime_factorization x) = x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2150 | by (cases "x = 0") (simp_all add: prod_mset_prime_factorization) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2151 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2152 | lemma prod_prime_factors: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2153 | assumes "x \<noteq> 0" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2154 | shows "(\<Prod>p \<in> prime_factors x. p ^ multiplicity p x) = normalize x" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2155 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2156 | have "normalize x = prod_mset (prime_factorization x)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2157 | by (simp add: prod_mset_prime_factorization assms) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2158 | also have "\<dots> = (\<Prod>p \<in> prime_factors x. p ^ count (prime_factorization x) p)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2159 | by (subst prod_mset_multiplicity) simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2160 | also have "\<dots> = (\<Prod>p \<in> prime_factors x. p ^ multiplicity p x)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2161 | by (intro prod.cong) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2162 | (simp_all add: assms count_prime_factorization_prime in_prime_factors_imp_prime) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2163 | finally show ?thesis .. | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2164 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2165 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2166 | lemma prime_factorization_unique'': | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2167 |   assumes S_eq: "S = {p. 0 < f p}"
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2168 | and "finite S" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2169 | and S: "\<forall>p\<in>S. prime p" "normalize n = (\<Prod>p\<in>S. p ^ f p)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2170 | shows "S = prime_factors n \<and> (\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2171 | proof | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2172 | define A where "A = Abs_multiset f" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2173 | from \<open>finite S\<close> S(1) have "(\<Prod>p\<in>S. p ^ f p) \<noteq> 0" by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2174 | with S(2) have nz: "n \<noteq> 0" by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2175 | from S_eq \<open>finite S\<close> have count_A: "count A = f" | 
| 73270 | 2176 | unfolding A_def by (subst multiset.Abs_multiset_inverse) simp_all | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2177 | from S_eq count_A have set_mset_A: "set_mset A = S" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2178 | by (simp only: set_mset_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2179 | from S(2) have "normalize n = (\<Prod>p\<in>S. p ^ f p)" . | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2180 | also have "\<dots> = prod_mset A" by (simp add: prod_mset_multiplicity S_eq set_mset_A count_A) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2181 | also from nz have "normalize n = prod_mset (prime_factorization n)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2182 | by (simp add: prod_mset_prime_factorization) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2183 | finally have "prime_factorization (prod_mset A) = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2184 | prime_factorization (prod_mset (prime_factorization n))" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2185 | also from S(1) have "prime_factorization (prod_mset A) = A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2186 | by (intro prime_factorization_prod_mset_primes) (auto simp: set_mset_A) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2187 | also have "prime_factorization (prod_mset (prime_factorization n)) = prime_factorization n" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2188 | by (intro prime_factorization_prod_mset_primes) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2189 | finally show "S = prime_factors n" by (simp add: set_mset_A [symmetric]) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2190 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2191 | show "(\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2192 | proof safe | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2193 | fix p :: 'a assume p: "prime p" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2194 | have "multiplicity p n = multiplicity p (normalize n)" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2195 | also have "normalize n = prod_mset A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2196 | by (simp add: prod_mset_multiplicity S_eq set_mset_A count_A S) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2197 | also from p set_mset_A S(1) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2198 | have "multiplicity p \<dots> = sum_mset (image_mset (multiplicity p) A)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2199 | by (intro prime_elem_multiplicity_prod_mset_distrib) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2200 | also from S(1) p | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2201 | have "image_mset (multiplicity p) A = image_mset (\<lambda>q. if p = q then 1 else 0) A" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2202 | by (intro image_mset_cong) (auto simp: set_mset_A multiplicity_self prime_multiplicity_other) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2203 | also have "sum_mset \<dots> = f p" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2204 | by (simp add: semiring_1_class.sum_mset_delta' count_A) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2205 | finally show "f p = multiplicity p n" .. | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2206 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2207 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2208 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2209 | lemma divides_primepow: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2210 | assumes "prime p" and "a dvd p ^ n" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2211 | obtains m where "m \<le> n" and "normalize a = p ^ m" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2212 | using divides_primepow_weak[OF assms] that assms | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2213 | by (auto simp add: normalize_power) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2214 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2215 | lemma Ex_other_prime_factor: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2216 | assumes "n \<noteq> 0" and "\<not>(\<exists>k. normalize n = p ^ k)" "prime p" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2217 | shows "\<exists>q\<in>prime_factors n. q \<noteq> p" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2218 | proof (rule ccontr) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2219 | assume *: "\<not>(\<exists>q\<in>prime_factors n. q \<noteq> p)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2220 | have "normalize n = (\<Prod>p\<in>prime_factors n. p ^ multiplicity p n)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2221 | using assms(1) by (intro prod_prime_factors [symmetric]) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2222 |   also from * have "\<dots> = (\<Prod>p\<in>{p}. p ^ multiplicity p n)"
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2223 | using assms(3) by (intro prod.mono_neutral_left) (auto simp: prime_factors_multiplicity) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2224 | finally have "normalize n = p ^ multiplicity p n" by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2225 | with assms show False by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2226 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2227 | |
| 80084 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76700diff
