src/HOL/Library/Convex.thy
author huffman
Thu, 12 Sep 2013 09:33:36 -0700
changeset 53596 d29d63460d84
parent 51642 400ec5ae7f8f
child 53620 3c7f5e7926dc
permissions -rw-r--r--
new lemmas
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
36648
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     1
(*  Title:      HOL/Library/Convex.thy
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     2
    Author:     Armin Heller, TU Muenchen
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     3
    Author:     Johannes Hoelzl, TU Muenchen
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     4
*)
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     5
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     6
header {* Convexity in real vector spaces *}
43b66dcd9266 Add Convex to Library build
hoelzl
parents: 36623
diff changeset
     7
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
     8
theory Convex
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
     9
imports Product_Vector
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    10
begin
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    11
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    12
subsection {* Convexity. *}
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    13
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    14
definition convex :: "'a::real_vector set \<Rightarrow> bool"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    15
  where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    16
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    17
lemma convex_alt:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    18
  "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    19
  (is "_ \<longleftrightarrow> ?alt")
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    20
proof
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    21
  assume alt[rule_format]: ?alt
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    22
  { fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    23
    assume "0 \<le> u" "0 \<le> v"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    24
    moreover assume "u + v = 1" then have "u = 1 - v" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    25
    ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto }
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    26
  then show "convex s" unfolding convex_def by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    27
qed (auto simp: convex_def)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    28
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    29
lemma mem_convex:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    30
  assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    31
  shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    32
  using assms unfolding convex_alt by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    33
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    34
lemma convex_empty[intro]: "convex {}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    35
  unfolding convex_def by simp
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    36
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    37
lemma convex_singleton[intro]: "convex {a}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    38
  unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    39
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    40
lemma convex_UNIV[intro]: "convex UNIV"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    41
  unfolding convex_def by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    42
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    43
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    44
  unfolding convex_def by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    45
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    46
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    47
  unfolding convex_def by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    48
53596
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    49
lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)"
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    50
  unfolding convex_def by auto
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    51
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    52
lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)"
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    53
  unfolding convex_def by auto
d29d63460d84 new lemmas
huffman
parents: 51642
diff changeset
    54
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    55
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    56
  unfolding convex_def
44142
8e27e0177518 avoid warnings about duplicate rules
huffman
parents: 43337
diff changeset
    57
  by (auto simp: inner_add intro!: convex_bound_le)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    58
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    59
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    60
proof -
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    61
  have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    62
  show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    63
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    64
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    65
lemma convex_hyperplane: "convex {x. inner a x = b}"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    66
proof -
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    67
  have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    68
  show ?thesis using convex_halfspace_le convex_halfspace_ge
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    69
    by (auto intro!: convex_Int simp: *)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    70
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    71
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    72
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    73
  unfolding convex_def
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    74
  by (auto simp: convex_bound_lt inner_add)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    75
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    76
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    77
   using convex_halfspace_lt[of "-a" "-b"] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    78
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    79
lemma convex_real_interval:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    80
  fixes a b :: "real"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    81
  shows "convex {a..}" and "convex {..b}"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    82
    and "convex {a<..}" and "convex {..<b}"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    83
    and "convex {a..b}" and "convex {a<..b}"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    84
    and "convex {a..<b}" and "convex {a<..<b}"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    85
proof -
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    86
  have "{a..} = {x. a \<le> inner 1 x}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    87
  then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    88
  have "{..b} = {x. inner 1 x \<le> b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    89
  then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    90
  have "{a<..} = {x. a < inner 1 x}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    91
  then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    92
  have "{..<b} = {x. inner 1 x < b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    93
  then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    94
  have "{a..b} = {a..} \<inter> {..b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    95
  then show "convex {a..b}" by (simp only: convex_Int 1 2)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    96
  have "{a<..b} = {a<..} \<inter> {..b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    97
  then show "convex {a<..b}" by (simp only: convex_Int 3 2)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
    98
  have "{a..<b} = {a..} \<inter> {..<b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
    99
  then show "convex {a..<b}" by (simp only: convex_Int 1 4)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   100
  have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   101
  then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   102
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   103
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   104
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   105
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   106
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   107
lemma convex_setsum:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   108
  fixes C :: "'a::real_vector set"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   109
  assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   110
  assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   111
  shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   112
  using assms
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   113
proof (induct s arbitrary:a rule: finite_induct)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   114
  case empty
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   115
