| author | wenzelm | 
| Fri, 14 Mar 2025 23:03:58 +0100 | |
| changeset 82276 | d22e9c5b5dc6 | 
| parent 82097 | 25dd3726fd00 | 
| child 82597 | 328de89f20f9 | 
| permissions | -rw-r--r-- | 
| 58101 | 1 | (* Author: Tobias Nipkow, TU Muenchen *) | 
| 2 | ||
| 60758 | 3 | section \<open>Sum and product over lists\<close> | 
| 58101 | 4 | |
| 5 | theory Groups_List | |
| 6 | imports List | |
| 7 | begin | |
| 8 | ||
| 58320 | 9 | locale monoid_list = monoid | 
| 10 | begin | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 11 | |
| 58320 | 12 | definition F :: "'a list \<Rightarrow> 'a" | 
| 13 | where | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 14 | eq_foldr [code]: "F xs = foldr f xs \<^bold>1" | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 15 | |
| 58320 | 16 | lemma Nil [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 17 | "F [] = \<^bold>1" | 
| 58320 | 18 | by (simp add: eq_foldr) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 19 | |
| 58320 | 20 | lemma Cons [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 21 | "F (x # xs) = x \<^bold>* F xs" | 
| 58320 | 22 | by (simp add: eq_foldr) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 23 | |
| 58320 | 24 | lemma append [simp]: | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 25 | "F (xs @ ys) = F xs \<^bold>* F ys" | 
| 58320 | 26 | by (induct xs) (simp_all add: assoc) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 27 | |
| 58320 | 28 | end | 
| 58101 | 29 | |
| 58320 | 30 | locale comm_monoid_list = comm_monoid + monoid_list | 
| 31 | begin | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 32 | |
| 58320 | 33 | lemma rev [simp]: | 
| 34 | "F (rev xs) = F xs" | |
| 35 | by (simp add: eq_foldr foldr_fold fold_rev fun_eq_iff assoc left_commute) | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 36 | |
| 58320 | 37 | end | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 38 | |
| 58320 | 39 | locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set | 
| 40 | begin | |
| 58101 | 41 | |
| 58320 | 42 | lemma distinct_set_conv_list: | 
| 43 | "distinct xs \<Longrightarrow> set.F g (set xs) = list.F (map g xs)" | |
| 44 | by (induct xs) simp_all | |
| 58101 | 45 | |
| 58320 | 46 | lemma set_conv_list [code]: | 
| 47 | "set.F g (set xs) = list.F (map g (remdups xs))" | |
| 48 | by (simp add: distinct_set_conv_list [symmetric]) | |
| 49 | ||
| 80061 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 50 | lemma list_conv_set_nth: | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 51 |   "list.F xs = set.F (\<lambda>i. xs ! i) {0..<length xs}"
 | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 52 | proof - | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 53 | have "xs = map (\<lambda>i. xs ! i) [0..<length xs]" | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 54 | by (simp add: map_nth) | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 55 |   also have "list.F \<dots> = set.F (\<lambda>i. xs ! i) {0..<length xs}"
 | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 56 | by (subst distinct_set_conv_list [symmetric]) auto | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 57 | finally show ?thesis . | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 58 | qed | 
| 
4c1347e172b1
moved over material from AFP; most importantly on algebraic numbers and algebraically closed fields
 Manuel Eberl <eberlm@in.tum.de> parents: 
79017diff
changeset | 59 | |
| 58320 | 60 | end | 
| 61 | ||
| 62 | ||
| 60758 | 63 | subsection \<open>List summation\<close> | 
| 58320 | 64 | |
| 65 | context monoid_add | |
| 66 | begin | |
| 67 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 68 | sublocale sum_list: monoid_list plus 0 | 
| 61776 | 69 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 70 | sum_list = sum_list.F .. | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 71 | |
| 58320 | 72 | end | 
| 73 | ||
| 74 | context comm_monoid_add | |
| 75 | begin | |
| 76 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 77 | sublocale sum_list: comm_monoid_list plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 78 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 79 | "monoid_list.F plus 0 = sum_list" | 
| 58320 | 80 | proof - | 
| 81 | show "comm_monoid_list plus 0" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 82 | then interpret sum_list: comm_monoid_list plus 0 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 83 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 58101 | 84 | qed | 
| 85 | ||
| 64267 | 86 | sublocale sum: comm_monoid_list_set plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 87 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 88 | "monoid_list.F plus 0 = sum_list" | 
| 64267 | 89 | and "comm_monoid_set.F plus 0 = sum" | 