changeset | 2228 | text \<open>Now a string of results due to Maya Kądziołka\<close> | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2229 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2230 | lemma multiplicity_dvd_iff_dvd: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2231 | assumes "x \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2232 | shows "p^k dvd x \<longleftrightarrow> p^k dvd p^multiplicity p x" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2233 | proof (cases "is_unit p") | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2234 | case True | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2235 | then have "is_unit (p^k)" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2236 | using is_unit_power_iff by simp | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2237 | hence "p^k dvd x" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2238 | by auto | 
| 74885 | 2239 | moreover from \<open>is_unit p\<close> have "p^k dvd p^multiplicity p x" | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2240 | using multiplicity_unit_left is_unit_power_iff by simp | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2241 | ultimately show ?thesis by simp | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2242 | next | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2243 | case False | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2244 | show ?thesis | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2245 | proof (cases "p = 0") | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2246 | case True | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2247 | then have "p^multiplicity p x = 1" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2248 | by simp | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2249 | moreover have "p^k dvd x \<Longrightarrow> k = 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2250 | proof (rule ccontr) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2251 | assume "p^k dvd x" and "k \<noteq> 0" | 
| 74885 | 2252 | with \<open>p = 0\<close> have "p^k = 0" by auto | 
| 2253 | with \<open>p^k dvd x\<close> have "0 dvd x" by auto | |
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2254 | hence "x = 0" by auto | 
| 74885 | 2255 | with \<open>x \<noteq> 0\<close> show False by auto | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2256 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2257 | ultimately show ?thesis | 
| 74885 | 2258 | by (auto simp add: is_unit_power_iff \<open>\<not> is_unit p\<close>) | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2259 | next | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2260 | case False | 
| 74885 | 2261 | with \<open>x \<noteq> 0\<close> \<open>\<not> is_unit p\<close> show ?thesis | 
| 73127 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2262 | by (simp add: power_dvd_iff_le_multiplicity dvd_power_iff multiplicity_same_power) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2263 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2264 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2265 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2266 | lemma multiplicity_decomposeI: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2267 | assumes "x = p^k * x'" and "\<not> p dvd x'" and "p \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2268 | shows "multiplicity p x = k" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2269 | using assms local.multiplicity_eqI local.power_Suc2 by force | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2270 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2271 | lemma multiplicity_sum_lt: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2272 | assumes "multiplicity p a < multiplicity p b" "a \<noteq> 0" "b \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2273 | shows "multiplicity p (a + b) = multiplicity p a" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2274 | proof - | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2275 | let ?vp = "multiplicity p" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2276 | have unit: "\<not> is_unit p" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2277 | proof | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2278 | assume "is_unit p" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2279 | then have "?vp a = 0" and "?vp b = 0" using multiplicity_unit_left by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2280 | with assms show False by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2281 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2282 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2283 | from multiplicity_decompose' obtain a' where a': "a = p^?vp a * a'" "\<not> p dvd a'" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2284 | using unit assms by metis | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2285 | from multiplicity_decompose' obtain b' where b': "b = p^?vp b * b'" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2286 | using unit assms by metis | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2287 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2288 | show "?vp (a + b) = ?vp a" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2289 | proof (rule multiplicity_decomposeI) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2290 | let ?k = "?vp b - ?vp a" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2291 | from assms have k: "?k > 0" by simp | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2292 | with b' have "b = p^?vp a * p^?k * b'" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2293 | by (simp flip: power_add) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2294 | with a' show *: "a + b = p^?vp a * (a' + p^?k * b')" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2295 | by (simp add: ac_simps distrib_left) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2296 | moreover show "\<not> p dvd a' + p^?k * b'" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2297 | using a' k dvd_add_left_iff by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2298 | show "p \<noteq> 0" using assms by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2299 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2300 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2301 | |
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2302 | corollary multiplicity_sum_min: | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2303 | assumes "multiplicity p a \<noteq> multiplicity p b" "a \<noteq> 0" "b \<noteq> 0" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2304 | shows "multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b)" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2305 | proof - | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2306 | let ?vp = "multiplicity p" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2307 | from assms have "?vp a < ?vp b \<or> ?vp a > ?vp b" | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2308 | by auto | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2309 | then show ?thesis | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2310 | by (metis assms multiplicity_sum_lt min.commute add_commute min.strict_order_iff) | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2311 | qed | 
| 
4c4d479b097d
new magerial from Jakub Kądziołka
 paulson <lp15@cam.ac.uk> parents: 
73103diff
changeset | 2312 | |
| 60804 | 2313 | end | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2314 | |
| 76700 
c48fe2be847f
added lifting_forget as suggested by Peter Lammich
 blanchet parents: 
74885diff
changeset | 2315 | lifting_update multiset.lifting | 
| 
c48fe2be847f
added lifting_forget as suggested by Peter Lammich
 blanchet parents: 
74885diff
changeset | 2316 | lifting_forget multiset.lifting | 
| 
c48fe2be847f
added lifting_forget as suggested by Peter Lammich
 blanchet parents: 
74885diff
changeset | 2317 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
69785diff
changeset | 2318 | end |