  then show ?case by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   116
next
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   117
  case (insert i s) note asms = this
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   118
  { assume "a i = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   119
    then have "(\<Sum> j \<in> s. a j) = 0"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   120
      using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   121
    then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   122
      using setsum_nonneg_0[where 'b=real] asms by fastforce
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   123
    then have ?case using asms by auto }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   124
  moreover
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   125
  { assume asm: "a i \<noteq> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   126
    from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   127
    have fis: "finite (insert i s)" using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   128
    then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   129
    then have "a i < 1" using asm by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   130
    then have i0: "1 - a i > 0" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   131
    let ?a = "\<lambda>j. a j / (1 - a i)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   132
    { fix j assume "j \<in> s"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   133
      then have "?a j \<ge> 0"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   134
        using i0 asms divide_nonneg_pos
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   135
        by fastforce
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   136
    } note a_nonneg = this
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   137
    have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   138
    then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   139
    then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   140
    then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   141
    with asms have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastforce
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   142
    then have "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   143
      using asms[unfolded convex_def, rule_format] yai ai1 by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   144
    then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   145
      using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   146
    then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   147
    then have ?case using setsum.insert asms by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   148
  }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   149
  ultimately show ?case by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   150
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   151
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   152
lemma convex:
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   153
  "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   154
      \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   155
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   156
  fix k :: nat
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   157
  fix u :: "nat \<Rightarrow> real"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   158
  fix x
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   159
  assume "convex s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   160
    "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   161
    "setsum u {1..k} = 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   162
  from this convex_setsum[of "{1 .. k}" s]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   163
  show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   164
next
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   165
  assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   166
    \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   167
  { fix \<mu> :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   168
    fix x y :: 'a
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   169
    assume xy: "x \<in> s" "y \<in> s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   170
    assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   171
    let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   172
    let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   173
    have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   174
    then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   175
    then have "setsum ?u {1 .. 2} = 1"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   176
      using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   177
      by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   178
    with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   179
      using mu xy by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   180
    have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   181
      using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   182
    from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   183
    have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   184
    then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   185
  }
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   186
  then show "convex s" unfolding convex_alt by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   187
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   188
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   189
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   190
lemma convex_explicit:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   191
  fixes s :: "'a::real_vector set"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   192
  shows "convex s \<longleftrightarrow>
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   193
    (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   194
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   195
  fix t
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   196
  fix u :: "'a \<Rightarrow> real"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   197
  assume "convex s" "finite t"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   198
    "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   199
  then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   200
    using convex_setsum[of t s u "\<lambda> x. x"] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   201
next
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   202
  assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   203
    \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   204
  show "convex s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   205
    unfolding convex_alt
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   206
  proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   207
    fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   208
    fix \<mu> :: real
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   209
    assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   210
    { assume "x \<noteq> y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   211
      then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   212
        using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   213
          asm by auto }
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   214
    moreover
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   215
    { assume "x = y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   216
      then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   217
        using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   218
          asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) }
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   219
    ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   220
  qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   221
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   222
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   223
lemma convex_finite:
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   224
  assumes "finite s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   225
  shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   226
                      \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   227
  unfolding convex_explicit
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   228
proof safe
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   229
  fix t u
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   230
  assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   231
    and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   232
  have *: "s \<inter> t = t" using as(2) by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   233
  have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   234
    by simp
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   235
  show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   236
   using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as *
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   237
   by (auto simp: assms setsum_cases if_distrib if_distrib_arg)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   238