| 58320 | 90 | proof - | 
| 91 | show "comm_monoid_list_set plus 0" .. | |
| 64267 | 92 | then interpret sum: comm_monoid_list_set plus 0 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 93 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 64267 | 94 | from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym) | 
| 58320 | 95 | qed | 
| 96 | ||
| 97 | end | |
| 98 | ||
| 60758 | 99 | text \<open>Some syntactic sugar for summing a function over a list:\<close> | 
| 81595 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 100 | |
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 101 | open_bundle sum_list_syntax | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 102 | begin | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 103 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 104 | syntax (ASCII) | 
| 80934 | 105 | "_sum_list" :: "pttrn => 'a list => 'b => 'b" (\<open>(\<open>indent=3 notation=\<open>binder SUM\<close>\<close>SUM _<-_. _)\<close> [0, 51, 10] 10) | 
| 58101 | 106 | syntax | 
| 80934 | 107 | "_sum_list" :: "pttrn => 'a list => 'b => 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Sum>\<close>\<close>\<Sum>_\<leftarrow>_. _)\<close> [0, 51, 10] 10) | 
| 80760 | 108 | syntax_consts | 
| 109 | "_sum_list" == sum_list | |
| 61799 | 110 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 111 | "\<Sum>x\<leftarrow>xs. b" == "CONST sum_list (CONST map (\<lambda>x. b) xs)" | 
| 58101 | 112 | |
| 81595 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 113 | end | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 114 | |
| 70928 | 115 | context | 
| 116 | includes lifting_syntax | |
| 117 | begin | |
| 118 | ||
| 119 | lemma sum_list_transfer [transfer_rule]: | |
| 120 | "(list_all2 A ===> A) sum_list sum_list" | |
| 121 | if [transfer_rule]: "A 0 0" "(A ===> A ===> A) (+) (+)" | |
| 122 | unfolding sum_list.eq_foldr [abs_def] | |
| 123 | by transfer_prover | |
| 124 | ||
| 125 | end | |
| 126 | ||
| 60758 | 127 | text \<open>TODO duplicates\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 128 | lemmas sum_list_simps = sum_list.Nil sum_list.Cons | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 129 | lemmas sum_list_append = sum_list.append | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 130 | lemmas sum_list_rev = sum_list.rev | 
| 58320 | 131 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 132 | lemma (in monoid_add) fold_plus_sum_list_rev: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 133 | "fold plus xs = plus (sum_list (rev xs))" | 
| 58320 | 134 | proof | 
| 135 | fix x | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 136 | have "fold plus xs x = sum_list (rev xs @ [x])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 137 | by (simp add: foldr_conv_fold sum_list.eq_foldr) | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 138 | also have "\<dots> = sum_list (rev xs) + x" | 
| 58320 | 139 | by simp | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 140 | finally show "fold plus xs x = sum_list (rev xs) + x" | 
| 58320 | 141 | . | 
| 142 | qed | |
| 143 | ||
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 144 | lemma sum_list_of_nat: "sum_list (map of_nat xs) = of_nat (sum_list xs)" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 145 | by (induction xs) auto | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 146 | |
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 147 | lemma sum_list_of_int: "sum_list (map of_int xs) = of_int (sum_list xs)" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 148 | by (induction xs) auto | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 149 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 150 | lemma (in comm_monoid_add) sum_list_map_remove1: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 151 | "x \<in> set xs \<Longrightarrow> sum_list (map f xs) = f x + sum_list (map f (remove1 x xs))" | 
| 58101 | 152 | by (induct xs) (auto simp add: ac_simps) | 
| 153 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 154 | lemma (in monoid_add) size_list_conv_sum_list: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 155 | "size_list f xs = sum_list (map f xs) + size xs" | 
| 58101 | 156 | by (induct xs) auto | 
| 157 | ||
| 158 | lemma (in monoid_add) length_concat: | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 159 | "length (concat xss) = sum_list (map length xss)" | 
| 58101 | 160 | by (induct xss) simp_all | 
| 161 | ||
| 162 | lemma (in monoid_add) length_product_lists: | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67489diff
changeset | 163 | "length (product_lists xss) = foldr (*) (map length xss) 1" | 
| 58101 | 164 | proof (induct xss) | 
| 165 | case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def) | |
