| author | wenzelm | 
| Fri, 14 Mar 2025 23:03:58 +0100 | |
| changeset 82276 | d22e9c5b5dc6 | 
| parent 81182 | fc5066122e68 | 
| child 82338 | 1eb12389c499 | 
| permissions | -rw-r--r-- | 
| 60036 | 1 | (* Title: HOL/Filter.thy | 
| 2 | Author: Brian Huffman | |
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Filters on predicates\<close> | 
| 60036 | 7 | |
| 8 | theory Filter | |
| 9 | imports Set_Interval Lifting_Set | |
| 10 | begin | |
| 11 | ||
| 60758 | 12 | subsection \<open>Filters\<close> | 
| 60036 | 13 | |
| 60758 | 14 | text \<open> | 
| 60036 | 15 | This definition also allows non-proper filters. | 
| 60758 | 16 | \<close> | 
| 60036 | 17 | |
| 18 | locale is_filter = | |
| 19 |   fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | |
| 20 | assumes True: "F (\<lambda>x. True)" | |
| 21 | assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)" | |
| 22 | assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)" | |
| 23 | ||
| 24 | typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
 | |
| 25 | proof | |
| 26 | show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro) | |
| 27 | qed | |
| 28 | ||
| 29 | lemma is_filter_Rep_filter: "is_filter (Rep_filter F)" | |
| 30 | using Rep_filter [of F] by simp | |
| 31 | ||
| 32 | lemma Abs_filter_inverse': | |
| 33 | assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F" | |
| 34 | using assms by (simp add: Abs_filter_inverse) | |
| 35 | ||
| 36 | ||
| 60758 | 37 | subsubsection \<open>Eventually\<close> | 
| 60036 | 38 | |
| 39 | definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | |
| 40 | where "eventually P F \<longleftrightarrow> Rep_filter F P" | |
| 41 | ||
| 61953 | 42 | syntax | 
| 80934 | 43 | "_eventually" :: "pttrn => 'a filter => bool => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<^sub>F\<close>\<close>\<forall>\<^sub>F _ in _./ _)\<close> [0, 0, 10] 10) | 
| 80760 | 44 | syntax_consts | 
| 45 | "_eventually" == eventually | |
| 60037 | 46 | translations | 
| 60038 | 47 | "\<forall>\<^sub>Fx in F. P" == "CONST eventually (\<lambda>x. P) F" | 
| 60037 | 48 | |
| 60036 | 49 | lemma eventually_Abs_filter: | 
| 50 | assumes "is_filter F" shows "eventually P (Abs_filter F) = F P" | |
| 51 | unfolding eventually_def using assms by (simp add: Abs_filter_inverse) | |
| 52 | ||
| 53 | lemma filter_eq_iff: | |
| 54 | shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')" | |
| 55 | unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def .. | |
| 56 | ||
| 57 | lemma eventually_True [simp]: "eventually (\<lambda>x. True) F" | |
| 58 | unfolding eventually_def | |
| 59 | by (rule is_filter.True [OF is_filter_Rep_filter]) | |
| 60 | ||
| 61 | lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F" | |
| 62 | proof - | |
| 63 | assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext) | |
| 64 | thus "eventually P F" by simp | |
| 65 | qed | |
| 66 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 67 | lemma eventuallyI: "(\<And>x. P x) \<Longrightarrow> eventually P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 68 | by (auto intro: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 69 | |
| 77140 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 70 | lemma filter_eqI: "(\<And>P. eventually P F \<longleftrightarrow> eventually P G) \<Longrightarrow> F = G" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 71 | by (auto simp: filter_eq_iff) | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 72 | |
| 60036 | 73 | lemma eventually_mono: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 74 | "\<lbrakk>eventually P F; \<And>x. P x \<Longrightarrow> Q x\<rbrakk> \<Longrightarrow> eventually Q F" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 75 | unfolding eventually_def | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 76 | by (blast intro: is_filter.mono [OF is_filter_Rep_filter]) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 77 | |
| 60036 | 78 | lemma eventually_conj: | 
| 79 | assumes P: "eventually (\<lambda>x. P x) F" | |
| 80 | assumes Q: "eventually (\<lambda>x. Q x) F" | |
| 81 | shows "eventually (\<lambda>x. P x \<and> Q x) F" | |
| 82 | using assms unfolding eventually_def | |
| 83 | by (rule is_filter.conj [OF is_filter_Rep_filter]) | |
| 84 | ||
| 85 | lemma eventually_mp: | |
| 86 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 87 | assumes "eventually (\<lambda>x. P x) F" | |
| 88 | shows "eventually (\<lambda>x. Q x) F" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 89 | proof - | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 90 | have "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F" | 
| 60036 | 91 | using assms by (rule eventually_conj) | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 92 | then show ?thesis | 
| 61810 | 93 | by (blast intro: eventually_mono) | 
| 60036 | 94 | qed | 
| 95 | ||
| 96 | lemma eventually_rev_mp: | |
| 97 | assumes "eventually (\<lambda>x. P x) F" | |
| 98 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 99 | shows "eventually (\<lambda>x. Q x) F" | |
| 100 | using assms(2) assms(1) by (rule eventually_mp) | |
| 101 | ||
| 102 | lemma eventually_conj_iff: | |
| 103 | "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F" | |
| 104 | by (auto intro: eventually_conj elim: eventually_rev_mp) | |
| 105 | ||
| 106 | lemma eventually_elim2: | |
| 107 | assumes "eventually (\<lambda>i. P i) F" | |
| 108 | assumes "eventually (\<lambda>i. Q i) F" | |
| 109 | assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i" | |
| 110 | shows "eventually (\<lambda>i. R i) F" | |
| 111 | using assms by (auto elim!: eventually_rev_mp) | |
| 112 | ||
| 77140 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 113 | lemma eventually_cong: | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 114 | assumes "eventually P F" and "\<And>x. P x \<Longrightarrow> Q x \<longleftrightarrow> R x" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 115 | shows "eventually Q F \<longleftrightarrow> eventually R F" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 116 | using assms eventually_elim2 by blast | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 117 | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 118 | lemma eventually_ball_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 119 | "finite A \<Longrightarrow> (eventually (\<lambda>x. \<forall>y\<in>A. P x y) net) \<longleftrightarrow> (\<forall>y\<in>A. eventually (\<lambda>x. P x y) net)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 120 | by (induction A rule: finite_induct) (auto simp: eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 121 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 122 | lemma eventually_ball_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 123 | "finite A \<Longrightarrow> \<forall>y\<in>A. eventually (\<lambda>x. P x y) net \<Longrightarrow> eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 124 | by (auto simp: eventually_ball_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 125 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 126 | lemma eventually_all_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 127 | fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 128 | assumes "\<And>y. eventually (\<lambda>x. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 129 | shows "eventually (\<lambda>x. \<forall>y. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 130 | using eventually_ball_finite [of UNIV P] assms by simp | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 131 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 132 | lemma eventually_ex: "(\<forall>\<^sub>Fx in F. \<exists>y. P x y) \<longleftrightarrow> (\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 133 | proof | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 134 | assume "\<forall>\<^sub>Fx in F. \<exists>y. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 135 | then have "\<forall>\<^sub>Fx in F. P x (SOME y. P x y)" | 
| 61810 | 136 | by (auto intro: someI_ex eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 137 | then show "\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 138 | by auto | 
| 61810 | 139 | qed (auto intro: eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 140 | |
| 60036 | 141 | lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | 
| 142 | by (auto intro: eventually_mp) | |
| 143 | ||
| 144 | lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x" | |
| 145 | by (metis always_eventually) | |
| 146 | ||
| 147 | lemma eventually_subst: | |
| 148 | assumes "eventually (\<lambda>n. P n = Q n) F" | |
| 149 | shows "eventually P F = eventually Q F" (is "?L = ?R") | |
| 150 | proof - | |
| 151 | from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 152 | and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F" | |
| 61810 | 153 | by (auto elim: eventually_mono) | 
| 60036 | 154 | then show ?thesis by (auto elim: eventually_elim2) | 
| 155 | qed | |
| 156 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 157 | subsection \<open> Frequently as dual to eventually \<close> | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 158 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 159 | definition frequently :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 160 | where "frequently P F \<longleftrightarrow> \<not> eventually (\<lambda>x. \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 161 | |
| 61953 | 162 | syntax | 
| 80934 | 163 | "_frequently" :: "pttrn \<Rightarrow> 'a filter \<Rightarrow> bool \<Rightarrow> bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<^sub>F\<close>\<close>\<exists>\<^sub>F _ in _./ _)\<close> [0, 0, 10] 10) | 
| 80760 | 164 | syntax_consts | 
| 165 | "_frequently" == frequently | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 166 | translations | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 167 | "\<exists>\<^sub>Fx in F. P" == "CONST frequently (\<lambda>x. P) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 168 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 169 | lemma not_frequently_False [simp]: "\<not> (\<exists>\<^sub>Fx in F. False)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 170 | by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 171 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 172 | lemma frequently_ex: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>x. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 173 | by (auto simp: frequently_def dest: not_eventuallyD) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 174 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 175 | lemma frequentlyE: assumes "frequently P F" obtains x where "P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 176 | using frequently_ex[OF assms] by auto | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 177 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 178 | lemma frequently_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 179 | assumes ev: "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" and P: "\<exists>\<^sub>Fx in F. P x" shows "\<exists>\<^sub>Fx in F. Q x" | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 180 | proof - | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 181 | from ev have "eventually (\<lambda>x. \<not> Q x \<longrightarrow> \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 182 | by (rule eventually_rev_mp) (auto intro!: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 183 | from eventually_mp[OF this] P show ?thesis | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 184 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 185 | qed | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 186 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 187 | lemma frequently_rev_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 188 | assumes "\<exists>\<^sub>Fx in F. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 189 | assumes "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 190 | shows "\<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 191 | using assms(2) assms(1) by (rule frequently_mp) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 192 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 193 | lemma frequently_mono: "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> frequently P F \<Longrightarrow> frequently Q F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 194 | using frequently_mp[of P Q] by (simp add: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 195 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 196 | lemma frequently_elim1: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> (\<And>i. P i \<Longrightarrow> Q i) \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 197 | by (metis frequently_mono) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 198 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 199 | lemma frequently_disj_iff: "(\<exists>\<^sub>Fx in F. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<or> (\<exists>\<^sub>Fx in F. Q x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 200 | by (simp add: frequently_def eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 201 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 202 | lemma frequently_disj: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x \<Longrightarrow> \<exists>\<^sub>Fx in F. P x \<or> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 203 | by (simp add: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 204 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 205 | lemma frequently_bex_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 206 | assumes "finite A" shows "(\<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 207 | using assms by induction (auto simp: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 208 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 209 | lemma frequently_bex_finite: "finite A \<Longrightarrow> \<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y \<Longrightarrow> \<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 210 | by (simp add: frequently_bex_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 211 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 212 | lemma frequently_all: "(\<exists>\<^sub>Fx in F. \<forall>y. P x y) \<longleftrightarrow> (\<forall>Y. \<exists>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 213 | using eventually_ex[of "\<lambda>x y. \<not> P x y" F] by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 214 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 215 | lemma | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 216 | shows not_eventually: "\<not> eventually P F \<longleftrightarrow> (\<exists>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 217 | and not_frequently: "\<not> frequently P F \<longleftrightarrow> (\<forall>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 218 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 219 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 220 | lemma frequently_imp_iff: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 221 | "(\<exists>\<^sub>Fx in F. P x \<longrightarrow> Q x) \<longleftrightarrow> (eventually P F \<longrightarrow> frequently Q F)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 222 | unfolding imp_conv_disj frequently_disj_iff not_eventually[symmetric] .. | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 223 | |
| 77140 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 224 | lemma frequently_eventually_conj: | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 225 | assumes "\<exists>\<^sub>Fx in F. P x" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 226 | assumes "\<forall>\<^sub>Fx in F. Q x" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 227 | shows "\<exists>\<^sub>Fx in F. Q x \<and> P x" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 228 | using assms eventually_elim2 by (force simp add: frequently_def) | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 229 | |
| 77223 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 230 | lemma frequently_cong: | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 231 | assumes ev: "eventually P F" and QR: "\<And>x. P x \<Longrightarrow> Q x \<longleftrightarrow> R x" | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 232 | shows "frequently Q F \<longleftrightarrow> frequently R F" | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 233 | unfolding frequently_def | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 234 | using QR by (auto intro!: eventually_cong [OF ev]) | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 235 | |
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 236 | lemma frequently_eventually_frequently: | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 237 | "frequently P F \<Longrightarrow> eventually Q F \<Longrightarrow> frequently (\<lambda>x. P x \<and> Q x) F" | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 238 | using frequently_cong [of Q F P "\<lambda>x. P x \<and> Q x"] by meson | 
| 
607e1e345e8f
Lots of new material chiefly about complex analysis
 paulson <lp15@cam.ac.uk> parents: 
77221diff
changeset | 239 | |
| 80175 
200107cdd3ac
Some new simprules – and patches for proofs
 paulson <lp15@cam.ac.uk> parents: 
79530diff
changeset | 240 | lemma eventually_frequently_const_simps [simp]: | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 241 | "(\<exists>\<^sub>Fx in F. P x \<and> C) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<and> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 242 | "(\<exists>\<^sub>Fx in F. C \<and> P x) \<longleftrightarrow> C \<and> (\<exists>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 243 | "(\<forall>\<^sub>Fx in F. P x \<or> C) \<longleftrightarrow> (\<forall>\<^sub>Fx in F. P x) \<or> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 244 | "(\<forall>\<^sub>Fx in F. C \<or> P x) \<longleftrightarrow> C \<or> (\<forall>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 245 | "(\<forall>\<^sub>Fx in F. P x \<longrightarrow> C) \<longleftrightarrow> ((\<exists>\<^sub>Fx in F. P x) \<longrightarrow> C)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 246 | "(\<forall>\<^sub>Fx in F. C \<longrightarrow> P x) \<longleftrightarrow> (C \<longrightarrow> (\<forall>\<^sub>Fx in F. P x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 247 | by (cases C; simp add: not_frequently)+ | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 248 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 249 | lemmas eventually_frequently_simps = | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 250 | eventually_frequently_const_simps | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 251 | not_eventually | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 252 | eventually_conj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 253 | eventually_ball_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 254 | eventually_ex | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 255 | not_frequently | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 256 | frequently_disj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 257 | frequently_bex_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 258 | frequently_all | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 259 | frequently_imp_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 260 | |