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   239
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   240
definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   241
  where "convex_on s f \<longleftrightarrow>
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   242
    (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   243
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   244
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   245
  unfolding convex_on_def by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   246
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   247
lemma convex_add[intro]:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   248
  assumes "convex_on s f" "convex_on s g"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   249
  shows "convex_on s (\<lambda>x. f x + g x)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   250
proof -
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   251
  { fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   252
    assume "x\<in>s" "y\<in>s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   253
    moreover
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   254
    fix u v :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   255
    assume "0 \<le> u" "0 \<le> v" "u + v = 1"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   256
    ultimately
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   257
    have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   258
      using assms unfolding convex_on_def by (auto simp add: add_mono)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   259
    then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   260
      by (simp add: field_simps)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   261
  }
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   262
  then show ?thesis unfolding convex_on_def by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   263
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   264
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   265
lemma convex_cmul[intro]:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   266
  assumes "0 \<le> (c::real)" "convex_on s f"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   267
  shows "convex_on s (\<lambda>x. c * f x)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   268
proof-
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   269
  have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   270
    by (simp add: field_simps)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   271
  show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   272
    unfolding convex_on_def and * by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   273
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   274
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   275
lemma convex_lower:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   276
  assumes "convex_on s f"  "x\<in>s"  "y \<in> s"  "0 \<le> u"  "0 \<le> v"  "u + v = 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   277
  shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   278
proof-
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   279
  let ?m = "max (f x) (f y)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   280
  have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 36778
diff changeset
   281
    using assms(4,5) by (auto simp add: mult_left_mono add_mono)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   282
  also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[symmetric] by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   283
  finally show ?thesis
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   284
    using assms unfolding convex_on_def by fastforce
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   285
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   286
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   287
lemma convex_distance[intro]:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   288
  fixes s :: "'a::real_normed_vector set"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   289
  shows "convex_on s (\<lambda>x. dist a x)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   290
proof (auto simp add: convex_on_def dist_norm)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   291
  fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   292
  assume "x\<in>s" "y\<in>s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   293
  fix u v :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   294
  assume "0 \<le> u" "0 \<le> v" "u + v = 1"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   295
  have "a = u *\<^sub>R a + v *\<^sub>R a"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   296
    unfolding scaleR_left_distrib[symmetric] and `u+v=1` by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   297
  then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   298
    by (auto simp add: algebra_simps)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   299
  show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   300
    unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   301
    using `0 \<le> u` `0 \<le> v` by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   302
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   303
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   304
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   305
subsection {* Arithmetic operations on sets preserve convexity. *}
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   306
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   307
lemma convex_scaling:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   308
  assumes "convex s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   309
  shows"convex ((\<lambda>x. c *\<^sub>R x) ` s)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   310
  using assms unfolding convex_def image_iff
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   311
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   312
  fix x xa y xb :: "'a::real_vector"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   313
  fix u v :: real
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   314
  assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   315
    "xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   316
  show "\<exists>x\<in>s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   317
    using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by (auto simp add: algebra_simps)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   318
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   319
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   320
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   321
  using assms unfolding convex_def image_iff
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   322
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   323
  fix x xa y xb :: "'a::real_vector"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   324
  fix u v :: real
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   325
  assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   326
    "xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   327
  show "\<exists>x\<in>s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   328
    using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   329
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   330
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   331
lemma convex_sums:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   332
  assumes "convex s" "convex t"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   333
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   334
  using assms unfolding convex_def image_iff
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   335
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   336
  fix xa xb ya yb
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   337
  assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   338
  fix u v :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   339
  assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   340
  show "\<exists>x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \<and> x \<in> s \<and> y \<in> t"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   341
    using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   342
      assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   343
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   344
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   345
lemma convex_differences:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   346
  assumes "convex s" "convex t"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   347
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   348
proof -
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   349
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   350
  proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   351
    fix x x' y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   352
    assume "x' \<in> s" "y \<in> t"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   353
    then show "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   354
      using exI[of _ x'] exI[of _ "-y"] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   355
  next
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   356
    fix x x' y y'