| 166 | qed simp | |
| 167 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 168 | lemma (in monoid_add) sum_list_map_filter: | 
| 58101 | 169 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 170 | shows "sum_list (map f (filter P xs)) = sum_list (map f xs)" | 
| 58101 | 171 | using assms by (induct xs) auto | 
| 172 | ||
| 69231 | 173 | lemma sum_list_filter_le_nat: | 
| 174 | fixes f :: "'a \<Rightarrow> nat" | |
| 175 | shows "sum_list (map f (filter P xs)) \<le> sum_list (map f xs)" | |
| 176 | by(induction xs; simp) | |
| 177 | ||
| 64267 | 178 | lemma (in comm_monoid_add) distinct_sum_list_conv_Sum: | 
| 179 | "distinct xs \<Longrightarrow> sum_list xs = Sum (set xs)" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 180 | by (metis local.sum.set_conv_list local.sum_list_def map_ident remdups_id_iff_distinct) | 
| 58101 | 181 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 182 | lemma sum_list_upt[simp]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 183 |   "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
 | 
| 64267 | 184 | by(simp add: distinct_sum_list_conv_Sum) | 
| 58995 | 185 | |
| 66311 | 186 | context ordered_comm_monoid_add | 
| 187 | begin | |
| 188 | ||
| 189 | lemma sum_list_nonneg: "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> 0 \<le> sum_list xs" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 190 | by (induction xs) auto | 
| 66311 | 191 | |
| 192 | lemma sum_list_nonpos: "(\<And>x. x \<in> set xs \<Longrightarrow> x \<le> 0) \<Longrightarrow> sum_list xs \<le> 0" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 193 | by (induction xs) (auto simp: add_nonpos_nonpos) | 
| 58101 | 194 | |
| 66311 | 195 | lemma sum_list_nonneg_eq_0_iff: | 
| 196 | "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> (\<forall>x\<in> set xs. x = 0)" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 197 | by (induction xs) (simp_all add: add_nonneg_eq_0_iff sum_list_nonneg) | 
| 66311 | 198 | |
| 199 | end | |
| 200 | ||
| 201 | context canonically_ordered_monoid_add | |
| 202 | begin | |
| 58101 | 203 | |
| 66311 | 204 | lemma sum_list_eq_0_iff [simp]: | 
| 205 | "sum_list ns = 0 \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | |
| 82097 | 206 | by (simp add: sum_list_nonneg_eq_0_iff) | 
| 66311 | 207 | |
| 208 | lemma member_le_sum_list: | |
| 209 | "x \<in> set xs \<Longrightarrow> x \<le> sum_list xs" | |
| 82097 | 210 | by (induction xs) (auto simp: add_increasing add_increasing2) | 
| 58101 | 211 | |
| 66311 | 212 | lemma elem_le_sum_list: | 
| 213 | "k < size ns \<Longrightarrow> ns ! k \<le> sum_list (ns)" | |
| 82097 | 214 | by (simp add: member_le_sum_list) | 
| 66311 | 215 | |
| 216 | end | |
| 217 | ||
| 218 | lemma (in ordered_cancel_comm_monoid_diff) sum_list_update: | |
| 219 | "k < size xs \<Longrightarrow> sum_list (xs[k := x]) = sum_list xs + x - xs ! k" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 220 | proof (induction xs arbitrary:k) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 221 | case Nil | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 222 | then show ?case by auto | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 223 | next | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 224 | case (Cons a xs) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 225 | then show ?case | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 226 | apply (simp add: add_ac split: nat.split) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 227 | using add_increasing diff_add_assoc elem_le_sum_list zero_le by force | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 228 | qed | 
| 58101 | 229 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 230 | lemma (in monoid_add) sum_list_triv: | 
| 58101 | 231 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | 
| 232 | by (induct xs) (simp_all add: distrib_right) | |
| 233 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 234 | lemma (in monoid_add) sum_list_0 [simp]: | 
| 58101 | 235 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | 
| 236 | by (induct xs) (simp_all add: distrib_right) | |
| 237 | ||
| 61799 | 238 | text\<open>For non-Abelian groups \<open>xs\<close> needs to be reversed on one side:\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 239 | lemma (in ab_group_add) uminus_sum_list_map: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 240 | "- sum_list (map f xs) = sum_list (map (uminus \<circ> f) xs)" | 
| 58101 | 241 | by (induct xs) simp_all | 
| 242 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 243 | lemma (in comm_monoid_add) sum_list_addf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 244 | "(\<Sum>x\<leftarrow>xs. f x + g x) = sum_list (map f xs) + sum_list (map g xs)" | 
| 58101 | 245 | by (induct xs) (simp_all add: algebra_simps) | 