| 60758 | 261 | ML \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 262 | fun eventually_elim_tac facts = | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 263 | CONTEXT_SUBGOAL (fn (goal, i) => fn (ctxt, st) => | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 264 | let | 
| 67855 | 265 |         val mp_facts = facts RL @{thms eventually_rev_mp}
 | 
| 266 | val rule = | |
| 267 |           @{thm eventuallyI}
 | |
| 268 | |> fold (fn mp_fact => fn th => th RS mp_fact) mp_facts | |
| 269 |           |> funpow (length facts) (fn th => @{thm impI} RS th)
 | |
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 270 | val cases_prop = | 
| 67855 | 271 | Thm.prop_of (Rule_Cases.internalize_params (rule RS Goal.init (Thm.cterm_of ctxt goal))) | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 272 |         val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
 | 
| 67855 | 273 | in CONTEXT_CASES cases (resolve_tac ctxt [rule] i) (ctxt, st) end) | 
| 60758 | 274 | \<close> | 
| 60036 | 275 | |
| 60758 | 276 | method_setup eventually_elim = \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 277 | Scan.succeed (fn _ => CONTEXT_METHOD (fn facts => eventually_elim_tac facts 1)) | 
| 60758 | 278 | \<close> "elimination of eventually quantifiers" | 
| 60036 | 279 | |
| 60758 | 280 | subsubsection \<open>Finer-than relation\<close> | 
| 60036 | 281 | |
| 69593 | 282 | text \<open>\<^term>\<open>F \<le> F'\<close> means that filter \<^term>\<open>F\<close> is finer than | 
| 283 | filter \<^term>\<open>F'\<close>.\<close> | |
| 60036 | 284 | |
| 285 | instantiation filter :: (type) complete_lattice | |
| 286 | begin | |
| 287 | ||
| 288 | definition le_filter_def: | |
| 289 | "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)" | |
| 290 | ||
| 291 | definition | |
| 292 | "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F" | |
| 293 | ||
| 294 | definition | |
| 295 | "top = Abs_filter (\<lambda>P. \<forall>x. P x)" | |
| 296 | ||
| 297 | definition | |
| 298 | "bot = Abs_filter (\<lambda>P. True)" | |
| 299 | ||
| 300 | definition | |
| 301 | "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')" | |
| 302 | ||
| 303 | definition | |
| 304 | "inf F F' = Abs_filter | |
| 305 | (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 306 | ||
| 307 | definition | |
| 308 | "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)" | |
| 309 | ||
| 310 | definition | |
| 311 |   "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
 | |
| 312 | ||
| 313 | lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)" | |
| 314 | unfolding top_filter_def | |
| 315 | by (rule eventually_Abs_filter, rule is_filter.intro, auto) | |
| 316 | ||
| 317 | lemma eventually_bot [simp]: "eventually P bot" | |
| 318 | unfolding bot_filter_def | |
| 319 | by (subst eventually_Abs_filter, rule is_filter.intro, auto) | |
| 320 | ||
| 321 | lemma eventually_sup: | |
| 322 | "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'" | |
| 323 | unfolding sup_filter_def | |
| 324 | by (rule eventually_Abs_filter, rule is_filter.intro) | |
| 325 | (auto elim!: eventually_rev_mp) | |
| 326 | ||
| 327 | lemma eventually_inf: | |
| 328 | "eventually P (inf F F') \<longleftrightarrow> | |
| 329 | (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 330 | unfolding inf_filter_def | |
| 71743 | 331 | apply (rule eventually_Abs_filter [OF is_filter.intro]) | 
| 332 | apply (blast intro: eventually_True) | |
| 333 | apply (force elim!: eventually_conj)+ | |
| 60036 | 334 | done | 
| 335 | ||
| 336 | lemma eventually_Sup: | |
| 337 | "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)" | |
| 338 | unfolding Sup_filter_def | |
| 71743 | 339 | apply (rule eventually_Abs_filter [OF is_filter.intro]) | 
| 60036 | 340 | apply (auto intro: eventually_conj elim!: eventually_rev_mp) | 
| 341 | done | |
| 342 | ||
| 343 | instance proof | |
| 344 | fix F F' F'' :: "'a filter" and S :: "'a filter set" | |
| 345 |   { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
 | |
| 346 | by (rule less_filter_def) } | |
| 347 |   { show "F \<le> F"
 | |
| 348 | unfolding le_filter_def by simp } | |
| 349 |   { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
 | |
| 350 | unfolding le_filter_def by simp } | |
| 351 |   { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
 | |
| 352 | unfolding le_filter_def filter_eq_iff by fast } | |
| 353 |   { show "inf F F' \<le> F" and "inf F F' \<le> F'"
 | |
| 354 | unfolding le_filter_def eventually_inf by (auto intro: eventually_True) } | |
| 355 |   { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
 | |
| 356 | unfolding le_filter_def eventually_inf | |
| 61810 | 357 | by (auto intro: eventually_mono [OF eventually_conj]) } | 
| 60036 | 358 |   { show "F \<le> sup F F'" and "F' \<le> sup F F'"
 | 
| 359 | unfolding le_filter_def eventually_sup by simp_all } | |
| 360 |   { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
 | |
| 361 | unfolding le_filter_def eventually_sup by simp } | |
| 362 |   { assume "F'' \<in> S" thus "Inf S \<le> F''"
 | |
| 363 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 364 |   { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
 | |
| 365 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 366 |   { assume "F \<in> S" thus "F \<le> Sup S"
 | |
| 367 | unfolding le_filter_def eventually_Sup by simp } | |
| 368 |   { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
 | |
| 369 | unfolding le_filter_def eventually_Sup by simp } | |
| 370 |   { show "Inf {} = (top::'a filter)"
 | |
| 371 | by (auto simp: top_filter_def Inf_filter_def Sup_filter_def) | |
| 372 | (metis (full_types) top_filter_def always_eventually eventually_top) } | |
| 373 |   { show "Sup {} = (bot::'a filter)"
 | |
| 374 | by (auto simp: bot_filter_def Sup_filter_def) } | |
| 375 | qed | |
| 376 | ||
| 377 | end | |
| 378 | ||
| 66171 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 379 | instance filter :: (type) distrib_lattice | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 380 | proof | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 381 | fix F G H :: "'a filter" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 382 | show "sup F (inf G H) = inf (sup F G) (sup F H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 383 | proof (rule order.antisym) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 384 | show "inf (sup F G) (sup F H) \<le> sup F (inf G H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 385 | unfolding le_filter_def eventually_sup | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 386 | proof safe | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 387 | fix P assume 1: "eventually P F" and 2: "eventually P (inf G H)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 388 | from 2 obtain Q R | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 389 | where QR: "eventually Q G" "eventually R H" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> P x" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 390 | by (auto simp: eventually_inf) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 391 | define Q' where "Q' = (\<lambda>x. Q x \<or> P x)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 392 | define R' where "R' = (\<lambda>x. R x \<or> P x)" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 393 | from 1 have "eventually Q' F" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 394 | by (elim eventually_mono) (auto simp: Q'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 395 | moreover from 1 have "eventually R' F" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 396 | by (elim eventually_mono) (auto simp: R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 397 | moreover from QR(1) have "eventually Q' G" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 398 | by (elim eventually_mono) (auto simp: Q'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 399 | moreover from QR(2) have "eventually R' H" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 400 | by (elim eventually_mono)(auto simp: R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 401 | moreover from QR have "P x" if "Q' x" "R' x" for x | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 402 | using that by (auto simp: Q'_def R'_def) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 403 | ultimately show "eventually P (inf (sup F G) (sup F H))" | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 404 | by (auto simp: eventually_inf eventually_sup) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 405 | qed | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 406 | qed (auto intro: inf.coboundedI1 inf.coboundedI2) | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 407 | qed | 
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 408 | |
| 
454abfe923fe
distrib_lattice instance for filters
 eberlm <eberlm@in.tum.de> parents: 
66162diff
changeset | 409 | |
| 60036 | 410 | lemma filter_leD: | 
| 411 | "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F" | |
| 412 | unfolding le_filter_def by simp | |
| 413 | ||
| 414 | lemma filter_leI: | |
| 415 | "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'" | |
| 416 | unfolding le_filter_def by simp | |
| 417 | ||
| 418 | lemma eventually_False: | |
| 419 | "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot" | |
| 420 | unfolding filter_eq_iff by (auto elim: eventually_rev_mp) | |
| 421 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 422 | lemma eventually_frequently: "F \<noteq> bot \<Longrightarrow> eventually P F \<Longrightarrow> frequently P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 423 | using eventually_conj[of P F "\<lambda>x. \<not> P x"] | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 424 | by (auto simp add: frequently_def eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 425 | |
| 67706 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 426 | lemma eventually_frequentlyE: | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 427 | assumes "eventually P F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 428 | assumes "eventually (\<lambda>x. \<not> P x \<or> Q x) F" "F\<noteq>bot" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 429 | shows "frequently Q F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 430 | proof - | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 431 | have "eventually Q F" | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 432 | using eventually_conj[OF assms(1,2),simplified] by (auto elim:eventually_mono) | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 433 | then show ?thesis using eventually_frequently[OF \<open>F\<noteq>bot\<close>] by auto | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 434 | qed | 
| 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 Wenda Li <wl302@cam.ac.uk> parents: 
67616diff
changeset | 435 | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 436 | lemma eventually_const_iff: "eventually (\<lambda>x. P) F \<longleftrightarrow> P \<or> F = bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 437 | by (cases P) (auto simp: eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 438 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 439 | lemma eventually_const[simp]: "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 440 | by (simp add: eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 441 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 442 | lemma frequently_const_iff: "frequently (\<lambda>x. P) F \<longleftrightarrow> P \<and> F \<noteq> bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 443 | by (simp add: frequently_def eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 444 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 445 | lemma frequently_const[simp]: "F \<noteq> bot \<Longrightarrow> frequently (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 446 | by (simp add: frequently_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 447 | |
| 61245 | 448 | lemma eventually_happens: "eventually P net \<Longrightarrow> net = bot \<or> (\<exists>x. P x)" | 
| 449 | by (metis frequentlyE eventually_frequently) | |
| 450 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 451 | lemma eventually_happens': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 452 | assumes "F \<noteq> bot" "eventually P F" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 453 | shows "\<exists>x. P x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 454 | using assms eventually_frequently frequentlyE by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 455 | |
| 60036 | 456 | abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool" | 
| 457 | where "trivial_limit F \<equiv> F = bot" | |
| 458 | ||
| 459 | lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F" | |
| 460 | by (rule eventually_False [symmetric]) | |
| 461 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 462 | lemma False_imp_not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> \<not> trivial_limit net \<Longrightarrow> \<not> eventually (\<lambda>x. P x) net" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 463 | by (simp add: eventually_False) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 464 | |
| 77943 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 465 | lemma trivial_limit_eventually: "trivial_limit net \<Longrightarrow> eventually P net" | 
| 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 466 | by simp | 
| 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 467 | |
| 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 468 | lemma trivial_limit_eq: "trivial_limit net \<longleftrightarrow> (\<forall>P. eventually P net)" | 
| 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 469 | by (simp add: filter_eq_iff) | 
| 
ffdad62bc235
Importation of additional lemmas from metric.ml
 paulson <lp15@cam.ac.uk> parents: 
77275diff
changeset | 470 | |
| 60036 | 471 | lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))" | 
| 472 | proof - | |
| 473 | let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 474 | |
| 74325 | 475 | have eventually_F: "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P" for P | 
| 476 | proof (rule eventually_Abs_filter is_filter.intro)+ | |
| 477 | show "?F (\<lambda>x. True)" | |
| 478 |       by (rule exI[of _ "{}"]) (simp add: le_fun_def)
 | |
| 479 | next | |
| 480 | fix P Q | |
| 481 | assume "?F P" "?F Q" | |
| 482 | then obtain X Y where | |
| 483 | "X \<subseteq> B" "finite X" "eventually P (\<Sqinter> X)" | |
| 484 | "Y \<subseteq> B" "finite Y" "eventually Q (\<Sqinter> Y)" by blast | |
| 485 | then show "?F (\<lambda>x. P x \<and> Q x)" | |
| 486 | by (intro exI[of _ "X \<union> Y"]) (auto simp: Inf_union_distrib eventually_inf) | |
| 487 | next | |
| 488 | fix P Q | |
| 489 | assume "?F P" | |
| 490 | then obtain X where "X \<subseteq> B" "finite X" "eventually P (\<Sqinter> X)" | |
| 491 | by blast | |
| 492 | moreover assume "\<forall>x. P x \<longrightarrow> Q x" | |
| 493 | ultimately show "?F Q" | |
| 494 | by (intro exI[of _ X]) (auto elim: eventually_mono) | |
| 495 | qed | |
| 60036 | 496 | |
| 497 | have "Inf B = Abs_filter ?F" | |
| 498 | proof (intro antisym Inf_greatest) | |
| 499 | show "Inf B \<le> Abs_filter ?F" | |
| 500 | by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono) | |
| 501 | next | |
| 502 | fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F" | |
| 503 |       by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
 | |
| 504 | qed | |
| 505 | then show ?thesis | |
| 506 | by (simp add: eventually_F) | |
| 507 | qed | |
| 508 | ||
| 67613 | 509 | lemma eventually_INF: "eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (\<Sqinter>b\<in>X. F b))" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 510 | unfolding eventually_Inf [of P "F`B"] | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 511 | by (metis finite_imageI image_mono finite_subset_image) | 
| 60036 | 512 | |
| 513 | lemma Inf_filter_not_bot: | |
| 514 | fixes B :: "'a filter set" | |
| 515 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot" | |
| 516 | unfolding trivial_limit_def eventually_Inf[of _ B] | |
| 517 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | |
| 518 | ||
| 519 | lemma INF_filter_not_bot: | |
| 520 | fixes F :: "'i \<Rightarrow> 'a filter" | |
| 67613 | 521 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (\<Sqinter>b\<in>X. F b) \<noteq> bot) \<Longrightarrow> (\<Sqinter>b\<in>B. F b) \<noteq> bot" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 522 | unfolding trivial_limit_def eventually_INF [of _ _ B] | 
| 60036 | 523 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | 
| 524 | ||
| 525 | lemma eventually_Inf_base: | |
| 526 |   assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
 | |
| 527 | shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)" | |
| 528 | proof (subst eventually_Inf, safe) | |
| 529 | fix X assume "finite X" "X \<subseteq> B" | |
| 530 | then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x" | |
| 531 | proof induct | |
| 532 | case empty then show ?case | |
| 60758 | 533 |       using \<open>B \<noteq> {}\<close> by auto
 | 
| 60036 | 534 | next | 
| 535 | case (insert x X) | |
| 536 | then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x" | |
| 537 | by auto | |
| 60758 | 538 | with \<open>insert x X \<subseteq> B\<close> base[of b x] show ?case | 
| 60036 | 539 | by (auto intro: order_trans) | 
| 540 | qed | |
| 541 | then obtain b where "b \<in> B" "b \<le> Inf X" | |
| 542 | by (auto simp: le_Inf_iff) | |
| 543 | then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)" | |
| 544 | by (intro bexI[of _ b]) (auto simp: le_filter_def) | |
| 545 | qed (auto intro!: exI[of _ "{x}" for x])
 | |
| 546 | ||
| 547 | lemma eventually_INF_base: | |
| 548 |   "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
 | |
| 67613 | 549 | eventually P (\<Sqinter>b\<in>B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 550 | by (subst eventually_Inf_base) auto | 
| 60036 | 551 | |
| 67613 | 552 | lemma eventually_INF1: "i \<in> I \<Longrightarrow> eventually P (F i) \<Longrightarrow> eventually P (\<Sqinter>i\<in>I. F i)" | 
| 62369 | 553 | using filter_leD[OF INF_lower] . | 