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   357
    assume "x' \<in> s" "y' \<in> t"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   358
    then show "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   359
      using exI[of _ x'] exI[of _ y'] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   360
  qed
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   361
  then show ?thesis
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   362
    using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   363
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   364
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   365
lemma convex_translation:
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   366
  assumes "convex s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   367
  shows "convex ((\<lambda>x. a + x) ` s)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   368
proof -
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   369
  have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   370
  then show ?thesis
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   371
    using convex_sums[OF convex_singleton[of a] assms] by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   372
qed
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   373
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   374
lemma convex_affinity:
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   375
  assumes "convex s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   376
  shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   377
proof -
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   378
  have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   379
  then show ?thesis
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   380
    using convex_translation[OF convex_scaling[OF assms], of a c] by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   381
qed
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   382
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   383
lemma convex_linear_image:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   384
  assumes c:"convex s" and l:"bounded_linear f"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   385
  shows "convex(f ` s)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   386
proof (auto simp add: convex_def)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   387
  interpret f: bounded_linear f by fact
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   388
  fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   389
  assume xy: "x \<in> s" "y \<in> s"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   390
  fix u v :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   391
  assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   392
  show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   393
    using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   394
      c[unfolded convex_def] xy uv by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   395
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   396
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   397
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   398
lemma pos_is_convex: "convex {0 :: real <..}"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   399
  unfolding convex_alt
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   400
proof safe
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   401
  fix y x \<mu> :: real
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   402
  assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   403
  { assume "\<mu> = 0"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   404
    then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   405
    then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   406
  moreover
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   407
  { assume "\<mu> = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   408
    then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   409
  moreover
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   410
  { assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   411
    then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   412
    then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36648
diff changeset
   413
      by (auto simp add: add_pos_pos mult_pos_pos) }
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   414
  ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastforce
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   415
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   416
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   417
lemma convex_on_setsum:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   418
  fixes a :: "'a \<Rightarrow> real"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   419
    and y :: "'a \<Rightarrow> 'b::real_vector"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   420
    and f :: "'b \<Rightarrow> real"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   421
  assumes "finite s" "s \<noteq> {}"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   422
    and "convex_on C f"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   423
    and "convex C"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   424
    and "(\<Sum> i \<in> s. a i) = 1"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   425
    and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   426
    and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   427
  shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   428
  using assms
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   429
proof (induct s arbitrary: a rule: finite_ne_induct)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   430
  case (singleton i)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   431
  then have ai: "a i = 1" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   432
  then show ?case by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   433
next
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   434
  case (insert i s) note asms = this
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   435
  then have "convex_on C f" by simp
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   436
  from this[unfolded convex_on_def, rule_format]
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   437
  have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   438
      \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   439
    by simp
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   440
  { assume "a i = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   441
    then have "(\<Sum> j \<in> s. a j) = 0"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   442
      using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   443
    then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   444
      using setsum_nonneg_0[where 'b=real] asms by fastforce
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   445
    then have ?case using asms by auto }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   446
  moreover
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   447
  { assume asm: "a i \<noteq> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   448
    from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   449
    have fis: "finite (insert i s)" using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   450
    then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   451
    then have "a i < 1" using asm by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   452
    then have i0: "1 - a i > 0" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   453
    let ?a = "\<lambda>j. a j / (1 - a i)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   454
    { fix j assume "j \<in> s"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   455
      then have "?a j \<ge> 0"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   456
        using i0 asms divide_nonneg_pos
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   457
        by fastforce }
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   458
    note a_nonneg = this
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   459
    have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   460
    then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   461
    then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   462
    then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   463
    have "convex C" using asms by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   464
    then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   465
      using asms convex_setsum[OF `finite s`
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   466
        `convex C` a1 a_nonneg] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   467
    have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   468
      using a_nonneg a1 asms by blast
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   469
    have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   470
      using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   471
      by (auto simp only:add_commute)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   472
    also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   473
      using i0 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   474
    also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   475