| 246 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 247 | lemma (in ab_group_add) sum_list_subtractf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 248 | "(\<Sum>x\<leftarrow>xs. f x - g x) = sum_list (map f xs) - sum_list (map g xs)" | 
| 58101 | 249 | by (induct xs) (simp_all add: algebra_simps) | 
| 250 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 251 | lemma (in semiring_0) sum_list_const_mult: | 
| 58101 | 252 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | 
| 253 | by (induct xs) (simp_all add: algebra_simps) | |
| 254 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 255 | lemma (in semiring_0) sum_list_mult_const: | 
| 58101 | 256 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | 
| 257 | by (induct xs) (simp_all add: algebra_simps) | |
| 258 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 259 | lemma (in ordered_ab_group_add_abs) sum_list_abs: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 260 | "\<bar>sum_list xs\<bar> \<le> sum_list (map abs xs)" | 
| 58101 | 261 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | 
| 262 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 263 | lemma sum_list_mono: | 
| 58101 | 264 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | 
| 265 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | |
| 69231 | 266 | by (induct xs) (simp, simp add: add_mono) | 
| 267 | ||
| 268 | lemma sum_list_strict_mono: | |
| 269 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, strict_ordered_ab_semigroup_add}"
 | |
| 270 | shows "\<lbrakk> xs \<noteq> []; \<And>x. x \<in> set xs \<Longrightarrow> f x < g x \<rbrakk> | |
| 271 | \<Longrightarrow> sum_list (map f xs) < sum_list (map g xs)" | |
| 272 | proof (induction xs) | |
| 273 | case Nil thus ?case by simp | |
| 274 | next | |
| 275 | case C: (Cons _ xs) | |
| 276 | show ?case | |
| 277 | proof (cases xs) | |
| 278 | case Nil thus ?thesis using C.prems by simp | |
| 279 | next | |
| 280 | case Cons thus ?thesis using C by(simp add: add_strict_mono) | |
| 281 | qed | |
| 282 | qed | |
| 58101 | 283 | |
| 75693 | 284 | text \<open>A much more general version of this monotonicity lemma | 
| 285 | can be formulated with multisets and the multiset order\<close> | |
| 286 | ||
| 287 | lemma sum_list_mono2: fixes xs :: "'a ::ordered_comm_monoid_add list" | |
| 288 | shows "\<lbrakk> length xs = length ys; \<And>i. i < length xs \<longrightarrow> xs!i \<le> ys!i \<rbrakk> | |
| 289 | \<Longrightarrow> sum_list xs \<le> sum_list ys" | |
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 290 | by (induction xs ys rule: list_induct2) (auto simp: nth_Cons' less_Suc_eq_0_disj imp_ex add_mono) | 
| 75693 | 291 | |
| 64267 | 292 | lemma (in monoid_add) sum_list_distinct_conv_sum_set: | 
| 293 | "distinct xs \<Longrightarrow> sum_list (map f xs) = sum f (set xs)" | |
| 58101 | 294 | by (induct xs) simp_all | 
| 295 | ||
| 64267 | 296 | lemma (in monoid_add) interv_sum_list_conv_sum_set_nat: | 
| 297 | "sum_list (map f [m..<n]) = sum f (set [m..<n])" | |
| 298 | by (simp add: sum_list_distinct_conv_sum_set) | |
| 58101 | 299 | |
| 64267 | 300 | lemma (in monoid_add) interv_sum_list_conv_sum_set_int: | 
| 301 | "sum_list (map f [k..l]) = sum f (set [k..l])" | |
| 302 | by (simp add: sum_list_distinct_conv_sum_set) | |
| 58101 | 303 | |
| 69593 | 304 | text \<open>General equivalence between \<^const>\<open>sum_list\<close> and \<^const>\<open>sum\<close>\<close> | 
| 64267 | 305 | lemma (in monoid_add) sum_list_sum_nth: | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 306 | "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 67399 | 307 | using interv_sum_list_conv_sum_set_nat [of "(!) xs" 0 "length xs"] by (simp add: map_nth) | 
| 58101 | 308 | |
| 64267 | 309 | lemma sum_list_map_eq_sum_count: | 
| 310 | "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) (set xs)" | |
| 59728 | 311 | proof(induction xs) | 
| 312 | case (Cons x xs) | |
| 313 | show ?case (is "?l = ?r") | |
| 314 | proof cases | |
| 315 | assume "x \<in> set xs" | |
| 60541 | 316 | have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH) | 
| 60758 | 317 |     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
 | 
| 60541 | 318 |     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
 | 
| 64267 | 319 | by (simp add: sum.insert_remove eq_commute) | 
| 59728 | 320 | finally show ?thesis . | 
| 321 | next | |
| 322 | assume "x \<notin> set xs" | |
| 323 | hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast | |
| 60758 | 324 | thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>) | 
| 59728 | 325 | qed | 
| 326 | qed simp | |
| 327 | ||
| 64267 | 328 | lemma sum_list_map_eq_sum_count2: | 
| 59728 | 329 | assumes "set xs \<subseteq> X" "finite X" | 
