| 60237 |      1 | (*  Title:      HOL/Quotient_Examples/Lifting_Code_Dt_Test.thy
 | 
|  |      2 |     Author:     Ondrej Kuncar, TU Muenchen
 | 
|  |      3 |     Copyright   2015
 | 
|  |      4 | 
 | 
|  |      5 | Miscellaneous lift_definition(code_dt) definitions (for testing purposes).
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | theory Lifting_Code_Dt_Test
 | 
|  |      9 | imports Main
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | (* basic examples *)
 | 
|  |     13 | 
 | 
|  |     14 | typedef bool2 = "{x. x}" by auto
 | 
|  |     15 | 
 | 
|  |     16 | setup_lifting type_definition_bool2
 | 
|  |     17 | 
 | 
|  |     18 | lift_definition(code_dt) f1 :: "bool2 option" is "Some True" by simp
 | 
|  |     19 | 
 | 
|  |     20 | lift_definition(code_dt) f2 :: "bool2 list" is "[True]" by simp
 | 
|  |     21 | 
 | 
|  |     22 | lift_definition(code_dt) f3 :: "bool2 \<times> int" is "(True, 42)" by simp
 | 
|  |     23 | 
 | 
|  |     24 | lift_definition(code_dt) f4 :: "int + bool2" is "Inr True" by simp
 | 
|  |     25 | 
 | 
|  |     26 | lift_definition(code_dt) f5 :: "'a \<Rightarrow> (bool2 \<times> 'a) option" is "\<lambda>x. Some (True, x)" by simp
 | 
|  |     27 | 
 | 
|  |     28 | (* ugly (i.e., sensitive to rewriting done in my tactics) definition of T *)
 | 
|  |     29 | 
 | 
|  |     30 | typedef 'a T = "{ x::'a. \<forall>(y::'a) z::'a. \<exists>(w::'a). (z = z) \<and> eq_onp top y y 
 | 
|  |     31 |   \<or> rel_prod (eq_onp top) (eq_onp top) (x, y) (x, y) \<longrightarrow> pred_prod top top (w, w) }"
 | 
|  |     32 |   by auto
 | 
|  |     33 | 
 | 
|  |     34 | setup_lifting type_definition_T
 | 
|  |     35 | 
 | 
|  |     36 | lift_definition(code_dt) f6 :: "bool T option" is "Some True" by simp
 | 
|  |     37 | 
 | 
|  |     38 | lift_definition(code_dt) f7 :: "(bool T \<times> int) option" is "Some (True, 42)" by simp
 | 
|  |     39 | 
 | 
|  |     40 | lift_definition(code_dt) f8 :: "bool T \<Rightarrow> int \<Rightarrow> (bool T \<times> int) option" 
 | 
|  |     41 |   is "\<lambda>x y. if x then Some (x, y) else None" by simp
 | 
|  |     42 | 
 | 
|  |     43 | lift_definition(code_dt) f9 :: "nat \<Rightarrow> ((bool T \<times> int) option) list \<times> nat" 
 | 
|  |     44 |   is "\<lambda>x. ([Some (True, 42)], x)" by simp
 | 
|  |     45 | 
 | 
|  |     46 | (* complicated nested datatypes *)
 | 
|  |     47 | 
 | 
|  |     48 | (* stolen from Datatype_Examples *)
 | 
|  |     49 | datatype 'a tree = Empty | Node 'a "'a tree list"
 | 
|  |     50 | 
 | 
|  |     51 | datatype 'a ttree = TEmpty | TNode 'a "'a ttree list tree"
 | 
|  |     52 | 
 | 
|  |     53 | datatype 'a tttree = TEmpty | TNode 'a "'a tttree list ttree list tree"
 | 
|  |     54 | 
 | 
|  |     55 | lift_definition(code_dt) f10 :: "int \<Rightarrow> int T tree" is "\<lambda>i. Node i [Node i Nil, Empty]" by simp
 | 
|  |     56 | 
 | 
|  |     57 | lift_definition(code_dt) f11 :: "int \<Rightarrow> int T ttree" 
 | 
|  |     58 |   is "\<lambda>i. ttree.TNode i (Node [ttree.TNode i Empty] [])" by simp
 | 
|  |     59 | 
 | 
|  |     60 | lift_definition(code_dt) f12 :: "int \<Rightarrow> int T tttree" is "\<lambda>i. tttree.TNode i Empty" by simp
 | 
|  |     61 | 
 | 
|  |     62 | (* Phantom type variables *)
 | 
|  |     63 | 
 | 
|  |     64 | datatype 'a phantom = PH1 | PH2 
 | 
|  |     65 | 
 | 
|  |     66 | datatype ('a, 'b) phantom2 = PH21 'a | PH22 "'a option"
 | 
|  |     67 | 
 | 
|  |     68 | lift_definition(code_dt) f13 :: "int \<Rightarrow> int T phantom" is "\<lambda>i. PH1" by auto
 | 
|  |     69 | 
 | 
|  |     70 | lift_definition(code_dt) f14 :: "int \<Rightarrow> (int T, nat T) phantom2" is "\<lambda>i. PH22 (Some i)" by auto
 | 
|  |     71 | 
 | 
|  |     72 | (* Mutual datatypes *)
 | 
|  |     73 | 
 | 
|  |     74 | datatype 'a M1 = Empty 'a | CM "'a M2"
 | 
|  |     75 | and 'a M2 = CM2 "'a M1"
 | 
|  |     76 | 
 | 
|  |     77 | lift_definition(code_dt) f15 :: "int \<Rightarrow> int T M1" is "\<lambda>i. Empty i" by auto
 | 
|  |     78 | 
 | 
|  |     79 | (* Codatatypes *)
 | 
|  |     80 | 
 | 
|  |     81 | codatatype 'a stream = S 'a "'a stream"
 | 
|  |     82 | 
 | 
|  |     83 | primcorec 
 | 
|  |     84 |   sconst :: "'a \<Rightarrow> 'a stream" where
 | 
|  |     85 |   "sconst a = S a (sconst a)"
 | 
|  |     86 | 
 | 
|  |     87 | lift_definition(code_dt) f16 :: "int \<Rightarrow> int T stream" is "\<lambda>i. sconst i"  unfolding pred_stream_def
 | 
|  |     88 | by auto
 | 
|  |     89 | 
 | 
|  |     90 | (* Sort constraints *)
 | 
|  |     91 | 
 | 
|  |     92 | datatype ('a::finite, 'b::finite) F = F 'a | F2 'b
 | 
|  |     93 | 
 | 
|  |     94 | instance T :: (finite) finite by (default, transfer, auto)
 | 
|  |     95 | 
 | 
|  |     96 | lift_definition(code_dt) f17 :: "bool \<Rightarrow> (bool T, 'b::finite) F" is "\<lambda>b. F b" by auto
 | 
|  |     97 | 
 | 
|  |     98 | export_code f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 
 | 
|  |     99 |   checking SML OCaml? Haskell? Scala? 
 | 
|  |    100 | 
 | 
|  |    101 | end
 |