      using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric]
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   476
      by (auto simp:algebra_simps)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   477
    also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36648
diff changeset
   478
      by (auto simp: divide_inverse)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   479
    also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   480
      using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   481
      by (auto simp add:add_commute)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   482
    also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   483
      using add_right_mono[OF mult_left_mono[of _ _ "1 - a i",
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   484
        OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   485
    also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44142
diff changeset
   486
      unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   487
    also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   488
    also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   489
    finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   490
      by simp }
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   491
  ultimately show ?case by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   492
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   493
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   494
lemma convex_on_alt:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   495
  fixes C :: "'a::real_vector set"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   496
  assumes "convex C"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   497
  shows "convex_on C f =
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   498
  (\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   499
      \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   500
proof safe
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   501
  fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   502
  fix \<mu> :: real
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   503
  assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   504
  from this[unfolded convex_on_def, rule_format]
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   505
  have "\<And>u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   506
  from this[of "\<mu>" "1 - \<mu>", simplified] asms
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   507
  show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   508
next
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   509
  assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   510
  { fix x y
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   511
    fix u v :: real
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   512
    assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   513
    then have[simp]: "1 - u = v" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   514
    from asm[rule_format, of x y u]
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   515
    have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   516
  }
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   517
  then show "convex_on C f" unfolding convex_on_def by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   518
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   519
43337
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   520
lemma convex_on_diff:
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   521
  fixes f :: "real \<Rightarrow> real"
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   522
  assumes f: "convex_on I f" and I: "x\<in>I" "y\<in>I" and t: "x < t" "t < y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   523
  shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   524
    "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
43337
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   525
proof -
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   526
  def a \<equiv> "(t - y) / (x - y)"
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   527
  with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps)
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   528
  with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   529
    by (auto simp: convex_on_def)
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   530
  have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps)
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   531
  also have "\<dots> = t" unfolding a_def using `x < t` `t < y` by simp
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   532
  finally have "f t \<le> a * f x + (1 - a) * f y" using cvx by simp
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   533
  also have "\<dots> = a * (f x - f y) + f y" by (simp add: field_simps)
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   534
  finally have "f t - f y \<le> a * (f x - f y)" by simp
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   535
  with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
44142
8e27e0177518 avoid warnings about duplicate rules
huffman
parents: 43337
diff changeset
   536
    by (simp add: le_divide_eq divide_le_eq field_simps a_def)
43337
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   537
  with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
44142
8e27e0177518 avoid warnings about duplicate rules
huffman
parents: 43337
diff changeset
   538
    by (simp add: le_divide_eq divide_le_eq field_simps)
43337
57a1c19f8e3b lemma about differences of convex functions
hoelzl
parents: 38642
diff changeset
   539
qed
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   540
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   541
lemma pos_convex_function:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   542
  fixes f :: "real \<Rightarrow> real"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   543
  assumes "convex C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   544
    and leq: "\<And>x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   545
  shows "convex_on C f"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   546
  unfolding convex_on_alt[OF assms(1)]
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   547
  using assms
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   548
proof safe
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   549
  fix x y \<mu> :: real
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   550
  let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   551
  assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   552
  then have "1 - \<mu> \<ge> 0" by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   553
  then have xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   554
  have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   555
            \<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
38642
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 36778
diff changeset
   556
    using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`]
8fa437809c67 dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
haftmann
parents: 36778
diff changeset
   557
      mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   558
  then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   559
    by (auto simp add: field_simps)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   560
  then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   561
    using convex_on_alt by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   562
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   563
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   564
lemma atMostAtLeast_subset_convex:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   565
  fixes C :: "real set"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   566
  assumes "convex C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   567
    and "x \<in> C" "y \<in> C" "x < y"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   568
  shows "{x .. y} \<subseteq> C"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   569
proof safe
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   570
  fix z assume zasm: "z \<in> {x .. y}"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   571
  { assume asm: "x < z" "z < y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   572
    let ?\<mu> = "(y - z) / (y - x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   573
    have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add: field_simps)
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   574
    then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   575
      using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   576
      by (simp add: algebra_simps)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   577
    have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   578
      by (auto simp add: field_simps)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   579
    also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   580
      using assms unfolding add_divide_distrib by (auto simp: field_simps)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   581
    also have "\<dots> = z"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   582
      using assms by (auto simp: field_simps)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   583