| 554 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 555 | lemma eventually_INF_finite: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 556 | assumes "finite A" | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 557 | shows "eventually P (\<Sqinter> x\<in>A. F x) \<longleftrightarrow> | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 558 | (\<exists>Q. (\<forall>x\<in>A. eventually (Q x) (F x)) \<and> (\<forall>y. (\<forall>x\<in>A. Q x y) \<longrightarrow> P y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 559 | using assms | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 560 | proof (induction arbitrary: P rule: finite_induct) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 561 | case (insert a A P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 562 | from insert.hyps have [simp]: "x \<noteq> a" if "x \<in> A" for x | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 563 | using that by auto | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 564 | have "eventually P (\<Sqinter> x\<in>insert a A. F x) \<longleftrightarrow> | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 565 | (\<exists>Q R S. eventually Q (F a) \<and> (( (\<forall>x\<in>A. eventually (S x) (F x)) \<and> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 566 | (\<forall>y. (\<forall>x\<in>A. S x y) \<longrightarrow> R y)) \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x)))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 567 | unfolding ex_simps by (simp add: eventually_inf insert.IH) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 568 | also have "\<dots> \<longleftrightarrow> (\<exists>Q. (\<forall>x\<in>insert a A. eventually (Q x) (F x)) \<and> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 569 | (\<forall>y. (\<forall>x\<in>insert a A. Q x y) \<longrightarrow> P y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 570 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 571 | case (1 Q R S) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 572 | thus ?case using 1 by (intro exI[of _ "S(a := Q)"]) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 573 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 574 | case (2 Q) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 575 | show ?case | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 576 | by (rule exI[of _ "Q a"], rule exI[of _ "\<lambda>y. \<forall>x\<in>A. Q x y"], | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 577 | rule exI[of _ "Q(a := (\<lambda>_. True))"]) (use 2 in auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 578 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 579 | finally show ?case . | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 580 | qed auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 581 | |
| 79530 | 582 | lemma eventually_le_le: | 
| 583 |   fixes P :: "'a \<Rightarrow> ('b :: preorder)"
 | |
| 584 | assumes "eventually (\<lambda>x. P x \<le> Q x) F" | |
| 585 | assumes "eventually (\<lambda>x. Q x \<le> R x) F" | |
| 586 | shows "eventually (\<lambda>x. P x \<le> R x) F" | |
| 587 | using assms by eventually_elim (rule order_trans) | |
| 588 | ||
| 60758 | 589 | subsubsection \<open>Map function for filters\<close> | 
| 60036 | 590 | |
| 591 | definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
 | |
| 592 | where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)" | |
| 593 | ||
| 594 | lemma eventually_filtermap: | |
| 595 | "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F" | |
| 596 | unfolding filtermap_def | |
| 71743 | 597 | apply (rule eventually_Abs_filter [OF is_filter.intro]) | 
| 60036 | 598 | apply (auto elim!: eventually_rev_mp) | 
| 599 | done | |
| 600 | ||
| 77140 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 601 | lemma eventually_comp_filtermap: | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 602 | "eventually (P \<circ> f) F \<longleftrightarrow> eventually P (filtermap f F)" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 603 | unfolding comp_def using eventually_filtermap by auto | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 604 | |
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 605 | lemma filtermap_compose: "filtermap (f \<circ> g) F = filtermap f (filtermap g F)" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 606 | unfolding filter_eq_iff by (simp add: eventually_filtermap) | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 607 | |
| 60036 | 608 | lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F" | 
| 609 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 610 | ||
| 611 | lemma filtermap_filtermap: | |
| 612 | "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F" | |
| 613 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 614 | ||
| 615 | lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'" | |
| 616 | unfolding le_filter_def eventually_filtermap by simp | |
| 617 | ||
| 618 | lemma filtermap_bot [simp]: "filtermap f bot = bot" | |
| 619 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 620 | ||
| 67956 | 621 | lemma filtermap_bot_iff: "filtermap f F = bot \<longleftrightarrow> F = bot" | 
| 622 | by (simp add: trivial_limit_def eventually_filtermap) | |
| 623 | ||
| 60036 | 624 | lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)" | 
| 67956 | 625 | by (simp add: filter_eq_iff eventually_filtermap eventually_sup) | 
| 626 | ||
| 627 | lemma filtermap_SUP: "filtermap f (\<Squnion>b\<in>B. F b) = (\<Squnion>b\<in>B. filtermap f (F b))" | |
| 628 | by (simp add: filter_eq_iff eventually_Sup eventually_filtermap) | |
| 60036 | 629 | |
| 630 | lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)" | |
| 67956 | 631 | by (intro inf_greatest filtermap_mono inf_sup_ord) | 
| 60036 | 632 | |
| 67613 | 633 | lemma filtermap_INF: "filtermap f (\<Sqinter>b\<in>B. F b) \<le> (\<Sqinter>b\<in>B. filtermap f (F b))" | 
| 67956 | 634 | by (rule INF_greatest, rule filtermap_mono, erule INF_lower) | 
| 62101 | 635 | |
| 77140 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 636 | lemma frequently_filtermap: | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 637 | "frequently P (filtermap f F) = frequently (\<lambda>x. P (f x)) F" | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 638 | by (simp add: frequently_def eventually_filtermap) | 
| 
9a60c1759543
Lots more new material thanks to Manuel Eberl
 paulson <lp15@cam.ac.uk> parents: 
76722diff
changeset | 639 | |
| 66162 | 640 | |
| 641 | subsubsection \<open>Contravariant map function for filters\<close> | |
| 642 | ||
| 643 | definition filtercomap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter" where
 | |
| 644 | "filtercomap f F = Abs_filter (\<lambda>P. \<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))" | |
| 645 | ||
| 646 | lemma eventually_filtercomap: | |
| 647 | "eventually P (filtercomap f F) \<longleftrightarrow> (\<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))" | |
| 648 | unfolding filtercomap_def | |
| 649 | proof (intro eventually_Abs_filter, unfold_locales, goal_cases) | |
| 650 | case 1 | |
| 651 | show ?case by (auto intro!: exI[of _ "\<lambda>_. True"]) | |
| 652 | next | |
| 653 | case (2 P Q) | |
| 74325 | 654 | then obtain P' Q' where P'Q': | 
| 655 | "eventually P' F" "\<forall>x. P' (f x) \<longrightarrow> P x" | |
| 656 | "eventually Q' F" "\<forall>x. Q' (f x) \<longrightarrow> Q x" | |
| 657 | by (elim exE conjE) | |
| 66162 | 658 | show ?case | 
| 74325 | 659 | by (rule exI[of _ "\<lambda>x. P' x \<and> Q' x"]) (use P'Q' in \<open>auto intro!: eventually_conj\<close>) | 
| 66162 | 660 | next | 
| 661 | case (3 P Q) | |
| 662 | thus ?case by blast | |
| 663 | qed | |
| 664 | ||
| 665 | lemma filtercomap_ident: "filtercomap (\<lambda>x. x) F = F" | |
| 666 | by (auto simp: filter_eq_iff eventually_filtercomap elim!: eventually_mono) | |
| 667 | ||
| 668 | lemma filtercomap_filtercomap: "filtercomap f (filtercomap g F) = filtercomap (\<lambda>x. g (f x)) F" | |
| 669 | unfolding filter_eq_iff by (auto simp: eventually_filtercomap) | |
| 670 | ||
| 671 | lemma filtercomap_mono: "F \<le> F' \<Longrightarrow> filtercomap f F \<le> filtercomap f F'" | |
| 672 | by (auto simp: eventually_filtercomap le_filter_def) | |
| 673 | ||
| 674 | lemma filtercomap_bot [simp]: "filtercomap f bot = bot" | |
| 675 | by (auto simp: filter_eq_iff eventually_filtercomap) | |
| 676 | ||
| 677 | lemma filtercomap_top [simp]: "filtercomap f top = top" | |
| 678 | by (auto simp: filter_eq_iff eventually_filtercomap) | |
| 679 | ||
| 680 | lemma filtercomap_inf: "filtercomap f (inf F1 F2) = inf (filtercomap f F1) (filtercomap f F2)" | |
| 681 | unfolding filter_eq_iff | |
| 682 | proof safe | |
| 683 | fix P | |
| 684 | assume "eventually P (filtercomap f (F1 \<sqinter> F2))" | |
| 685 | then obtain Q R S where *: | |
| 686 | "eventually Q F1" "eventually R F2" "\<And>x. Q x \<Longrightarrow> R x \<Longrightarrow> S x" "\<And>x. S (f x) \<Longrightarrow> P x" | |
| 687 | unfolding eventually_filtercomap eventually_inf by blast | |
| 688 | from * have "eventually (\<lambda>x. Q (f x)) (filtercomap f F1)" | |
| 689 | "eventually (\<lambda>x. R (f x)) (filtercomap f F2)" | |
| 690 | by (auto simp: eventually_filtercomap) | |
| 691 | with * show "eventually P (filtercomap f F1 \<sqinter> filtercomap f F2)" | |
| 692 | unfolding eventually_inf by blast | |
| 693 | next | |
| 694 | fix P | |
| 695 | assume "eventually P (inf (filtercomap f F1) (filtercomap f F2))" | |
| 696 | then obtain Q Q' R R' where *: | |
| 697 | "eventually Q F1" "eventually R F2" "\<And>x. Q (f x) \<Longrightarrow> Q' x" "\<And>x. R (f x) \<Longrightarrow> R' x" | |
| 698 | "\<And>x. Q' x \<Longrightarrow> R' x \<Longrightarrow> P x" | |
| 699 | unfolding eventually_filtercomap eventually_inf by blast | |
| 700 | from * have "eventually (\<lambda>x. Q x \<and> R x) (F1 \<sqinter> F2)" by (auto simp: eventually_inf) | |
| 701 | with * show "eventually P (filtercomap f (F1 \<sqinter> F2))" | |
| 702 | by (auto simp: eventually_filtercomap) | |
| 703 | qed | |
| 704 | ||
| 705 | lemma filtercomap_sup: "filtercomap f (sup F1 F2) \<ge> sup (filtercomap f F1) (filtercomap f F2)" | |
| 67956 | 706 | by (intro sup_least filtercomap_mono inf_sup_ord) | 
| 66162 | 707 | |
| 67613 | 708 | lemma filtercomap_INF: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))" | 
| 66162 | 709 | proof - | 
| 67613 | 710 | have *: "filtercomap f (\<Sqinter>b\<in>B. F b) = (\<Sqinter>b\<in>B. filtercomap f (F b))" if "finite B" for B | 
| 66162 | 711 | using that by induction (simp_all add: filtercomap_inf) | 
| 712 | show ?thesis unfolding filter_eq_iff | |
| 713 | proof | |
| 714 | fix P | |
| 67613 | 715 | have "eventually P (\<Sqinter>b\<in>B. filtercomap f (F b)) \<longleftrightarrow> | 
| 66162 | 716 | (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (\<Sqinter>b\<in>X. filtercomap f (F b)))" | 
| 717 | by (subst eventually_INF) blast | |
| 67613 | 718 | also have "\<dots> \<longleftrightarrow> (\<exists>X. (X \<subseteq> B \<and> finite X) \<and> eventually P (filtercomap f (\<Sqinter>b\<in>X. F b)))" | 
| 66162 | 719 | by (rule ex_cong) (simp add: *) | 
| 69275 | 720 | also have "\<dots> \<longleftrightarrow> eventually P (filtercomap f (\<Sqinter>(F ` B)))" | 
| 66162 | 721 | unfolding eventually_filtercomap by (subst eventually_INF) blast | 
| 69275 | 722 | finally show "eventually P (filtercomap f (\<Sqinter>(F ` B))) = | 
| 66162 | 723 | eventually P (\<Sqinter>b\<in>B. filtercomap f (F b))" .. | 
| 724 | qed | |
| 725 | qed | |
| 726 | ||
| 67956 | 727 | lemma filtercomap_SUP: | 
| 728 | "filtercomap f (\<Squnion>b\<in>B. F b) \<ge> (\<Squnion>b\<in>B. filtercomap f (F b))" | |
| 729 | by (intro SUP_least filtercomap_mono SUP_upper) | |
| 730 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 731 | lemma filtermap_le_iff_le_filtercomap: "filtermap f F \<le> G \<longleftrightarrow> F \<le> filtercomap f G" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 732 | unfolding le_filter_def eventually_filtermap eventually_filtercomap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 733 | using eventually_mono by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 734 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 735 | lemma filtercomap_neq_bot: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 736 | assumes "\<And>P. eventually P F \<Longrightarrow> \<exists>x. P (f x)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 737 | shows "filtercomap f F \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 738 | using assms by (auto simp: trivial_limit_def eventually_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 739 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 740 | lemma filtercomap_neq_bot_surj: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 741 | assumes "F \<noteq> bot" and "surj f" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 742 | shows "filtercomap f F \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 743 | proof (rule filtercomap_neq_bot) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 744 | fix P assume *: "eventually P F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 745 | show "\<exists>x. P (f x)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 746 | proof (rule ccontr) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 747 | assume **: "\<not>(\<exists>x. P (f x))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 748 | from * have "eventually (\<lambda>_. False) F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 749 | proof eventually_elim | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 750 | case (elim x) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 751 | from \<open>surj f\<close> obtain y where "x = f y" by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 752 | with elim and ** show False by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 753 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 754 | with assms show False by (simp add: trivial_limit_def) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 755 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 756 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 757 | |
| 66162 | 758 | lemma eventually_filtercomapI [intro]: | 
| 759 | assumes "eventually P F" | |
| 760 | shows "eventually (\<lambda>x. P (f x)) (filtercomap f F)" | |
| 761 | using assms by (auto simp: eventually_filtercomap) | |
| 762 | ||
| 763 | lemma filtermap_filtercomap: "filtermap f (filtercomap f F) \<le> F" | |
| 764 | by (auto simp: le_filter_def eventually_filtermap eventually_filtercomap) | |
| 67956 | 765 | |
| 66162 | 766 | lemma filtercomap_filtermap: "filtercomap f (filtermap f F) \<ge> F" | 
| 767 | unfolding le_filter_def eventually_filtermap eventually_filtercomap | |
| 768 | by (auto elim!: eventually_mono) | |
| 769 | ||
| 770 | ||
| 60758 | 771 | subsubsection \<open>Standard filters\<close> | 
| 60036 | 772 | |
| 773 | definition principal :: "'a set \<Rightarrow> 'a filter" where | |
| 774 | "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)" | |
| 775 | ||
| 776 | lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)" | |
| 777 | unfolding principal_def | |
| 778 | by (rule eventually_Abs_filter, rule is_filter.intro) auto | |
| 779 | ||
| 780 | lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F" | |
| 61810 | 781 | unfolding eventually_inf eventually_principal by (auto elim: eventually_mono) | 
| 60036 | 782 | |
| 783 | lemma principal_UNIV[simp]: "principal UNIV = top" | |
| 784 | by (auto simp: filter_eq_iff eventually_principal) | |
| 785 | ||
| 786 | lemma principal_empty[simp]: "principal {} = bot"
 | |
| 787 | by (auto simp: filter_eq_iff eventually_principal) | |
| 788 | ||
| 789 | lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
 | |
| 790 | by (auto simp add: filter_eq_iff eventually_principal) | |
| 791 | ||
| 792 | lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B" | |
| 793 | by (auto simp: le_filter_def eventually_principal) | |
| 794 | ||
| 795 | lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F" | |
| 796 | unfolding le_filter_def eventually_principal | |
| 71743 | 797 | by (force elim: eventually_mono) | 
| 60036 | 798 | |
| 799 | lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B" | |
| 800 | unfolding eq_iff by simp | |
| 801 | ||
| 802 | lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)" | |
| 803 | unfolding filter_eq_iff eventually_sup eventually_principal by auto | |
| 804 | ||
| 805 | lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)" | |
| 806 | unfolding filter_eq_iff eventually_inf eventually_principal | |
| 807 | by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 808 | ||
| 67613 | 809 | lemma SUP_principal[simp]: "(\<Squnion>i\<in>I. principal (A i)) = principal (\<Union>i\<in>I. A i)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 810 | unfolding filter_eq_iff eventually_Sup by (auto simp: eventually_principal) | 
| 60036 | 811 | |
| 67613 | 812 | lemma INF_principal_finite: "finite X \<Longrightarrow> (\<Sqinter>x\<in>X. principal (f x)) = principal (\<Inter>x\<in>X. f x)" | 
| 60036 | 813 | by (induct X rule: finite_induct) auto | 
| 814 | ||
| 815 | lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)" | |
| 816 | unfolding filter_eq_iff eventually_filtermap eventually_principal by simp | |
| 66162 | 817 | |
| 818 | lemma filtercomap_principal[simp]: "filtercomap f (principal A) = principal (f -` A)" | |
| 819 | unfolding filter_eq_iff eventually_filtercomap eventually_principal by fast | |
| 60036 | 820 | |
| 60758 | 821 | subsubsection \<open>Order filters\<close> | 
| 60036 | 822 | |
| 823 | definition at_top :: "('a::order) filter"
 | |
| 67613 | 824 |   where "at_top = (\<Sqinter>k. principal {k ..})"
 | 
| 60036 | 825 | |
| 67613 | 826 | lemma at_top_sub: "at_top = (\<Sqinter>k\<in>{c::'a::linorder..}. principal {k ..})"
 | 
| 60036 | 827 | by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def) | 
| 828 | ||
| 829 | lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)" | |
| 830 | unfolding at_top_def | |
| 831 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 832 | ||
| 66162 | 833 | lemma eventually_filtercomap_at_top_linorder: | 
| 834 | "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<ge> N \<longrightarrow> P x)" | |
| 835 | by (auto simp: eventually_filtercomap eventually_at_top_linorder) | |
| 836 | ||
| 63556 | 837 | lemma eventually_at_top_linorderI: | 
| 838 | fixes c::"'a::linorder" | |
| 839 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | |
| 840 | shows "eventually P at_top" | |
| 841 | using assms by (auto simp: eventually_at_top_linorder) | |
| 842 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 843 | lemma eventually_ge_at_top [simp]: | 
| 60036 | 844 | "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top" | 
| 845 | unfolding eventually_at_top_linorder by auto | |
| 846 | ||
| 847 | lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
 | |
| 848 | proof - | |
| 67613 | 849 |   have "eventually P (\<Sqinter>k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
 | 
| 60036 | 850 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | 
| 67613 | 851 |   also have "(\<Sqinter>k. principal {k::'a <..}) = at_top"
 | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 852 | unfolding at_top_def | 
| 60036 | 853 | by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex) | 
| 854 | finally show ?thesis . | |
| 855 | qed | |
| 66162 | 856 | |
| 857 | lemma eventually_filtercomap_at_top_dense: | |
| 858 |   "eventually P (filtercomap f at_top) \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>x. f x > N \<longrightarrow> P x)"
 | |
| 859 | by (auto simp: eventually_filtercomap eventually_at_top_dense) | |