| 64267 | 330 | shows "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) X" | 
| 59728 | 331 | proof- | 
| 60541 | 332 | let ?F = "\<lambda>x. count_list xs x * f x" | 
| 64267 | 333 | have "sum ?F X = sum ?F (set xs \<union> (X - set xs))" | 
| 59728 | 334 | using Un_absorb1[OF assms(1)] by(simp) | 
| 64267 | 335 | also have "\<dots> = sum ?F (set xs)" | 
| 59728 | 336 | using assms(2) | 
| 64267 | 337 | by(simp add: sum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel) | 
| 338 | finally show ?thesis by(simp add:sum_list_map_eq_sum_count) | |
| 59728 | 339 | qed | 
| 340 | ||
| 72545 | 341 | lemma sum_list_replicate: "sum_list (replicate n c) = of_nat n * c" | 
| 342 | by(induction n)(auto simp add: distrib_right) | |
| 343 | ||
| 344 | ||
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 345 | lemma sum_list_nonneg: | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 346 | "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 347 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 348 | |
| 69231 | 349 | lemma sum_list_Suc: | 
| 350 | "sum_list (map (\<lambda>x. Suc(f x)) xs) = sum_list (map f xs) + length xs" | |
| 351 | by(induction xs; simp) | |
| 352 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 353 | lemma (in monoid_add) sum_list_map_filter': | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 354 | "sum_list (map f (filter P xs)) = sum_list (map (\<lambda>x. if P x then f x else 0) xs)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 355 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 356 | |
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 357 | text \<open>Summation of a strictly ascending sequence with length \<open>n\<close> | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 358 |   can be upper-bounded by summation over \<open>{0..<n}\<close>.\<close>
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 359 | |
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 360 | lemma sorted_wrt_less_sum_mono_lowerbound: | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 361 |   fixes f :: "nat \<Rightarrow> ('b::ordered_comm_monoid_add)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 362 | assumes mono: "\<And>x y. x\<le>y \<Longrightarrow> f x \<le> f y" | 
| 67399 | 363 | shows "sorted_wrt (<) ns \<Longrightarrow> | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 364 |     (\<Sum>i\<in>{0..<length ns}. f i) \<le> (\<Sum>i\<leftarrow>ns. f i)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 365 | proof (induction ns rule: rev_induct) | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 366 | case Nil | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 367 | then show ?case by simp | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 368 | next | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 369 | case (snoc n ns) | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 370 |   have "sum f {0..<length (ns @ [n])}
 | 
| 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 371 |       = sum f {0..<length ns} + f (length ns)"
 | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 372 | by simp | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 373 |   also have "sum f {0..<length ns} \<le> sum_list (map f ns)"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 374 | using snoc by (auto simp: sorted_wrt_append) | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 375 | also have "length ns \<le> n" | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 376 | using sorted_wrt_less_idx[OF snoc.prems(1), of "length ns"] by auto | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 377 |   finally have "sum f {0..<length (ns @ [n])} \<le> sum_list (map f ns) + f n"
 | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 378 | using mono add_mono by blast | 
| 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 379 | thus ?case by simp | 
| 67489 
f1ba59ddd9a6
drop redundant cong rules
 Lars Hupel <lars.hupel@mytum.de> parents: 
67399diff
changeset | 380 | qed | 
| 66434 
5d7e770c7d5d
added sorted_wrt to List; added Data_Structures/Binomial_Heap.thy
 nipkow parents: 
66311diff
changeset | 381 | |
| 82097 | 382 | (*Note that we also have this for class canonically_ordered_monoid_add*) | 