    finally have "z \<in> C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   584
      using comb by auto }
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   585
  note less = this
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   586
  show "z \<in> C" using zasm less assms
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   587
    unfolding atLeastAtMost_iff le_less by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   588
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   589
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   590
lemma f''_imp_f':
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   591
  fixes f :: "real \<Rightarrow> real"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   592
  assumes "convex C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   593
    and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   594
    and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   595
    and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   596
    and "x \<in> C" "y \<in> C"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   597
  shows "f' x * (y - x) \<le> f y - f x"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   598
  using assms
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   599
proof -
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   600
  { fix x y :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   601
    assume asm: "x \<in> C" "y \<in> C" "y > x"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   602
    then have ge: "y - x > 0" "y - x \<ge> 0" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   603
    from asm have le: "x - y < 0" "x - y \<le> 0" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   604
    then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   605
      using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`],
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   606
        THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   607
      by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   608
    then have "z1 \<in> C" using atMostAtLeast_subset_convex
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   609
      `convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   610
    from z1 have z1': "f x - f y = (x - y) * f' z1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   611
      by (simp add:field_simps)
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   612
    obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   613
      using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`],
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   614
        THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   615
      by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   616
    obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   617
      using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`],
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   618
        THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   619
      by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   620
    have "f' y - (f x - f y) / (x - y) = f' y - f' z1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   621
      using asm z1' by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   622
    also have "\<dots> = (y - z1) * f'' z3" using z3 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   623
    finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   624
    have A': "y - z1 \<ge> 0" using z1 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   625
    have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   626
      `convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   627
    then have B': "f'' z3 \<ge> 0" using assms by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   628
    from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   629
    from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   630
    from mult_right_mono_neg[OF this le(2)]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   631
    have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36648
diff changeset
   632
      by (simp add: algebra_simps)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   633
    then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   634
    then have res: "f' y * (x - y) \<le> f x - f y" by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   635
    have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   636
      using asm z1 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   637
    also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   638
    finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   639
    have A: "z1 - x \<ge> 0" using z1 by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   640
    have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   641
      `convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   642
    then have B: "f'' z2 \<ge> 0" using assms by auto
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   643
    from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   644
    from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   645
    from mult_right_mono[OF this ge(2)]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   646
    have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36648
diff changeset
   647
      by (simp add: algebra_simps)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   648
    then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   649
    then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   650
      using res by auto } note less_imp = this
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   651
  { fix x y :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   652
    assume "x \<in> C" "y \<in> C" "x \<noteq> y"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   653
    then have"f y - f x \<ge> f' x * (y - x)"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   654
    unfolding neq_iff using less_imp by auto } note neq_imp = this
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   655
  moreover
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   656
  { fix x y :: real
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   657
    assume asm: "x \<in> C" "y \<in> C" "x = y"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   658
    then have "f y - f x \<ge> f' x * (y - x)" by auto }
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   659
  ultimately show ?thesis using assms by blast
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   660
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   661
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   662
lemma f''_ge0_imp_convex:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   663
  fixes f :: "real \<Rightarrow> real"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   664
  assumes conv: "convex C"
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   665
    and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   666
    and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   667
    and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   668
  shows "convex_on C f"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44282
diff changeset
   669
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   670
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   671
lemma minus_log_convex:
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   672
  fixes b :: real
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   673
  assumes "b > 1"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   674
  shows "convex_on {0 <..} (\<lambda> x. - log b x)"
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   675
proof -
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   676
  have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   677
  then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 49609
diff changeset
   678
    by (auto simp: DERIV_minus)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   679
  have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   680
    using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   681
  from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   682
  have "\<And>z :: real. z > 0 \<Longrightarrow>
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   683
    DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   684
    by auto
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   685
  then have f''0: "\<And>z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36648
diff changeset
   686
    unfolding inverse_eq_divide by (auto simp add: mult_assoc)
49609
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   687
  have f''_ge0: "\<And>z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
89e10ed7668b tuned proofs;
wenzelm
parents: 44890
diff changeset
   688
    using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos)
36623
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   689
  from f''_ge0_imp_convex[OF pos_is_convex,
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   690
    unfolded greaterThan_iff, OF f' f''0 f''_ge0]
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   691
  show ?thesis by auto
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   692
qed
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   693
d26348b667f2 Moved Convex theory to library.
hoelzl
parents:
diff changeset
   694
end