| 60036 | 860 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 861 | lemma eventually_at_top_not_equal [simp]: "eventually (\<lambda>x::'a::{no_top, linorder}. x \<noteq> c) at_top"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 862 | unfolding eventually_at_top_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 863 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 864 | lemma eventually_gt_at_top [simp]: "eventually (\<lambda>x. (c::_::{no_top, linorder}) < x) at_top"
 | 
| 60036 | 865 | unfolding eventually_at_top_dense by auto | 
| 866 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 867 | lemma eventually_all_ge_at_top: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 868 |   assumes "eventually P (at_top :: ('a :: linorder) filter)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 869 | shows "eventually (\<lambda>x. \<forall>y\<ge>x. P y) at_top" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 870 | proof - | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 871 | from assms obtain x where "\<And>y. y \<ge> x \<Longrightarrow> P y" by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 872 | hence "\<forall>z\<ge>y. P z" if "y \<ge> x" for y using that by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 873 | thus ?thesis by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 874 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 875 | |
| 60036 | 876 | definition at_bot :: "('a::order) filter"
 | 
| 67613 | 877 |   where "at_bot = (\<Sqinter>k. principal {.. k})"
 | 
| 60036 | 878 | |
| 67613 | 879 | lemma at_bot_sub: "at_bot = (\<Sqinter>k\<in>{.. c::'a::linorder}. principal {.. k})"
 | 
| 60036 | 880 | by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def) | 
| 881 | ||
| 882 | lemma eventually_at_bot_linorder: | |
| 883 | fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)" | |
| 884 | unfolding at_bot_def | |
| 885 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 886 | ||
| 66162 | 887 | lemma eventually_filtercomap_at_bot_linorder: | 
| 888 | "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>x. f x \<le> N \<longrightarrow> P x)" | |
| 889 | by (auto simp: eventually_filtercomap eventually_at_bot_linorder) | |
| 890 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 891 | lemma eventually_le_at_bot [simp]: | 
| 60036 | 892 | "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot" | 
| 893 | unfolding eventually_at_bot_linorder by auto | |
| 894 | ||
| 895 | lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
 | |
| 896 | proof - | |
| 67613 | 897 |   have "eventually P (\<Sqinter>k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
 | 
| 60036 | 898 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | 
| 67613 | 899 |   also have "(\<Sqinter>k. principal {..< k::'a}) = at_bot"
 | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 900 | unfolding at_bot_def | 
| 60036 | 901 | by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex) | 
| 902 | finally show ?thesis . | |
| 903 | qed | |
| 904 | ||
| 66162 | 905 | lemma eventually_filtercomap_at_bot_dense: | 
| 906 |   "eventually P (filtercomap f at_bot) \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>x. f x < N \<longrightarrow> P x)"
 | |
| 907 | by (auto simp: eventually_filtercomap eventually_at_bot_dense) | |
| 908 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 909 | lemma eventually_at_bot_not_equal [simp]: "eventually (\<lambda>x::'a::{no_bot, linorder}. x \<noteq> c) at_bot"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 910 | unfolding eventually_at_bot_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 911 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 912 | lemma eventually_gt_at_bot [simp]: | 
| 60036 | 913 | "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot" | 
| 914 | unfolding eventually_at_bot_dense by auto | |
| 915 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 916 | lemma trivial_limit_at_bot_linorder [simp]: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
 | 
| 60036 | 917 | unfolding trivial_limit_def | 
| 918 | by (metis eventually_at_bot_linorder order_refl) | |
| 919 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 920 | lemma trivial_limit_at_top_linorder [simp]: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
 | 
| 60036 | 921 | unfolding trivial_limit_def | 
| 922 | by (metis eventually_at_top_linorder order_refl) | |
| 923 | ||
| 60758 | 924 | subsection \<open>Sequentially\<close> | 
| 60036 | 925 | |
| 926 | abbreviation sequentially :: "nat filter" | |
| 927 | where "sequentially \<equiv> at_top" | |
| 928 | ||
| 929 | lemma eventually_sequentially: | |
| 930 | "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)" | |
| 931 | by (rule eventually_at_top_linorder) | |
| 932 | ||
| 80612 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 paulson <lp15@cam.ac.uk> parents: 
80175diff
changeset | 933 | lemma frequently_sequentially: | 
| 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 paulson <lp15@cam.ac.uk> parents: 
80175diff
changeset | 934 | "frequently P sequentially \<longleftrightarrow> (\<forall>N. \<exists>n\<ge>N. P n)" | 
| 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 paulson <lp15@cam.ac.uk> parents: 
80175diff
changeset | 935 | by (simp add: frequently_def eventually_sequentially) | 
| 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 paulson <lp15@cam.ac.uk> parents: 
80175diff
changeset | 936 | |
| 60036 | 937 | lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot" | 
| 938 | unfolding filter_eq_iff eventually_sequentially by auto | |
| 939 | ||
| 940 | lemmas trivial_limit_sequentially = sequentially_bot | |
| 941 | ||
| 942 | lemma eventually_False_sequentially [simp]: | |
| 943 | "\<not> eventually (\<lambda>n. False) sequentially" | |
| 944 | by (simp add: eventually_False) | |
| 945 | ||
| 946 | lemma le_sequentially: | |
| 947 | "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)" | |
| 948 | by (simp add: at_top_def le_INF_iff le_principal) | |
| 949 | ||
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 950 | lemma eventually_sequentiallyI [intro?]: | 
| 60036 | 951 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | 
| 952 | shows "eventually P sequentially" | |
| 953 | using assms by (auto simp: eventually_sequentially) | |
| 954 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 955 | lemma eventually_sequentially_Suc [simp]: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 956 | unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 957 | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 958 | lemma eventually_sequentially_seg [simp]: "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 959 | using eventually_sequentially_Suc[of "\<lambda>n. P (n + k)" for k] by (induction k) auto | 
| 60036 | 960 | |
| 67956 | 961 | lemma filtermap_sequentually_ne_bot: "filtermap f sequentially \<noteq> bot" | 
| 962 | by (simp add: filtermap_bot_iff) | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 963 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 964 | subsection \<open>Increasing finite subsets\<close> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 965 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 966 | definition finite_subsets_at_top where | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 967 |   "finite_subsets_at_top A = (\<Sqinter> X\<in>{X. finite X \<and> X \<subseteq> A}. principal {Y. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A})"
 | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 968 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 969 | lemma eventually_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 970 | "eventually P (finite_subsets_at_top A) \<longleftrightarrow> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 971 | (\<exists>X. finite X \<and> X \<subseteq> A \<and> (\<forall>Y. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A \<longrightarrow> P Y))" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 972 | unfolding finite_subsets_at_top_def | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 973 | proof (subst eventually_INF_base, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 974 |   show "{X. finite X \<and> X \<subseteq> A} \<noteq> {}" by auto
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 975 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 976 | case (2 B C) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 977 | thus ?case by (intro bexI[of _ "B \<union> C"]) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 978 | qed (simp_all add: eventually_principal) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 979 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 980 | lemma eventually_finite_subsets_at_top_weakI [intro]: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 981 | assumes "\<And>X. finite X \<Longrightarrow> X \<subseteq> A \<Longrightarrow> P X" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 982 | shows "eventually P (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 983 | proof - | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 984 | have "eventually (\<lambda>X. finite X \<and> X \<subseteq> A) (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 985 | by (auto simp: eventually_finite_subsets_at_top) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 986 | thus ?thesis by eventually_elim (use assms in auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 987 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 988 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 989 | lemma finite_subsets_at_top_neq_bot [simp]: "finite_subsets_at_top A \<noteq> bot" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 990 | proof - | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 991 | have "\<not>eventually (\<lambda>x. False) (finite_subsets_at_top A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 992 | by (auto simp: eventually_finite_subsets_at_top) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 993 | thus ?thesis by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 994 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 995 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 996 | lemma filtermap_image_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 997 | assumes "inj_on f A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 998 | shows "filtermap ((`) f) (finite_subsets_at_top A) = finite_subsets_at_top (f ` A)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 999 | unfolding filter_eq_iff eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1000 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1001 | case (1 P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1002 | then obtain X where X: "finite X" "X \<subseteq> A" "\<And>Y. finite Y \<Longrightarrow> X \<subseteq> Y \<Longrightarrow> Y \<subseteq> A \<Longrightarrow> P (f ` Y)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1003 | unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1004 | show ?case unfolding eventually_finite_subsets_at_top eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1005 | proof (rule exI[of _ "f ` X"], intro conjI allI impI, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1006 | case (3 Y) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1007 | with assms and X(1,2) have "P (f ` (f -` Y \<inter> A))" using X(1,2) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1008 | by (intro X(3) finite_vimage_IntI) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1009 | also have "f ` (f -` Y \<inter> A) = Y" using assms 3 by blast | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1010 | finally show ?case . | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1011 | qed (insert assms X(1,2), auto intro!: finite_vimage_IntI) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1012 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1013 | case (2 P) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1014 | then obtain X where X: "finite X" "X \<subseteq> f ` A" "\<And>Y. finite Y \<Longrightarrow> X \<subseteq> Y \<Longrightarrow> Y \<subseteq> f ` A \<Longrightarrow> P Y" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1015 | unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1016 | show ?case unfolding eventually_finite_subsets_at_top eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1017 | proof (rule exI[of _ "f -` X \<inter> A"], intro conjI allI impI, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1018 | case (3 Y) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1019 | with X(1,2) and assms show ?case by (intro X(3)) force+ | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1020 | qed (insert assms X(1), auto intro!: finite_vimage_IntI) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1021 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1022 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1023 | lemma eventually_finite_subsets_at_top_finite: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1024 | assumes "finite A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1025 | shows "eventually P (finite_subsets_at_top A) \<longleftrightarrow> P A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1026 | unfolding eventually_finite_subsets_at_top using assms by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1027 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1028 | lemma finite_subsets_at_top_finite: "finite A \<Longrightarrow> finite_subsets_at_top A = principal {A}"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1029 | by (auto simp: filter_eq_iff eventually_finite_subsets_at_top_finite eventually_principal) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1030 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1031 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 1032 | subsection \<open>The cofinite filter\<close> | 
| 60039 | 1033 | |
| 1034 | definition "cofinite = Abs_filter (\<lambda>P. finite {x. \<not> P x})"
 | |
| 1035 | ||
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1036 | abbreviation Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder \<open>\<exists>\<^sub>\<infinity>\<close> 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 1037 | where "Inf_many P \<equiv> frequently P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1038 | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1039 | abbreviation Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder \<open>\<forall>\<^sub>\<infinity>\<close> 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 1040 | where "Alm_all P \<equiv> eventually P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1041 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 1042 | notation (ASCII) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1043 | Inf_many (binder \<open>INFM \<close> 10) and | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1044 | Alm_all (binder \<open>MOST \<close> 10) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1045 | |
| 60039 | 1046 | lemma eventually_cofinite: "eventually P cofinite \<longleftrightarrow> finite {x. \<not> P x}"
 | 
| 1047 | unfolding cofinite_def | |
| 1048 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 1049 |   fix P Q :: "'a \<Rightarrow> bool" assume "finite {x. \<not> P x}" "finite {x. \<not> Q x}"
 | |
| 1050 |   from finite_UnI[OF this] show "finite {x. \<not> (P x \<and> Q x)}"
 | |
| 1051 | by (rule rev_finite_subset) auto | |
| 1052 | next | |
| 1053 |   fix P Q :: "'a \<Rightarrow> bool" assume P: "finite {x. \<not> P x}" and *: "\<forall>x. P x \<longrightarrow> Q x"
 | |
| 1054 |   from * show "finite {x. \<not> Q x}"
 | |
| 1055 | by (intro finite_subset[OF _ P]) auto | |
| 1056 | qed simp | |
| 1057 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1058 | lemma frequently_cofinite: "frequently P cofinite \<longleftrightarrow> \<not> finite {x. P x}"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1059 | by (simp add: frequently_def eventually_cofinite) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 1060 | |
| 60039 | 1061 | lemma cofinite_bot[simp]: "cofinite = (bot::'a filter) \<longleftrightarrow> finite (UNIV :: 'a set)" | 
| 1062 | unfolding trivial_limit_def eventually_cofinite by simp | |
| 1063 | ||
| 1064 | lemma cofinite_eq_sequentially: "cofinite = sequentially" | |
| 1065 | unfolding filter_eq_iff eventually_sequentially eventually_cofinite | |
| 1066 | proof safe | |
| 1067 |   fix P :: "nat \<Rightarrow> bool" assume [simp]: "finite {x. \<not> P x}"
 | |
| 1068 | show "\<exists>N. \<forall>n\<ge>N. P n" | |
| 1069 | proof cases | |
| 1070 |     assume "{x. \<not> P x} \<noteq> {}" then show ?thesis
 | |
| 1071 |       by (intro exI[of _ "Suc (Max {x. \<not> P x})"]) (auto simp: Suc_le_eq)
 | |
| 1072 | qed auto | |
| 1073 | next | |
| 1074 | fix P :: "nat \<Rightarrow> bool" and N :: nat assume "\<forall>n\<ge>N. P n" | |
| 1075 |   then have "{x. \<not> P x} \<subseteq> {..< N}"
 | |
| 1076 | by (auto simp: not_le) | |
| 1077 |   then show "finite {x. \<not> P x}"
 | |
| 1078 | by (blast intro: finite_subset) | |
| 1079 | qed | |
| 60036 | 1080 | |
| 62101 | 1081 | subsubsection \<open>Product of filters\<close> | 
| 1082 | ||
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1083 | definition prod_filter :: "'a filter \<Rightarrow> 'b filter \<Rightarrow> ('a \<times> 'b) filter" (infixr \<open>\<times>\<^sub>F\<close> 80) where
 | 
| 62101 | 1084 | "prod_filter F G = | 
| 67613 | 1085 |     (\<Sqinter>(P, Q)\<in>{(P, Q). eventually P F \<and> eventually Q G}. principal {(x, y). P x \<and> Q y})"
 | 
| 62101 | 1086 | |
| 1087 | lemma eventually_prod_filter: "eventually P (F \<times>\<^sub>F G) \<longleftrightarrow> | |
| 1088 | (\<exists>Pf Pg. eventually Pf F \<and> eventually Pg G \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P (x, y)))" | |
| 1089 | unfolding prod_filter_def | |
| 1090 | proof (subst eventually_INF_base, goal_cases) | |
| 1091 | case 2 | |
| 1092 | moreover have "eventually Pf F \<Longrightarrow> eventually Qf F \<Longrightarrow> eventually Pg G \<Longrightarrow> eventually Qg G \<Longrightarrow> | |
| 1093 | \<exists>P Q. eventually P F \<and> eventually Q G \<and> | |
| 1094 | Collect P \<times> Collect Q \<subseteq> Collect Pf \<times> Collect Pg \<inter> Collect Qf \<times> Collect Qg" for Pf Pg Qf Qg | |
| 1095 | by (intro conjI exI[of _ "inf Pf Qf"] exI[of _ "inf Pg Qg"]) | |
| 1096 | (auto simp: inf_fun_def eventually_conj) | |
| 1097 | ultimately show ?case | |
| 1098 | by auto | |
| 1099 | qed (auto simp: eventually_principal intro: eventually_True) | |
| 1100 | ||
| 62367 | 1101 | lemma eventually_prod1: | 
| 1102 | assumes "B \<noteq> bot" | |
| 1103 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P x) \<longleftrightarrow> (\<forall>\<^sub>F x in A. P x)" | |
| 1104 | unfolding eventually_prod_filter | |
| 1105 | proof safe | |
| 63540 | 1106 | fix R Q | 
| 1107 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P x" | |
| 1108 | with \<open>B \<noteq> bot\<close> obtain y where "Q y" by (auto dest: eventually_happens) | |
| 1109 | with * show "eventually P A" | |
| 62367 | 1110 | by (force elim: eventually_mono) | 
| 1111 | next | |