| 82080 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 383 | lemma member_le_sum_list: | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 384 | fixes x :: "'a :: ordered_comm_monoid_add" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 385 | assumes "x \<in> set xs" "\<And>x. x \<in> set xs \<Longrightarrow> x \<ge> 0" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 386 | shows "x \<le> sum_list xs" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 387 | using assms | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 388 | proof (induction xs) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 389 | case (Cons y xs) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 390 | show ?case | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 391 | proof (cases "y = x") | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 392 | case True | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 393 | have "x + 0 \<le> x + sum_list xs" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 394 | by (intro add_mono order.refl sum_list_nonneg) (use Cons in auto) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 395 | thus ?thesis | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 396 | using True by auto | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 397 | next | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 398 | case False | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 399 | have "0 + x \<le> y + sum_list xs" | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 400 | by (intro add_mono Cons.IH Cons.prems) (use Cons.prems False in auto) | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 401 | thus ?thesis | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 402 | by auto | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 403 | qed | 
| 
0aa2d1c132b2
A couple of theorems proved by Manuel Eberl from his AFP entry Sum_Of_Squares_Count
 paulson <lp15@cam.ac.uk> parents: 
81595diff
changeset | 404 | qed auto | 
| 58101 | 405 | |
| 72024 | 406 | subsection \<open>Horner sums\<close> | 
| 407 | ||
| 408 | context comm_semiring_0 | |
| 409 | begin | |
| 410 | ||
| 411 | definition horner_sum :: \<open>('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b list \<Rightarrow> 'a\<close>
 | |
| 412 | where horner_sum_foldr: \<open>horner_sum f a xs = foldr (\<lambda>x b. f x + a * b) xs 0\<close> | |
| 413 | ||
| 414 | lemma horner_sum_simps [simp]: | |
| 415 | \<open>horner_sum f a [] = 0\<close> | |
| 416 | \<open>horner_sum f a (x # xs) = f x + a * horner_sum f a xs\<close> | |
| 417 | by (simp_all add: horner_sum_foldr) | |
| 418 | ||
| 419 | lemma horner_sum_eq_sum_funpow: | |
| 420 | \<open>horner_sum f a xs = (\<Sum>n = 0..<length xs. ((*) a ^^ n) (f (xs ! n)))\<close> | |
| 421 | proof (induction xs) | |
| 422 | case Nil | |
| 423 | then show ?case | |
| 424 | by simp | |
| 425 | next | |
| 426 | case (Cons x xs) | |
| 427 | then show ?case | |
| 428 | by (simp add: sum.atLeast0_lessThan_Suc_shift sum_distrib_left del: sum.op_ivl_Suc) | |
| 429 | qed | |
| 430 | ||
| 431 | end | |
| 432 | ||
| 433 | context | |
| 434 | includes lifting_syntax | |
| 435 | begin | |
| 436 | ||
| 437 | lemma horner_sum_transfer [transfer_rule]: | |
| 438 | \<open>((B ===> A) ===> A ===> list_all2 B ===> A) horner_sum horner_sum\<close> | |
| 439 | if [transfer_rule]: \<open>A 0 0\<close> | |
| 440 | and [transfer_rule]: \<open>(A ===> A ===> A) (+) (+)\<close> | |
| 441 | and [transfer_rule]: \<open>(A ===> A ===> A) (*) (*)\<close> | |
| 442 | by (unfold horner_sum_foldr) transfer_prover | |
| 443 | ||
| 444 | end | |
| 445 | ||
| 446 | context comm_semiring_1 | |
| 447 | begin | |
| 448 | ||
| 449 | lemma horner_sum_eq_sum: | |
| 450 | \<open>horner_sum f a xs = (\<Sum>n = 0..<length xs. f (xs ! n) * a ^ n)\<close> | |
| 451 | proof - | |
| 452 | have \<open>(*) a ^^ n = (*) (a ^ n)\<close> for n | |
| 453 | by (induction n) (simp_all add: ac_simps) | |
| 454 | then show ?thesis | |
| 455 | by (simp add: horner_sum_eq_sum_funpow ac_simps) | |
| 456 | qed | |
| 457 | ||
| 72619 | 458 | lemma horner_sum_append: | 
| 459 | \<open>horner_sum f a (xs @ ys) = horner_sum f a xs + a ^ length xs * horner_sum f a ys\<close> | |
| 460 | using sum.atLeastLessThan_shift_bounds [of _ 0 \<open>length xs\<close> \<open>length ys\<close>] | |
| 461 | atLeastLessThan_add_Un [of 0 \<open>length xs\<close> \<open>length ys\<close>] | |
| 462 | by (simp add: horner_sum_eq_sum sum_distrib_left sum.union_disjoint ac_simps nth_append power_add) | |
| 463 | ||
| 72024 | 464 | end | 
| 465 | ||
| 75662 | 466 | context linordered_semidom | 
| 467 | begin | |
| 468 | ||
| 469 | lemma horner_sum_nonnegative: | |
| 470 | \<open>0 \<le> horner_sum of_bool 2 bs\<close> | |
| 471 | by (induction bs) simp_all | |
| 472 | ||
| 473 | end | |
| 474 | ||
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 475 | context discrete_linordered_semidom | 
| 75662 | 476 | begin | 
| 477 | ||
| 478 | lemma horner_sum_bound: | |
| 479 | \<open>horner_sum of_bool 2 bs < 2 ^ length bs\<close> | |
| 480 | proof (induction bs) | |
| 481 | case Nil | |
| 482 | then show ?case | |
| 483 | by simp | |
| 484 | next | |
| 485 | case (Cons b bs) | |
| 486 | moreover define a where \<open>a = 2 ^ length bs - horner_sum of_bool 2 bs\<close> | |