| 1112 | assume "eventually P A" | |
| 1113 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P x)" | |
| 1114 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 1115 | qed | |
| 1116 | ||
| 1117 | lemma eventually_prod2: | |
| 1118 | assumes "A \<noteq> bot" | |
| 1119 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P y) \<longleftrightarrow> (\<forall>\<^sub>F y in B. P y)" | |
| 1120 | unfolding eventually_prod_filter | |
| 1121 | proof safe | |
| 63540 | 1122 | fix R Q | 
| 1123 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P y" | |
| 1124 | with \<open>A \<noteq> bot\<close> obtain x where "R x" by (auto dest: eventually_happens) | |
| 1125 | with * show "eventually P B" | |
| 62367 | 1126 | by (force elim: eventually_mono) | 
| 1127 | next | |
| 1128 | assume "eventually P B" | |
| 1129 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P y)" | |
| 1130 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 1131 | qed | |
| 1132 | ||
| 1133 | lemma INF_filter_bot_base: | |
| 1134 | fixes F :: "'a \<Rightarrow> 'b filter" | |
| 1135 | assumes *: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. F k \<le> F i \<sqinter> F j" | |
| 67613 | 1136 | shows "(\<Sqinter>i\<in>I. F i) = bot \<longleftrightarrow> (\<exists>i\<in>I. F i = bot)" | 
| 63540 | 1137 | proof (cases "\<exists>i\<in>I. F i = bot") | 
| 1138 | case True | |
| 67613 | 1139 | then have "(\<Sqinter>i\<in>I. F i) \<le> bot" | 
| 62367 | 1140 | by (auto intro: INF_lower2) | 
| 63540 | 1141 | with True show ?thesis | 
| 62367 | 1142 | by (auto simp: bot_unique) | 
| 1143 | next | |
| 63540 | 1144 | case False | 
| 67613 | 1145 | moreover have "(\<Sqinter>i\<in>I. F i) \<noteq> bot" | 
| 63540 | 1146 |   proof (cases "I = {}")
 | 
| 1147 | case True | |
| 1148 | then show ?thesis | |
| 1149 | by (auto simp add: filter_eq_iff) | |
| 1150 | next | |
| 1151 | case False': False | |
| 62367 | 1152 | show ?thesis | 
| 1153 | proof (rule INF_filter_not_bot) | |
| 63540 | 1154 | fix J | 
| 1155 | assume "finite J" "J \<subseteq> I" | |
| 62367 | 1156 | then have "\<exists>k\<in>I. F k \<le> (\<Sqinter>i\<in>J. F i)" | 
| 63540 | 1157 | proof (induct J) | 
| 1158 | case empty | |
| 1159 | then show ?case | |
| 62367 | 1160 |           using \<open>I \<noteq> {}\<close> by auto
 | 
| 1161 | next | |
| 1162 | case (insert i J) | |
| 63540 | 1163 | then obtain k where "k \<in> I" "F k \<le> (\<Sqinter>i\<in>J. F i)" by auto | 
| 1164 | with insert *[of i k] show ?case | |
| 62367 | 1165 | by auto | 
| 1166 | qed | |
| 63540 | 1167 | with False show "(\<Sqinter>i\<in>J. F i) \<noteq> \<bottom>" | 
| 62367 | 1168 | by (auto simp: bot_unique) | 
| 1169 | qed | |
| 63540 | 1170 | qed | 
| 62367 | 1171 | ultimately show ?thesis | 
| 1172 | by auto | |
| 1173 | qed | |
| 1174 | ||
| 1175 | lemma Collect_empty_eq_bot: "Collect P = {} \<longleftrightarrow> P = \<bottom>"
 | |
| 1176 | by auto | |
| 1177 | ||
| 1178 | lemma prod_filter_eq_bot: "A \<times>\<^sub>F B = bot \<longleftrightarrow> A = bot \<or> B = bot" | |
| 67956 | 1179 | unfolding trivial_limit_def | 
| 1180 | proof | |
| 1181 | assume "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False" | |
| 1182 | then obtain Pf Pg | |
| 1183 | where Pf: "eventually (\<lambda>x. Pf x) A" and Pg: "eventually (\<lambda>y. Pg y) B" | |
| 1184 | and *: "\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> False" | |
| 1185 | unfolding eventually_prod_filter by fast | |
| 1186 | from * have "(\<forall>x. \<not> Pf x) \<or> (\<forall>y. \<not> Pg y)" by fast | |
| 1187 | with Pf Pg show "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)" by auto | |
| 62367 | 1188 | next | 
| 67956 | 1189 | assume "(\<forall>\<^sub>F x in A. False) \<or> (\<forall>\<^sub>F x in B. False)" | 
| 1190 | then show "\<forall>\<^sub>F x in A \<times>\<^sub>F B. False" | |
| 1191 | unfolding eventually_prod_filter by (force intro: eventually_True) | |
| 62367 | 1192 | qed | 
| 1193 | ||
| 62101 | 1194 | lemma prod_filter_mono: "F \<le> F' \<Longrightarrow> G \<le> G' \<Longrightarrow> F \<times>\<^sub>F G \<le> F' \<times>\<^sub>F G'" | 
| 1195 | by (auto simp: le_filter_def eventually_prod_filter) | |
| 1196 | ||
| 62367 | 1197 | lemma prod_filter_mono_iff: | 
| 1198 | assumes nAB: "A \<noteq> bot" "B \<noteq> bot" | |
| 1199 | shows "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D \<longleftrightarrow> A \<le> C \<and> B \<le> D" | |
| 1200 | proof safe | |
| 1201 | assume *: "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D" | |
| 63540 | 1202 | with assms have "A \<times>\<^sub>F B \<noteq> bot" | 
| 62367 | 1203 | by (auto simp: bot_unique prod_filter_eq_bot) | 
| 63540 | 1204 | with * have "C \<times>\<^sub>F D \<noteq> bot" | 
| 62367 | 1205 | by (auto simp: bot_unique) | 
| 1206 | then have nCD: "C \<noteq> bot" "D \<noteq> bot" | |
| 1207 | by (auto simp: prod_filter_eq_bot) | |
| 1208 | ||
| 1209 | show "A \<le> C" | |
| 1210 | proof (rule filter_leI) | |
| 1211 | fix P assume "eventually P C" with *[THEN filter_leD, of "\<lambda>(x, y). P x"] show "eventually P A" | |
| 1212 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 1213 | qed | |
| 1214 | ||
| 1215 | show "B \<le> D" | |
| 1216 | proof (rule filter_leI) | |
| 1217 | fix P assume "eventually P D" with *[THEN filter_leD, of "\<lambda>(x, y). P y"] show "eventually P B" | |
| 1218 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 1219 | qed | |
| 1220 | qed (intro prod_filter_mono) | |
| 1221 | ||
| 62101 | 1222 | lemma eventually_prod_same: "eventually P (F \<times>\<^sub>F F) \<longleftrightarrow> | 
| 1223 | (\<exists>Q. eventually Q F \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y)))" | |
| 71743 | 1224 | unfolding eventually_prod_filter by (blast intro!: eventually_conj) | 
| 62101 | 1225 | |
| 1226 | lemma eventually_prod_sequentially: | |
| 1227 | "eventually P (sequentially \<times>\<^sub>F sequentially) \<longleftrightarrow> (\<exists>N. \<forall>m \<ge> N. \<forall>n \<ge> N. P (n, m))" | |
| 1228 | unfolding eventually_prod_same eventually_sequentially by auto | |
| 1229 | ||
| 1230 | lemma principal_prod_principal: "principal A \<times>\<^sub>F principal B = principal (A \<times> B)" | |
| 67956 | 1231 | unfolding filter_eq_iff eventually_prod_filter eventually_principal | 
| 1232 | by (fast intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 1233 | ||
| 1234 | lemma le_prod_filterI: | |
| 1235 | "filtermap fst F \<le> A \<Longrightarrow> filtermap snd F \<le> B \<Longrightarrow> F \<le> A \<times>\<^sub>F B" | |
| 1236 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1237 | by (force elim: eventually_elim2) | |
| 1238 | ||
| 1239 | lemma filtermap_fst_prod_filter: "filtermap fst (A \<times>\<^sub>F B) \<le> A" | |
| 1240 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1241 | by (force intro: eventually_True) | |
| 1242 | ||
| 1243 | lemma filtermap_snd_prod_filter: "filtermap snd (A \<times>\<^sub>F B) \<le> B" | |
| 1244 | unfolding le_filter_def eventually_filtermap eventually_prod_filter | |
| 1245 | by (force intro: eventually_True) | |
| 62101 | 1246 | |
| 62367 | 1247 | lemma prod_filter_INF: | 
| 67956 | 1248 |   assumes "I \<noteq> {}" and "J \<noteq> {}"
 | 
| 67613 | 1249 | shows "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) = (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)" | 
| 67956 | 1250 | proof (rule antisym) | 
| 62367 | 1251 |   from \<open>I \<noteq> {}\<close> obtain i where "i \<in> I" by auto
 | 
| 1252 |   from \<open>J \<noteq> {}\<close> obtain j where "j \<in> J" by auto
 | |
| 1253 | ||
| 1254 | show "(\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j) \<le> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j)" | |
| 67956 | 1255 | by (fast intro: le_prod_filterI INF_greatest INF_lower2 | 
| 69272 | 1256 | order_trans[OF filtermap_INF] \<open>i \<in> I\<close> \<open>j \<in> J\<close> | 
| 67956 | 1257 | filtermap_fst_prod_filter filtermap_snd_prod_filter) | 
| 1258 | show "(\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j) \<le> (\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j)" | |
| 1259 | by (intro INF_greatest prod_filter_mono INF_lower) | |
| 1260 | qed | |
| 62367 | 1261 | |
| 1262 | lemma filtermap_Pair: "filtermap (\<lambda>x. (f x, g x)) F \<le> filtermap f F \<times>\<^sub>F filtermap g F" | |
| 67956 | 1263 | by (rule le_prod_filterI, simp_all add: filtermap_filtermap) | 
| 62367 | 1264 | |
| 62369 | 1265 | lemma eventually_prodI: "eventually P F \<Longrightarrow> eventually Q G \<Longrightarrow> eventually (\<lambda>x. P (fst x) \<and> Q (snd x)) (F \<times>\<^sub>F G)" | 
| 67956 | 1266 | unfolding eventually_prod_filter by auto | 
| 62369 | 1267 | |
| 67613 | 1268 | lemma prod_filter_INF1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F B = (\<Sqinter>i\<in>I. A i \<times>\<^sub>F B)"
 | 
| 62369 | 1269 |   using prod_filter_INF[of I "{B}" A "\<lambda>x. x"] by simp
 | 
| 1270 | ||
| 67613 | 1271 | lemma prod_filter_INF2: "J \<noteq> {} \<Longrightarrow> A \<times>\<^sub>F (\<Sqinter>i\<in>J. B i) = (\<Sqinter>i\<in>J. A \<times>\<^sub>F B i)"
 | 
| 62369 | 1272 |   using prod_filter_INF[of "{A}" J "\<lambda>x. x" B] by simp
 | 
| 1273 | ||
| 68667 | 1274 | lemma prod_filtermap1: "prod_filter (filtermap f F) G = filtermap (apfst f) (prod_filter F G)" | 
| 71743 | 1275 | unfolding filter_eq_iff eventually_filtermap eventually_prod_filter | 
| 1276 | apply safe | |
| 68667 | 1277 | subgoal by auto | 
| 1278 | subgoal for P Q R by(rule exI[where x="\<lambda>y. \<exists>x. y = f x \<and> Q x"])(auto intro: eventually_mono) | |
| 1279 | done | |
| 1280 | ||
| 1281 | lemma prod_filtermap2: "prod_filter F (filtermap g G) = filtermap (apsnd g) (prod_filter F G)" | |
| 71743 | 1282 | unfolding filter_eq_iff eventually_filtermap eventually_prod_filter | 
| 1283 | apply safe | |
| 68667 | 1284 | subgoal by auto | 
| 1285 | subgoal for P Q R by(auto intro: exI[where x="\<lambda>y. \<exists>x. y = g x \<and> R x"] eventually_mono) | |
| 1286 | done | |
| 1287 | ||
| 1288 | lemma prod_filter_assoc: | |
| 1289 | "prod_filter (prod_filter F G) H = filtermap (\<lambda>(x, y, z). ((x, y), z)) (prod_filter F (prod_filter G H))" | |
| 1290 | apply(clarsimp simp add: filter_eq_iff eventually_filtermap eventually_prod_filter; safe) | |
| 1291 | subgoal for P Q R S T by(auto 4 4 intro: exI[where x="\<lambda>(a, b). T a \<and> S b"]) | |
| 1292 | subgoal for P Q R S T by(auto 4 3 intro: exI[where x="\<lambda>(a, b). Q a \<and> S b"]) | |
| 1293 | done | |
| 1294 | ||
| 1295 | lemma prod_filter_principal_singleton: "prod_filter (principal {x}) F = filtermap (Pair x) F"
 | |
| 1296 | by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"]) | |
| 1297 | ||
| 1298 | lemma prod_filter_principal_singleton2: "prod_filter F (principal {x}) = filtermap (\<lambda>a. (a, x)) F"
 | |
| 1299 | by(fastforce simp add: filter_eq_iff eventually_prod_filter eventually_principal eventually_filtermap elim: eventually_mono intro: exI[where x="\<lambda>a. a = x"]) | |
| 1300 | ||
| 1301 | lemma prod_filter_commute: "prod_filter F G = filtermap prod.swap (prod_filter G F)" | |
| 1302 | by(auto simp add: filter_eq_iff eventually_prod_filter eventually_filtermap) | |
| 1303 | ||
| 60758 | 1304 | subsection \<open>Limits\<close> | 
| 60036 | 1305 | |
| 1306 | definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
 | |
| 1307 | "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" | |
| 1308 | ||
| 1309 | syntax | |
| 80934 | 1310 | "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" (\<open>(\<open>indent=3 notation=\<open>binder LIM\<close>\<close>LIM (_)/ (_)./ (_) :> (_))\<close> [1000, 10, 0, 10] 10) | 
| 80760 | 1311 | syntax_consts | 
| 1312 | "_LIM" == filterlim | |
| 60036 | 1313 | translations | 
| 62367 | 1314 | "LIM x F1. f :> F2" == "CONST filterlim (\<lambda>x. f) F2 F1" | 
| 60036 | 1315 | |
| 77221 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77140diff
changeset | 1316 | lemma filterlim_filtercomapI: "filterlim f F G \<Longrightarrow> filterlim (\<lambda>x. f (g x)) F (filtercomap g G)" | 
| 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77140diff
changeset | 1317 | unfolding filterlim_def | 
| 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77140diff
changeset | 1318 | by (metis order_trans filtermap_filtercomap filtermap_filtermap filtermap_mono) | 
| 
0cdb384bf56a
More new theorems from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
77140diff
changeset | 1319 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1320 | lemma filterlim_top [simp]: "filterlim f top F" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1321 | by (simp add: filterlim_def) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1322 | |
| 60036 | 1323 | lemma filterlim_iff: | 
| 1324 | "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)" | |
| 1325 | unfolding filterlim_def le_filter_def eventually_filtermap .. | |
| 1326 | ||
| 1327 | lemma filterlim_compose: | |
| 1328 | "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1" | |
| 1329 | unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans) | |
| 1330 | ||
| 1331 | lemma filterlim_mono: | |
| 1332 | "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'" | |
| 1333 | unfolding filterlim_def by (metis filtermap_mono order_trans) | |
| 1334 | ||
| 1335 | lemma filterlim_ident: "LIM x F. x :> F" | |
| 1336 | by (simp add: filterlim_def filtermap_ident) | |
| 1337 | ||
| 1338 | lemma filterlim_cong: | |
| 1339 | "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'" | |
| 1340 | by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2) | |
| 1341 | ||
| 1342 | lemma filterlim_mono_eventually: | |
| 1343 | assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G" | |
| 1344 | assumes eq: "eventually (\<lambda>x. f x = f' x) G'" | |
| 1345 | shows "filterlim f' F' G'" | |
| 71743 | 1346 | proof - | 
| 1347 | have "filterlim f F' G'" | |
| 1348 | by (simp add: filterlim_mono[OF _ ord] assms) | |
| 1349 | then show ?thesis | |
| 1350 | by (rule filterlim_cong[OF refl refl eq, THEN iffD1]) | |
| 1351 | qed | |
| 60036 | 1352 | |
| 1353 | lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G" | |
| 67956 | 1354 | apply (safe intro!: filtermap_mono) | 
| 60036 | 1355 | apply (auto simp: le_filter_def eventually_filtermap) | 
| 1356 | apply (erule_tac x="\<lambda>x. P (inv f x)" in allE) | |
| 1357 | apply auto | |
| 1358 | done | |
| 1359 | ||
| 67950 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1360 | lemma eventually_compose_filterlim: | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1361 | assumes "eventually P F" "filterlim f F G" | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1362 | shows "eventually (\<lambda>x. P (f x)) G" | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1363 | using assms by (simp add: filterlim_iff) | 
| 
99eaa5cedbb7
Added some simple facts about limits
 Manuel Eberl <eberlm@in.tum.de> parents: 
67855diff
changeset | 1364 | |
| 60036 | 1365 | lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G" | 
| 1366 | by (simp add: filtermap_mono_strong eq_iff) | |
| 1367 | ||
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1368 | lemma filtermap_fun_inverse: | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1369 | assumes g: "filterlim g F G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1370 | assumes f: "filterlim f G F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1371 | assumes ev: "eventually (\<lambda>x. f (g x) = x) G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1372 | shows "filtermap f F = G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1373 | proof (rule antisym) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1374 | show "filtermap f F \<le> G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1375 | using f unfolding filterlim_def . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1376 | have "G = filtermap f (filtermap g G)" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1377 | using ev by (auto elim: eventually_elim2 simp: filter_eq_iff eventually_filtermap) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1378 | also have "\<dots> \<le> filtermap f F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1379 | using g by (intro filtermap_mono) (simp add: filterlim_def) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1380 | finally show "G \<le> filtermap f F" . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1381 | qed | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1382 | |
| 60036 | 1383 | lemma filterlim_principal: | 
| 1384 | "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)" | |
| 1385 | unfolding filterlim_def eventually_filtermap le_principal .. | |
| 1386 | ||
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1387 | lemma filterlim_filtercomap [intro]: "filterlim f F (filtercomap f F)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1388 | unfolding filterlim_def by (rule filtermap_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1389 | |
| 60036 | 1390 | lemma filterlim_inf: | 
| 1391 | "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))" | |
| 1392 | unfolding filterlim_def by simp | |
| 1393 | ||
| 1394 | lemma filterlim_INF: | |
| 67613 | 1395 | "(LIM x F. f x :> (\<Sqinter>b\<in>B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)" | 
| 60036 | 1396 | unfolding filterlim_def le_INF_iff .. | 
| 1397 | ||
| 1398 | lemma filterlim_INF_INF: | |
| 67613 | 1399 | "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (\<Sqinter>i\<in>I. F i). f x :> (\<Sqinter>j\<in>J. G j)" | 
| 60036 | 1400 | unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono]) | 
| 1401 | ||
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 1402 | lemma filterlim_INF': "x \<in> A \<Longrightarrow> filterlim f F (G x) \<Longrightarrow> filterlim f F (\<Sqinter> x\<in>A. G x)" | 
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1403 | unfolding filterlim_def by (rule order.trans[OF filtermap_mono[OF INF_lower]]) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1404 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1405 | lemma filterlim_filtercomap_iff: "filterlim f (filtercomap g G) F \<longleftrightarrow> filterlim (g \<circ> f) G F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1406 | by (simp add: filterlim_def filtermap_le_iff_le_filtercomap filtercomap_filtercomap o_def) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1407 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1408 | lemma filterlim_iff_le_filtercomap: "filterlim f F G \<longleftrightarrow> G \<le> filtercomap f F" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1409 | by (simp add: filterlim_def filtermap_le_iff_le_filtercomap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1410 | |
| 60036 | 1411 | lemma filterlim_base: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1412 | "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> | 
| 67613 | 1413 | LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> (\<Sqinter>j\<in>J. principal (G j))" | 
| 60036 | 1414 | by (force intro!: filterlim_INF_INF simp: image_subset_iff) | 
| 1415 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1416 | lemma filterlim_base_iff: | 
| 60036 | 1417 |   assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
 | 
| 67613 | 1418 | shows "(LIM x (\<Sqinter>i\<in>I. principal (F i)). f x :> \<Sqinter>j\<in>J. principal (G j)) \<longleftrightarrow> | 
| 60036 | 1419 | (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)" | 
| 1420 | unfolding filterlim_INF filterlim_principal | |
| 1421 | proof (subst eventually_INF_base) | |
| 1422 | fix i j assume "i \<in> I" "j \<in> I" | |
| 1423 | with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))" | |
| 1424 | by auto | |
| 60758 | 1425 | qed (auto simp: eventually_principal \<open>I \<noteq> {}\<close>)
 | 
| 60036 | 1426 | |
| 1427 | lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2" | |
| 1428 | unfolding filterlim_def filtermap_filtermap .. | |
| 1429 | ||
| 1430 | lemma filterlim_sup: | |
| 1431 | "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)" | |
| 1432 | unfolding filterlim_def filtermap_sup by auto | |
| 1433 | ||
| 1434 | lemma filterlim_sequentially_Suc: | |
| 1435 | "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)" | |
| 1436 | unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp | |
| 1437 | ||
| 1438 | lemma filterlim_Suc: "filterlim Suc sequentially sequentially" | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 1439 | by (simp add: filterlim_iff eventually_sequentially) | 
| 60036 | 1440 | |
| 60182 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1441 | lemma filterlim_If: | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1442 |   "LIM x inf F (principal {x. P x}). f x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1443 |     LIM x inf F (principal {x. \<not> P x}). g x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1444 | LIM x F. if P x then f x else g x :> G" | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1445 | unfolding filterlim_iff eventually_inf_principal by (auto simp: eventually_conj_iff) | 
| 60036 | 1446 | |
| 62367 | 1447 | lemma filterlim_Pair: | 
| 1448 | "LIM x F. f x :> G \<Longrightarrow> LIM x F. g x :> H \<Longrightarrow> LIM x F. (f x, g x) :> G \<times>\<^sub>F H" | |
| 1449 | unfolding filterlim_def | |
| 1450 | by (rule order_trans[OF filtermap_Pair prod_filter_mono]) | |
| 1451 | ||
| 69593 | 1452 | subsection \<open>Limits to \<^const>\<open>at_top\<close> and \<^const>\<open>at_bot\<close>\<close> | 
| 60036 | 1453 | |
| 1454 | lemma filterlim_at_top: | |
| 1455 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1456 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 61810 | 1457 | by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_mono) | 
| 60036 | 1458 | |
| 1459 | lemma filterlim_at_top_mono: | |
| 1460 | "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow> | |
| 1461 | LIM x F. g x :> at_top" | |
| 1462 | by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans) | |
| 1463 | ||
| 1464 | lemma filterlim_at_top_dense: | |
| 1465 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
 | |
| 1466 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)" | |
| 61810 | 1467 | by (metis eventually_mono[of _ F] eventually_gt_at_top order_less_imp_le | 
| 60036 | 1468 | filterlim_at_top[of f F] filterlim_iff[of f at_top F]) | 
| 1469 | ||
| 1470 | lemma filterlim_at_top_ge: | |
| 1471 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1472 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1473 | unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal) | |
| 1474 | ||
| 1475 | lemma filterlim_at_top_at_top: | |
| 1476 | fixes f :: "'a::linorder \<Rightarrow> 'b::linorder" | |
| 1477 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1478 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1479 | assumes Q: "eventually Q at_top" | |
| 1480 | assumes P: "eventually P at_top" | |
| 1481 | shows "filterlim f at_top at_top" | |
| 1482 | proof - | |
| 1483 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1484 | unfolding eventually_at_top_linorder by auto | |
| 1485 | show ?thesis | |
| 1486 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1487 | fix z assume "x \<le> z" | |
| 1488 | with x have "P z" by auto | |
| 1489 | have "eventually (\<lambda>x. g z \<le> x) at_top" | |
| 1490 | by (rule eventually_ge_at_top) | |
| 1491 | with Q show "eventually (\<lambda>x. z \<le> f x) at_top" | |
| 60758 | 1492 | by eventually_elim (metis mono bij \<open>P z\<close>) | 
| 60036 | 1493 | qed | 
| 1494 | qed | |
| 1495 | ||
| 1496 | lemma filterlim_at_top_gt: | |
| 1497 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1498 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1499 | by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) | |
| 1500 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1501 | lemma filterlim_at_bot: | 
| 60036 | 1502 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | 
| 1503 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)" | |
| 61810 | 1504 | by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_mono) | 
| 60036 | 1505 | |
| 1506 | lemma filterlim_at_bot_dense: | |
| 1507 |   fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
 | |
| 1508 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)" | |
| 1509 | proof (auto simp add: filterlim_at_bot[of f F]) | |
| 1510 | fix Z :: 'b | |
| 1511 | from lt_ex [of Z] obtain Z' where 1: "Z' < Z" .. | |
| 1512 | assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F" | |
| 1513 | hence "eventually (\<lambda>x. f x \<le> Z') F" by auto | |
| 1514 | thus "eventually (\<lambda>x. f x < Z) F" | |
| 71743 | 1515 | by (rule eventually_mono) (use 1 in auto) | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1516 | next | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1517 | fix Z :: 'b | 
| 60036 | 1518 | show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F" | 
| 61810 | 1519 | by (drule spec [of _ Z], erule eventually_mono, auto simp add: less_imp_le) | 
| 60036 | 1520 | qed | 
| 1521 | ||
| 1522 | lemma filterlim_at_bot_le: | |
| 1523 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1524 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1525 | unfolding filterlim_at_bot | |
| 1526 | proof safe | |
| 1527 | fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1528 | with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F" | |
| 61810 | 1529 | by (auto elim!: eventually_mono) | 
| 60036 | 1530 | qed simp | 
| 1531 | ||
| 1532 | lemma filterlim_at_bot_lt: | |
| 1533 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1534 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1535 | by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) | |
| 77275 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1536 | |
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1537 | lemma filterlim_at_top_div_const_nat: | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1538 | assumes "c > 0" | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1539 | shows "filterlim (\<lambda>x::nat. x div c) at_top at_top" | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1540 | unfolding filterlim_at_top | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1541 | proof | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1542 | fix C :: nat | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1543 | have *: "n div c \<ge> C" if "n \<ge> C * c" for n | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1544 | using assms that by (metis div_le_mono div_mult_self_is_m) | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1545 | have "eventually (\<lambda>n. n \<ge> C * c) at_top" | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1546 | by (rule eventually_ge_at_top) | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1547 | thus "eventually (\<lambda>n. n div c \<ge> C) at_top" | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1548 | by eventually_elim (use * in auto) | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1549 | qed | 
| 
386b1b33785c
New material due to Eberl on Formal Laurent Series
 paulson <lp15@cam.ac.uk> parents: 
77223diff
changeset | 1550 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1551 | lemma filterlim_finite_subsets_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1552 | "filterlim f (finite_subsets_at_top A) F \<longleftrightarrow> | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1553 | (\<forall>X. finite X \<and> X \<subseteq> A \<longrightarrow> eventually (\<lambda>y. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A) F)" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1554 | (is "?lhs = ?rhs") | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1555 | proof | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1556 | assume ?lhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1557 | thus ?rhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1558 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1559 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1560 | hence *: "(\<forall>\<^sub>F x in F. P (f x))" if "eventually P (finite_subsets_at_top A)" for P | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1561 | using that by (auto simp: filterlim_def le_filter_def eventually_filtermap) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1562 | have "\<forall>\<^sub>F Y in finite_subsets_at_top A. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A" | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1563 | using 1 unfolding eventually_finite_subsets_at_top by force | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1564 | thus ?case by (intro *) auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1565 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1566 | next | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1567 | assume rhs: ?rhs | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1568 | show ?lhs unfolding filterlim_def le_filter_def eventually_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1569 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1570 | case (1 P X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1571 | with rhs have "\<forall>\<^sub>F y in F. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A" by auto | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1572 | thus "eventually P (filtermap f F)" unfolding eventually_filtermap | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1573 | by eventually_elim (insert 1, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1574 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1575 | qed | 
| 60036 | 1576 | |
| 68860 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1577 | lemma filterlim_atMost_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1578 |   "filterlim (\<lambda>n. {..n}) (finite_subsets_at_top (UNIV :: nat set)) at_top"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1579 | unfolding filterlim_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1580 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1581 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1582 |   then obtain n where n: "X \<subseteq> {..n}" by (auto simp: finite_nat_set_iff_bounded_le)
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1583 | show ?case using eventually_ge_at_top[of n] | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1584 | by eventually_elim (insert n, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1585 | qed | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1586 | |
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1587 | lemma filterlim_lessThan_at_top: | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1588 |   "filterlim (\<lambda>n. {..<n}) (finite_subsets_at_top (UNIV :: nat set)) at_top"
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1589 | unfolding filterlim_finite_subsets_at_top | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1590 | proof (safe, goal_cases) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1591 | case (1 X) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1592 |   then obtain n where n: "X \<subseteq> {..<n}" by (auto simp: finite_nat_set_iff_bounded)
 | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1593 | show ?case using eventually_ge_at_top[of n] | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1594 | by eventually_elim (insert n, auto) | 
| 
f443ec10447d
Some basic materials on filters and topology
 Manuel Eberl <eberlm@in.tum.de> parents: 
68667diff
changeset | 1595 | qed | 
| 60036 | 1596 | |
| 76722 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1597 | lemma filterlim_minus_const_nat_at_top: | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1598 | "filterlim (\<lambda>n. n - c) sequentially sequentially" | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1599 | unfolding filterlim_at_top | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1600 | proof | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1601 | fix a :: nat | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1602 | show "eventually (\<lambda>n. n - c \<ge> a) at_top" | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1603 | using eventually_ge_at_top[of "a + c"] by eventually_elim auto | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1604 | qed | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1605 | |
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1606 | lemma filterlim_add_const_nat_at_top: | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1607 | "filterlim (\<lambda>n. n + c) sequentially sequentially" | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1608 | unfolding filterlim_at_top | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1609 | proof | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1610 | fix a :: nat | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1611 | show "eventually (\<lambda>n. n + c \<ge> a) at_top" | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1612 | using eventually_ge_at_top[of a] by eventually_elim auto | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1613 | qed | 
| 
b1d57dd345e1
First round of moving material from the number theory development
 paulson <lp15@cam.ac.uk> parents: 
74325diff
changeset | 1614 | |
| 69593 | 1615 | subsection \<open>Setup \<^typ>\<open>'a filter\<close> for lifting and transfer\<close> | 
| 60036 | 1616 | |
| 1617 | lemma filtermap_id [simp, id_simps]: "filtermap id = id" | |
| 1618 | by(simp add: fun_eq_iff id_def filtermap_ident) | |
| 1619 | ||
| 1620 | lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)" | |
| 1621 | using filtermap_id unfolding id_def . | |
| 1622 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1623 | context includes lifting_syntax | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1624 | begin | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1625 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1626 | definition map_filter_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter" where
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1627 | "map_filter_on X f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x) \<and> x \<in> X) F)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1628 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1629 | lemma is_filter_map_filter_on: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1630 | "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X) \<longleftrightarrow> eventually (\<lambda>x. x \<in> X) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1631 | proof(rule iffI; unfold_locales) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1632 | show "\<forall>\<^sub>F x in F. True \<and> x \<in> X" if "eventually (\<lambda>x. x \<in> X) F" using that by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1633 | show "\<forall>\<^sub>F x in F. (P (f x) \<and> Q (f x)) \<and> x \<in> X" if "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1634 | using eventually_conj[OF that] by(auto simp add: conj_ac cong: conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1635 | show "\<forall>\<^sub>F x in F. Q (f x) \<and> x \<in> X" if "\<forall>x. P x \<longrightarrow> Q x" "\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1636 | using that(2) by(rule eventually_mono)(use that(1) in auto) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1637 | show "eventually (\<lambda>x. x \<in> X) F" if "is_filter (\<lambda>P. \<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1638 | using is_filter.True[OF that] by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1639 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1640 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1641 | lemma eventually_map_filter_on: "eventually P (map_filter_on X f F) = (\<forall>\<^sub>F x in F. P (f x) \<and> x \<in> X)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1642 | if "eventually (\<lambda>x. x \<in> X) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1643 | by(simp add: is_filter_map_filter_on map_filter_on_def eventually_Abs_filter that) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1644 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1645 | lemma map_filter_on_UNIV: "map_filter_on UNIV = filtermap" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1646 | by(simp add: map_filter_on_def filtermap_def fun_eq_iff) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1647 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1648 | lemma map_filter_on_comp: "map_filter_on X f (map_filter_on Y g F) = map_filter_on Y (f \<circ> g) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1649 | if "g ` Y \<subseteq> X" and "eventually (\<lambda>x. x \<in> Y) F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1650 | unfolding map_filter_on_def using that(1) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1651 | by(auto simp add: eventually_Abs_filter that(2) is_filter_map_filter_on intro!: arg_cong[where f=Abs_filter] arg_cong2[where f=eventually]) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1652 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1653 | inductive rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool" for R F G where