| 487 | ultimately have *: \<open>2 ^ length bs = horner_sum of_bool 2 bs + a\<close> | |
| 488 | by simp | |
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 489 | have \<open>0 < a\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 490 | using Cons * by simp | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 491 | moreover have \<open>1 \<le> a\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 492 | using \<open>0 < a\<close> by (simp add: less_eq_iff_succ_less) | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 493 | ultimately have \<open>0 + 1 < a + a\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 494 | by (rule add_less_le_mono) | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 495 | then have \<open>1 < a * 2\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 496 | by (simp add: mult_2_right) | 
| 75662 | 497 | with Cons show ?case | 
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 498 | by (simp add: * algebra_simps) | 
| 75662 | 499 | qed | 
| 500 | ||
| 79017 | 501 | lemma horner_sum_of_bool_2_less: | 
| 502 | \<open>(horner_sum of_bool 2 bs) < 2 ^ length bs\<close> | |
| 503 | by (fact horner_sum_bound) | |
| 504 | ||
| 75662 | 505 | end | 
| 506 | ||
| 507 | lemma nat_horner_sum [simp]: | |
| 508 | \<open>nat (horner_sum of_bool 2 bs) = horner_sum of_bool 2 bs\<close> | |
| 509 | by (induction bs) (auto simp add: nat_add_distrib horner_sum_nonnegative) | |
| 510 | ||
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
75693diff
changeset | 511 | context discrete_linordered_semidom | 
| 75662 | 512 | begin | 
| 513 | ||
| 514 | lemma horner_sum_less_eq_iff_lexordp_eq: | |
| 515 | \<open>horner_sum of_bool 2 bs \<le> horner_sum of_bool 2 cs \<longleftrightarrow> lexordp_eq (rev bs) (rev cs)\<close> | |
| 516 | if \<open>length bs = length cs\<close> | |
| 517 | proof - | |
| 518 | have \<open>horner_sum of_bool 2 (rev bs) \<le> horner_sum of_bool 2 (rev cs) \<longleftrightarrow> lexordp_eq bs cs\<close> | |
| 519 | if \<open>length bs = length cs\<close> for bs cs | |
| 520 | using that proof (induction bs cs rule: list_induct2) | |
| 521 | case Nil | |
| 522 | then show ?case | |
| 523 | by simp | |
| 524 | next | |
| 525 | case (Cons b bs c cs) | |
| 526 | with horner_sum_nonnegative [of \<open>rev bs\<close>] horner_sum_nonnegative [of \<open>rev cs\<close>] | |
| 527 | horner_sum_bound [of \<open>rev bs\<close>] horner_sum_bound [of \<open>rev cs\<close>] | |
| 528 | show ?case | |
| 529 | by (auto simp add: horner_sum_append not_le Cons intro: add_strict_increasing2 add_increasing) | |
| 530 | qed | |
| 531 | from that this [of \<open>rev bs\<close> \<open>rev cs\<close>] show ?thesis | |
| 532 | by simp | |
| 533 | qed | |
| 534 | ||
| 535 | lemma horner_sum_less_iff_lexordp: | |
| 536 | \<open>horner_sum of_bool 2 bs < horner_sum of_bool 2 cs \<longleftrightarrow> ord_class.lexordp (rev bs) (rev cs)\<close> | |
| 537 | if \<open>length bs = length cs\<close> | |
| 538 | proof - | |
| 539 | have \<open>horner_sum of_bool 2 (rev bs) < horner_sum of_bool 2 (rev cs) \<longleftrightarrow> ord_class.lexordp bs cs\<close> | |
| 540 | if \<open>length bs = length cs\<close> for bs cs | |
| 541 | using that proof (induction bs cs rule: list_induct2) | |
| 542 | case Nil | |
| 543 | then show ?case | |
| 544 | by simp | |
| 545 | next | |
| 546 | case (Cons b bs c cs) | |
| 547 | with horner_sum_nonnegative [of \<open>rev bs\<close>] horner_sum_nonnegative [of \<open>rev cs\<close>] | |
| 548 | horner_sum_bound [of \<open>rev bs\<close>] horner_sum_bound [of \<open>rev cs\<close>] | |
| 549 | show ?case | |
| 550 | by (auto simp add: horner_sum_append not_less Cons intro: add_strict_increasing2 add_increasing) | |
| 551 | qed | |
| 552 | from that this [of \<open>rev bs\<close> \<open>rev cs\<close>] show ?thesis | |
| 553 | by simp | |
| 554 | qed | |
| 555 | ||
| 556 | end | |
| 557 | ||
| 72024 | 558 | |
| 69593 | 559 | subsection \<open>Further facts about \<^const>\<open>List.n_lists\<close>\<close> | 
| 58101 | 560 | |
| 561 | lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n" | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 562 | by (induct n) (auto simp add: comp_def length_concat sum_list_triv) | 
| 58101 | 563 | |
| 564 | lemma distinct_n_lists: | |
| 565 | assumes "distinct xs" | |
| 566 | shows "distinct (List.n_lists n xs)" | |
| 567 | proof (rule card_distinct) | |
| 568 | from assms have card_length: "card (set xs) = length xs" by (rule distinct_card) | |
| 569 | have "card (set (List.n_lists n xs)) = card (set xs) ^ n" | |
| 570 | proof (induct n) | |
| 571 | case 0 then show ?case by simp | |
| 572 | next | |
| 573 | case (Suc n) | |
| 574 | moreover have "card (\<Union>ys\<in>set (List.n_lists n xs). (\<lambda>y. y # ys) ` set xs) | |