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1654 |   "rel_filter R F G" if "eventually (case_prod R) Z" "map_filter_on {(x, y). R x y} fst Z = F" "map_filter_on {(x, y). R x y} snd Z = G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1655 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1656 | lemma rel_filter_eq [relator_eq]: "rel_filter (=) = (=)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1657 | proof(intro ext iffI)+ | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1658 | show "F = G" if "rel_filter (=) F G" for F G using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1659 | by cases(clarsimp simp add: filter_eq_iff eventually_map_filter_on split_def cong: rev_conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1660 | show "rel_filter (=) F G" if "F = G" for F G unfolding \<open>F = G\<close> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1661 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1662 | let ?Z = "map_filter_on UNIV (\<lambda>x. (x, x)) G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1663 |     have [simp]: "range (\<lambda>x. (x, x)) \<subseteq> {(x, y). x = y}" by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1664 |     show "map_filter_on {(x, y). x = y} fst ?Z = G" and "map_filter_on {(x, y). x = y} snd ?Z = G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1665 | by(simp_all add: map_filter_on_comp)(simp_all add: map_filter_on_UNIV o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1666 | show "\<forall>\<^sub>F (x, y) in ?Z. x = y" by(simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1667 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1668 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1669 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1670 | lemma rel_filter_mono [relator_mono]: "rel_filter A \<le> rel_filter B" if le: "A \<le> B" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1671 | proof(clarify elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1672 |   show "rel_filter B (map_filter_on {(x, y). A x y} fst Z) (map_filter_on {(x, y). A x y} snd Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1673 | (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1674 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1675 |     let ?Z = "map_filter_on {(x, y). A x y} id Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1676 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using le that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1677 | by(simp add: eventually_map_filter_on le_fun_def split_def conj_commute cong: conj_cong) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1678 |     have [simp]: "{(x, y). A x y} \<subseteq> {(x, y). B x y}" using le by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1679 |     show "map_filter_on {(x, y). B x y} fst ?Z = ?X" "map_filter_on {(x, y). B x y} snd ?Z = ?Y"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1680 | using le that by(simp_all add: le_fun_def map_filter_on_comp) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1681 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1682 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1683 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1684 | lemma rel_filter_conversep: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1685 | proof(safe intro!: ext elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1686 |   show *: "rel_filter A (map_filter_on {(x, y). A\<inverse>\<inverse> x y} snd Z) (map_filter_on {(x, y). A\<inverse>\<inverse> x y} fst Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1687 | (is "rel_filter _ ?X ?Y") if "\<forall>\<^sub>F (x, y) in Z. A\<inverse>\<inverse> x y" for A Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1688 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1689 |     let ?Z = "map_filter_on {(x, y). A y x} prod.swap Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1690 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that by(simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1691 |     have [simp]: "prod.swap ` {(x, y). A y x} \<subseteq> {(x, y). A x y}" by auto
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1692 |     show "map_filter_on {(x, y). A x y} fst ?Z = ?X" "map_filter_on {(x, y). A x y} snd ?Z = ?Y"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1693 | using that by(simp_all add: map_filter_on_comp o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1694 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1695 |   show "rel_filter A\<inverse>\<inverse> (map_filter_on {(x, y). A x y} snd Z) (map_filter_on {(x, y). A x y} fst Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1696 | if "\<forall>\<^sub>F (x, y) in Z. A x y" for Z using *[of "A\<inverse>\<inverse>" Z] that by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1697 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1698 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1699 | lemma rel_filter_distr [relator_distr]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1700 | "rel_filter A OO rel_filter B = rel_filter (A OO B)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1701 | proof(safe intro!: ext elim!: rel_filter.cases) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1702 |   let ?AB = "{(x, y). (A OO B) x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1703 | show "(rel_filter A OO rel_filter B) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1704 |      (map_filter_on {(x, y). (A OO B) x y} fst Z) (map_filter_on {(x, y). (A OO B) x y} snd Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1705 | (is "(_ OO _) ?F ?H") if "\<forall>\<^sub>F (x, y) in Z. (A OO B) x y" for Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1706 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1707 | let ?G = "map_filter_on ?AB (\<lambda>(x, y). SOME z. A x z \<and> B z y) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1708 | show "rel_filter A ?F ?G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1709 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1710 | let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (x, SOME z. A x z \<and> B z y)) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1711 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1712 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1713 |       have [simp]: "(\<lambda>p. (fst p, SOME z. A (fst p) z \<and> B z (snd p))) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. A (fst p) (snd p)}" by(auto intro: someI2)
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1714 |       show "map_filter_on {(x, y). A x y} fst ?Z = ?F" "map_filter_on {(x, y). A x y} snd ?Z = ?G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1715 | using that by(simp_all add: map_filter_on_comp split_def o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1716 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1717 | show "rel_filter B ?G ?H" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1718 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1719 | let ?Z = "map_filter_on ?AB (\<lambda>(x, y). (SOME z. A x z \<and> B z y, y)) Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1720 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1721 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono intro: someI2) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1722 |       have [simp]: "(\<lambda>p. (SOME z. A (fst p) z \<and> B z (snd p), snd p)) ` {p. (A OO B) (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}" by(auto intro: someI2)
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1723 |       show "map_filter_on {(x, y). B x y} fst ?Z = ?G" "map_filter_on {(x, y). B x y} snd ?Z = ?H"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1724 | using that by(simp_all add: map_filter_on_comp split_def o_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1725 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1726 | qed | 
| 60036 | 1727 | |
| 1728 | fix F G | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1729 | assume F: "\<forall>\<^sub>F (x, y) in F. A x y" and G: "\<forall>\<^sub>F (x, y) in G. B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1730 |     and eq: "map_filter_on {(x, y). B x y} fst G = map_filter_on {(x, y). A x y} snd F" (is "?Y2 = ?Y1")
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1731 |   let ?X = "map_filter_on {(x, y). A x y} fst F"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1732 |     and ?Z = "(map_filter_on {(x, y). B x y} snd G)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1733 |   have step: "\<exists>P'\<le>P. \<exists>Q' \<le> Q. eventually P' F \<and> eventually Q' G \<and> {y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1734 | if P: "eventually P F" and Q: "eventually Q G" for P Q | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1735 | proof - | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1736 | let ?P = "\<lambda>(x, y). P (x, y) \<and> A x y" and ?Q = "\<lambda>(y, z). Q (y, z) \<and> B y z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1737 | define P' where "P' \<equiv> \<lambda>(x, y). ?P (x, y) \<and> (\<exists>z. ?Q (y, z))" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1738 | define Q' where "Q' \<equiv> \<lambda>(y, z). ?Q (y, z) \<and> (\<exists>x. ?P (x, y))" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1739 |     have "P' \<le> P" "Q' \<le> Q" "{y. \<exists>x. P' (x, y)} = {y. \<exists>z. Q' (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1740 | by(auto simp add: P'_def Q'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1741 | moreover | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1742 | from P Q F G have P': "eventually ?P F" and Q': "eventually ?Q G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1743 | by(simp_all add: eventually_conj_iff split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1744 | from P' F have "\<forall>\<^sub>F y in ?Y1. \<exists>x. P (x, y) \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1745 | by(auto simp add: eventually_map_filter_on elim!: eventually_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1746 | from this[folded eq] obtain Q'' where Q'': "eventually Q'' G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1747 |       and Q''P: "{y. \<exists>z. Q'' (y, z)} \<subseteq> {y. \<exists>x. ?P (x, y)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1748 | using G by(fastforce simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1749 | have "eventually (inf Q'' ?Q) G" using Q'' Q' by(auto intro: eventually_conj simp add: inf_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1750 | then have "eventually Q' G" using Q''P by(auto elim!: eventually_mono simp add: Q'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1751 | moreover | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1752 | from Q' G have "\<forall>\<^sub>F y in ?Y2. \<exists>z. Q (y, z) \<and> B y z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1753 | by(auto simp add: eventually_map_filter_on elim!: eventually_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1754 | from this[unfolded eq] obtain P'' where P'': "eventually P'' F" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1755 |       and P''Q: "{y. \<exists>x. P'' (x, y)} \<subseteq> {y. \<exists>z. ?Q (y, z)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1756 | using F by(fastforce simp add: eventually_map_filter_on) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1757 | have "eventually (inf P'' ?P) F" using P'' P' by(auto intro: eventually_conj simp add: inf_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1758 | then have "eventually P' F" using P''Q by(auto elim!: eventually_mono simp add: P'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1759 | ultimately show ?thesis by blast | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1760 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1761 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1762 | show "rel_filter (A OO B) ?X ?Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1763 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1764 | let ?Y = "\<lambda>Y. \<exists>X Z. eventually X ?X \<and> eventually Z ?Z \<and> (\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1765 | have Y: "is_filter ?Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1766 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1767 | show "?Y (\<lambda>_. True)" by(auto simp add: le_fun_def intro: eventually_True) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1768 | show "?Y (\<lambda>x. P x \<and> Q x)" if "?Y P" "?Y Q" for P Q using that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1769 | apply clarify | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1770 | apply(intro exI conjI; (elim eventually_rev_mp; fold imp_conjL; intro always_eventually allI; rule imp_refl)?) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1771 | apply auto | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1772 | done | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1773 | show "?Y Q" if "?Y P" "\<forall>x. P x \<longrightarrow> Q x" for P Q using that by blast | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1774 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1775 | define Y where "Y = Abs_filter ?Y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1776 | have eventually_Y: "eventually P Y \<longleftrightarrow> ?Y P" for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1777 | using eventually_Abs_filter[OF Y, of P] by(simp add: Y_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1778 | show YY: "\<forall>\<^sub>F (x, y) in Y. (A OO B) x y" using F G | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1779 | by(auto simp add: eventually_Y eventually_map_filter_on eventually_conj_iff intro!: eventually_True) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1780 | have "?Y (\<lambda>(x, z). P x \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in F. P x \<and> A x y)" (is "?lhs = ?rhs") for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1781 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1782 | show ?lhs if ?rhs using G F that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1783 | by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1784 | assume ?lhs | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1785 | then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1786 | and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1787 | and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P x \<and> (A OO B) x z)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1788 | using F G by(auto simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1789 | from step[OF this(1, 2)] this(3) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1790 | show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1791 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1792 | then show "map_filter_on ?AB fst Y = ?X" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1793 | by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def) | 
| 60036 | 1794 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1795 | have "?Y (\<lambda>(x, z). P z \<and> (A OO B) x z) \<longleftrightarrow> (\<forall>\<^sub>F (x, y) in G. P y \<and> B x y)" (is "?lhs = ?rhs") for P | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1796 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1797 | show ?lhs if ?rhs using G F that | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1798 | by(auto 4 3 intro: exI[where x="\<lambda>_. True"] simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1799 | assume ?lhs | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1800 | then obtain X Z where "\<forall>\<^sub>F (x, y) in F. X x \<and> A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1801 | and "\<forall>\<^sub>F (x, y) in G. Z y \<and> B x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1802 | and "(\<lambda>(x, z). X x \<and> Z z \<and> (A OO B) x z) \<le> (\<lambda>(x, z). P z \<and> (A OO B) x z)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1803 | using F G by(auto simp add: eventually_map_filter_on split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1804 | from step[OF this(1, 2)] this(3) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1805 | show ?rhs by(clarsimp elim!: eventually_rev_mp simp add: le_fun_def)(fastforce intro: always_eventually) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1806 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1807 | then show "map_filter_on ?AB snd Y = ?Z" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1808 | by(simp add: filter_eq_iff YY eventually_map_filter_on)(simp add: eventually_Y eventually_map_filter_on F G; simp add: split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1809 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1810 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1811 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1812 | lemma filtermap_parametric: "((A ===> B) ===> rel_filter A ===> rel_filter B) filtermap filtermap" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1813 | proof(intro rel_funI; erule rel_filter.cases; hypsubst) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1814 | fix f g Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1815 | assume fg: "(A ===> B) f g" and Z: "\<forall>\<^sub>F (x, y) in Z. A x y" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1816 |   have "rel_filter B (map_filter_on {(x, y). A x y} (f \<circ> fst) Z) (map_filter_on {(x, y). A x y} (g \<circ> snd) Z)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1817 | (is "rel_filter _ ?F ?G") | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1818 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1819 |     let ?Z = "map_filter_on {(x, y). A x y} (map_prod f g) Z"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1820 | show "\<forall>\<^sub>F (x, y) in ?Z. B x y" using fg Z | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1821 | by(auto simp add: eventually_map_filter_on split_def elim!: eventually_mono rel_funD) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1822 |     have [simp]: "map_prod f g ` {p. A (fst p) (snd p)} \<subseteq> {p. B (fst p) (snd p)}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1823 | using fg by(auto dest: rel_funD) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1824 |     show "map_filter_on {(x, y). B x y} fst ?Z = ?F" "map_filter_on {(x, y). B x y} snd ?Z = ?G"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1825 | using Z by(auto simp add: map_filter_on_comp split_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1826 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1827 |   thus "rel_filter B (filtermap f (map_filter_on {(x, y). A x y} fst Z)) (filtermap g (map_filter_on {(x, y). A x y} snd Z))"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1828 | using Z by(simp add: map_filter_on_UNIV[symmetric] map_filter_on_comp) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1829 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1830 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1831 | lemma rel_filter_Grp: "rel_filter (Grp UNIV f) = Grp UNIV (filtermap f)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1832 | proof((intro antisym predicate2I; (elim GrpE; hypsubst)?), rule GrpI[OF _ UNIV_I]) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1833 | fix F G | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1834 | assume "rel_filter (Grp UNIV f) F G" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1835 | hence "rel_filter (=) (filtermap f F) (filtermap id G)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1836 | by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1837 | thus "filtermap f F = G" by(simp add: rel_filter_eq) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1838 | next | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1839 | fix F :: "'a filter" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1840 | have "rel_filter (=) F F" by(simp add: rel_filter_eq) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1841 | hence "rel_filter (Grp UNIV f) (filtermap id F) (filtermap f