| 575 | = (\<Sum>ys\<in>set (List.n_lists n xs). card ((\<lambda>y. y # ys) ` set xs))" | |
| 576 | by (rule card_UN_disjoint) auto | |
| 577 | moreover have "\<And>ys. card ((\<lambda>y. y # ys) ` set xs) = card (set xs)" | |
| 578 | by (rule card_image) (simp add: inj_on_def) | |
| 579 | ultimately show ?case by auto | |
| 580 | qed | |
| 581 | also have "\<dots> = length xs ^ n" by (simp add: card_length) | |
| 582 | finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)" | |
| 583 | by (simp add: length_n_lists) | |
| 584 | qed | |
| 585 | ||
| 586 | ||
| 60758 | 587 | subsection \<open>Tools setup\<close> | 
| 58101 | 588 | |
| 64267 | 589 | lemmas sum_code = sum.set_conv_list | 
| 58320 | 590 | |
| 64267 | 591 | lemma sum_set_upto_conv_sum_list_int [code_unfold]: | 
| 592 | "sum f (set [i..j::int]) = sum_list (map f [i..j])" | |
| 593 | by (simp add: interv_sum_list_conv_sum_set_int) | |
| 58101 | 594 | |
| 64267 | 595 | lemma sum_set_upt_conv_sum_list_nat [code_unfold]: | 
| 596 | "sum f (set [m..<n]) = sum_list (map f [m..<n])" | |
| 597 | by (simp add: interv_sum_list_conv_sum_set_nat) | |
| 58101 | 598 | |
| 58368 | 599 | |
| 60758 | 600 | subsection \<open>List product\<close> | 
| 58368 | 601 | |
| 602 | context monoid_mult | |
| 603 | begin | |
| 604 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 605 | sublocale prod_list: monoid_list times 1 | 
| 61776 | 606 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 607 | prod_list = prod_list.F .. | 
| 58368 | 608 | |
| 58320 | 609 | end | 
| 58368 | 610 | |
| 611 | context comm_monoid_mult | |
| 612 | begin | |
| 613 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 614 | sublocale prod_list: comm_monoid_list times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 615 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 616 | "monoid_list.F times 1 = prod_list" | 
| 58368 | 617 | proof - | 
| 618 | show "comm_monoid_list times 1" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 619 | then interpret prod_list: comm_monoid_list times 1 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 620 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 58368 | 621 | qed | 
| 622 | ||
| 64272 | 623 | sublocale prod: comm_monoid_list_set times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 624 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 625 | "monoid_list.F times 1 = prod_list" | 
| 64272 | 626 | and "comm_monoid_set.F times 1 = prod" | 
| 58368 | 627 | proof - | 
| 628 | show "comm_monoid_list_set times 1" .. | |
| 64272 | 629 | then interpret prod: comm_monoid_list_set times 1 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 630 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 64272 | 631 | from prod_def show "comm_monoid_set.F times 1 = prod" by (auto intro: sym) | 
| 58368 | 632 | qed | 
| 633 | ||
| 634 | end | |
| 635 | ||
| 60758 | 636 | text \<open>Some syntactic sugar:\<close> | 
| 58368 | 637 | |
| 81595 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 638 | open_bundle prod_list_syntax | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 639 | begin | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 640 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 641 | syntax (ASCII) | 
| 80934 | 642 | "_prod_list" :: "pttrn => 'a list => 'b => 'b" (\<open>(\<open>indent=3 notation=\<open>binder PROD\<close>\<close>PROD _<-_. _)\<close> [0, 51, 10] 10) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 643 | syntax | 
| 80934 | 644 | "_prod_list" :: "pttrn => 'a list => 'b => 'b" (\<open>(\<open>indent=3 notation=\<open>binder \<Prod>\<close>\<close>\<Prod>_\<leftarrow>_. _)\<close> [0, 51, 10] 10) | 
| 80760 | 645 | syntax_consts | 
| 646 | "_prod_list" \<rightleftharpoons> prod_list | |
| 61799 | 647 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 648 | "\<Prod>x\<leftarrow>xs. b" \<rightleftharpoons> "CONST prod_list (CONST map (\<lambda>x. b) xs)" | 
| 58368 | 649 | |
| 81595 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 650 | end | 
| 
ed264056f5dc
more syntax bundles, e.g. to explore terms without notation;
 wenzelm parents: 
80934diff
changeset | 651 | |
| 70928 | 652 | context | 
| 653 | includes lifting_syntax | |
| 654 | begin | |
| 655 | ||
| 656 | lemma prod_list_transfer [transfer_rule]: | |
| 657 | "(list_all2 A ===> A) prod_list prod_list" | |
| 658 | if [transfer_rule]: "A 1 1" "(A ===> A ===> A) (*) (*)" | |
| 659 | unfolding prod_list.eq_foldr [abs_def] | |
| 660 | by transfer_prover | |
| 661 | ||
| 58368 | 662 | end | 
| 70928 | 663 | |
| 664 | lemma prod_list_zero_iff: | |
| 665 |   "prod_list xs = 0 \<longleftrightarrow> (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \<in> set xs"
 | |
| 666 | by (induction xs) simp_all | |
| 667 | ||
| 668 | end |