F)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1842 | by(rule filtermap_parametric[THEN rel_funD, THEN rel_funD, rotated])(simp add: Grp_def rel_fun_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1843 | thus "rel_filter (Grp UNIV f) F (filtermap f F)" by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1844 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1845 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1846 | lemma Quotient_filter [quot_map]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1847 | "Quotient R Abs Rep T \<Longrightarrow> Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1848 | unfolding Quotient_alt_def5 rel_filter_eq[symmetric] rel_filter_Grp[symmetric] | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1849 | by(simp add: rel_filter_distr[symmetric] rel_filter_conversep[symmetric] rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1850 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1851 | lemma left_total_rel_filter [transfer_rule]: "left_total A \<Longrightarrow> left_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1852 | unfolding left_total_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1853 | by(rule rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1854 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1855 | lemma right_total_rel_filter [transfer_rule]: "right_total A \<Longrightarrow> right_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1856 | using left_total_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1857 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1858 | lemma bi_total_rel_filter [transfer_rule]: "bi_total A \<Longrightarrow> bi_total (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1859 | unfolding bi_total_alt_def by(simp add: left_total_rel_filter right_total_rel_filter) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1860 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1861 | lemma left_unique_rel_filter [transfer_rule]: "left_unique A \<Longrightarrow> left_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1862 | unfolding left_unique_alt_def rel_filter_eq[symmetric] rel_filter_conversep[symmetric] rel_filter_distr | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1863 | by(rule rel_filter_mono) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1864 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1865 | lemma right_unique_rel_filter [transfer_rule]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1866 | "right_unique A \<Longrightarrow> right_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1867 | using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by(simp add: rel_filter_conversep) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1868 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1869 | lemma bi_unique_rel_filter [transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1870 | by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter) | 
| 60036 | 1871 | |
| 1872 | lemma eventually_parametric [transfer_rule]: | |
| 67399 | 1873 | "((A ===> (=)) ===> rel_filter A ===> (=)) eventually eventually" | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1874 | by(auto 4 4 intro!: rel_funI elim!: rel_filter.cases simp add: eventually_map_filter_on dest: rel_funD intro: always_eventually elim!: eventually_rev_mp) | 
| 60036 | 1875 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1876 | lemma frequently_parametric [transfer_rule]: "((A ===> (=)) ===> rel_filter A ===> (=)) frequently frequently" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1877 | unfolding frequently_def[abs_def] by transfer_prover | 
| 60036 | 1878 | |
| 1879 | lemma is_filter_parametric [transfer_rule]: | |
| 67956 | 1880 | assumes [transfer_rule]: "bi_total A" | 
| 1881 | assumes [transfer_rule]: "bi_unique A" | |
| 1882 | shows "(((A ===> (=)) ===> (=)) ===> (=)) is_filter is_filter" | |
| 1883 | unfolding is_filter_def by transfer_prover | |
| 60036 | 1884 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1885 | lemma top_filter_parametric [transfer_rule]: "rel_filter A top top" if "bi_total A" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1886 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1887 |   let ?Z = "principal {(x, y). A x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1888 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1889 |   show "map_filter_on {(x, y). A x y} fst ?Z = top" "map_filter_on {(x, y). A x y} snd ?Z = top"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1890 | using that by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal bi_total_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1891 | qed | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1892 | |
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1893 | lemma bot_filter_parametric [transfer_rule]: "rel_filter A bot bot" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1894 | proof | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1895 | show "\<forall>\<^sub>F (x, y) in bot. A x y" by simp | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1896 |   show "map_filter_on {(x, y). A x y} fst bot = bot" "map_filter_on {(x, y). A x y} snd bot = bot"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1897 | by(simp_all add: filter_eq_iff eventually_map_filter_on) | 
| 60036 | 1898 | qed | 
| 1899 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1900 | lemma principal_parametric [transfer_rule]: "(rel_set A ===> rel_filter A) principal principal" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1901 | proof(rule rel_funI rel_filter.intros)+ | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1902 | fix S S' | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1903 | assume *: "rel_set A S S'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1904 |   define SS' where "SS' = S \<times> S' \<inter> {(x, y). A x y}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1905 |   have SS': "SS' \<subseteq> {(x, y). A x y}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1906 | using * by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1907 | let ?Z = "principal SS'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1908 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" using SS' by(auto simp add: eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1909 |   then show "map_filter_on {(x, y). A x y} fst ?Z = principal S"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1910 |     and "map_filter_on {(x, y). A x y} snd ?Z = principal S'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1911 | by(auto simp add: filter_eq_iff eventually_map_filter_on eventually_principal) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1912 | qed | 
| 60036 | 1913 | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1914 | lemma sup_filter_parametric [transfer_rule]: | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1915 | "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1916 | proof(intro rel_funI; elim rel_filter.cases; hypsubst) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1917 | show "rel_filter A | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1918 |     (map_filter_on {(x, y). A x y} fst FG \<squnion> map_filter_on {(x, y). A x y} fst FG')
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1919 |     (map_filter_on {(x, y). A x y} snd FG \<squnion> map_filter_on {(x, y). A x y} snd FG')"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1920 | (is "rel_filter _ (sup ?F ?G) (sup ?F' ?G')") | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1921 | if "\<forall>\<^sub>F (x, y) in FG. A x y" "\<forall>\<^sub>F (x, y) in FG'. A x y" for FG FG' | 
| 60036 | 1922 | proof | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1923 | let ?Z = "sup FG FG'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1924 | show "\<forall>\<^sub>F (x, y) in ?Z. A x y" by(simp add: eventually_sup that) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1925 |     then show "map_filter_on {(x, y). A x y} fst ?Z = sup ?F ?G" 
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1926 |       and "map_filter_on {(x, y). A x y} snd ?Z = sup ?F' ?G'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1927 | by(simp_all add: filter_eq_iff eventually_map_filter_on eventually_sup) | 
| 60036 | 1928 | qed | 
| 1929 | qed | |
| 1930 | ||
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1931 | lemma Sup_filter_parametric [transfer_rule]: "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup" | 
| 60036 | 1932 | proof(rule rel_funI) | 
| 1933 | fix S S' | |
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1934 |   define SS' where "SS' = S \<times> S' \<inter> {(F, G). rel_filter A F G}"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1935 | assume "rel_set (rel_filter A) S S'" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1936 |   then have SS': "SS' \<subseteq> {(F, G). rel_filter A F G}" and [simp]: "S = fst ` SS'" "S' = snd ` SS'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1937 | by(auto 4 3 dest: rel_setD1 rel_setD2 intro: rev_image_eqI simp add: SS'_def) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1938 | from SS' obtain Z where Z: "\<And>F G. (F, G) \<in> SS' \<Longrightarrow> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1939 | (\<forall>\<^sub>F (x, y) in Z F G. A x y) \<and> | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1940 |     id F = map_filter_on {(x, y). A x y} fst (Z F G) \<and>
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1941 |     id G = map_filter_on {(x, y). A x y} snd (Z F G)"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1942 | unfolding rel_filter.simps by atomize_elim((rule choice allI)+; auto) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1943 | have id: "eventually P F = eventually P (id F)" "eventually Q G = eventually Q (id G)" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1944 | if "(F, G) \<in> SS'" for P Q F G by simp_all | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1945 | show "rel_filter A (Sup S) (Sup S')" | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1946 | proof | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
68860diff
changeset | 1947 | let ?Z = "\<Squnion>(F, G)\<in>SS'. Z F G" | 
| 67616 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1948 | show *: "\<forall>\<^sub>F (x, y) in ?Z. A x y" using Z by(auto simp add: eventually_Sup) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1949 |     show "map_filter_on {(x, y). A x y} fst ?Z = Sup S" "map_filter_on {(x, y). A x y} snd ?Z = Sup S'"
 | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1950 | unfolding filter_eq_iff | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1951 | by(auto 4 4 simp add: id eventually_Sup eventually_map_filter_on *[simplified eventually_Sup] simp del: id_apply dest: Z) | 
| 
1d005f514417
strengthen filter relator to canonical categorical definition with better properties
 Andreas Lochbihler parents: 
67613diff
changeset | 1952 | qed | 
| 66162 | 1953 | qed | 
| 1954 | ||
| 60036 | 1955 | context | 
| 1956 | fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1957 | assumes [transfer_rule]: "bi_unique A" | 
| 60036 | 1958 | begin | 
| 1959 | ||
| 1960 | lemma le_filter_parametric [transfer_rule]: | |
| 67399 | 1961 | "(rel_filter A ===> rel_filter A ===> (=)) (\<le>) (\<le>)" | 
| 60036 | 1962 | unfolding le_filter_def[abs_def] by transfer_prover | 
| 1963 | ||
| 1964 | lemma less_filter_parametric [transfer_rule]: | |
| 67399 | 1965 | "(rel_filter A ===> rel_filter A ===> (=)) (<) (<)" | 
| 60036 | 1966 | unfolding less_filter_def[abs_def] by transfer_prover | 
| 1967 | ||
| 1968 | context | |
| 1969 | assumes [transfer_rule]: "bi_total A" | |
| 1970 | begin | |
| 1971 | ||
| 1972 | lemma Inf_filter_parametric [transfer_rule]: | |
| 1973 | "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf" | |
| 1974 | unfolding Inf_filter_def[abs_def] by transfer_prover | |
| 1975 | ||
| 1976 | lemma inf_filter_parametric [transfer_rule]: | |
| 1977 | "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf" | |
| 1978 | proof(intro rel_funI)+ | |
| 1979 | fix F F' G G' | |
| 1980 | assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'" | |
| 1981 |   have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
 | |
| 1982 | thus "rel_filter A (inf F G) (inf F' G')" by simp | |
| 1983 | qed | |
| 1984 | ||
| 1985 | end | |
| 1986 | ||
| 1987 | end | |
| 1988 | ||
| 1989 | end | |
| 1990 | ||
| 70927 | 1991 | context | 
| 1992 | includes lifting_syntax | |
| 1993 | begin | |
| 1994 | ||
| 1995 | lemma prod_filter_parametric [transfer_rule]: | |
| 68667 | 1996 | "(rel_filter R ===> rel_filter S ===> rel_filter (rel_prod R S)) prod_filter prod_filter" | 
| 1997 | proof(intro rel_funI; elim rel_filter.cases; hypsubst) | |
| 1998 | fix F G | |
| 1999 | assume F: "\<forall>\<^sub>F (x, y) in F. R x y" and G: "\<forall>\<^sub>F (x, y) in G. S x y" | |
| 2000 | show "rel_filter (rel_prod R S) | |
| 2001 |     (map_filter_on {(x, y). R x y} fst F \<times>\<^sub>F map_filter_on {(x, y). S x y} fst G)
 | |
| 2002 |     (map_filter_on {(x, y). R x y} snd F \<times>\<^sub>F map_filter_on {(x, y). S x y} snd G)"
 | |
| 2003 | (is "rel_filter ?RS ?F ?G") | |
| 2004 | proof | |
| 2005 | let ?Z = "filtermap (\<lambda>((a, b), (a', b')). ((a, a'), (b, b'))) (prod_filter F G)" | |
| 2006 | show *: "\<forall>\<^sub>F (x, y) in ?Z. rel_prod R S x y" using F G | |
| 2007 | by(auto simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 2008 |     show "map_filter_on {(x, y). ?RS x y} fst ?Z = ?F"
 | |
| 2009 | using F G | |
| 2010 | apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *) | |
| 2011 | apply(simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 2012 | apply(subst eventually_map_filter_on; simp)+ | |
| 2013 | apply(rule iffI; clarsimp) | |
| 2014 | subgoal for P P' P'' | |
| 2015 | apply(rule exI[where x="\<lambda>a. \<exists>b. P' (a, b) \<and> R a b"]; rule conjI) | |
| 2016 | subgoal by(fastforce elim: eventually_rev_mp eventually_mono) | |
| 2017 | subgoal | |
| 2018 | by(rule exI[where x="\<lambda>a. \<exists>b. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono) | |
| 2019 | done | |
| 2020 | subgoal by fastforce | |
| 2021 | done | |
| 2022 |     show "map_filter_on {(x, y). ?RS x y} snd ?Z = ?G"
 | |
| 2023 | using F G | |
| 2024 | apply(clarsimp simp add: filter_eq_iff eventually_map_filter_on *) | |
| 2025 | apply(simp add: eventually_filtermap split_beta eventually_prod_filter) | |
| 2026 | apply(subst eventually_map_filter_on; simp)+ | |
| 2027 | apply(rule iffI; clarsimp) | |
| 2028 | subgoal for P P' P'' | |
| 2029 | apply(rule exI[where x="\<lambda>b. \<exists>a. P' (a, b) \<and> R a b"]; rule conjI) | |
| 2030 | subgoal by(fastforce elim: eventually_rev_mp eventually_mono) | |
| 2031 | subgoal | |
| 2032 | by(rule exI[where x="\<lambda>b. \<exists>a. P'' (a, b) \<and> S a b"])(fastforce elim: eventually_rev_mp eventually_mono) | |
| 2033 | done | |
| 2034 | subgoal by fastforce | |
| 2035 | done | |
| 2036 | qed | |
| 2037 | qed | |
| 2038 | ||
| 70927 | 2039 | end | 
| 2040 | ||
| 2041 | ||
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2042 | text \<open>Code generation for filters\<close> | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2043 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2044 | definition abstract_filter :: "(unit \<Rightarrow> 'a filter) \<Rightarrow> 'a filter" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2045 | where [simp]: "abstract_filter f = f ()" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2046 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2047 | code_datatype principal abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2048 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2049 | hide_const (open) abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2050 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2051 | declare [[code drop: filterlim prod_filter filtermap eventually | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2052 | "inf :: _ filter \<Rightarrow> _" "sup :: _ filter \<Rightarrow> _" "less_eq :: _ filter \<Rightarrow> _" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2053 | Abs_filter]] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2054 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2055 | declare filterlim_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2056 | declare principal_prod_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2057 | declare filtermap_principal [code] | 
| 66162 | 2058 | declare filtercomap_principal [code] | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2059 | declare eventually_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2060 | declare inf_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2061 | declare sup_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2062 | declare principal_le_iff [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2063 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2064 | lemma Rep_filter_iff_eventually [simp, code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2065 | "Rep_filter F P \<longleftrightarrow> eventually P F" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2066 | by (simp add: eventually_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2067 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2068 | lemma bot_eq_principal_empty [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2069 |   "bot = principal {}"
 | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2070 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2071 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2072 | lemma top_eq_principal_UNIV [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2073 | "top = principal UNIV" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2074 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2075 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2076 | instantiation filter :: (equal) equal | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2077 | begin | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2078 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2079 | definition equal_filter :: "'a filter \<Rightarrow> 'a filter \<Rightarrow> bool" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2080 | where "equal_filter F F' \<longleftrightarrow> F = F'" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2081 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2082 | lemma equal_filter [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2083 | "HOL.equal (principal A) (principal B) \<longleftrightarrow> A = B" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2084 | by (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2085 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2086 | instance | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2087 | by standard (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2088 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 2089 | end | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2090 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2091 | end |