| author | blanchet | 
| Fri, 05 Sep 2014 00:41:01 +0200 | |
| changeset 58187 | d2ddd401d74d | 
| parent 57512 | cc97b347b301 | 
| child 58881 | b9556a055632 | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Convexity in real vector spaces *}
 | |
| 7 | ||
| 36623 | 8 | theory Convex | 
| 9 | imports Product_Vector | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Convexity. *}
 | |
| 13 | ||
| 49609 | 14 | definition convex :: "'a::real_vector set \<Rightarrow> bool" | 
| 15 | where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 36623 | 16 | |
| 53676 | 17 | lemma convexI: | 
| 18 | assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 19 | shows "convex s" | |
| 20 | using assms unfolding convex_def by fast | |
| 21 | ||
| 22 | lemma convexD: | |
| 23 | assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" | |
| 24 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 25 | using assms unfolding convex_def by fast | |
| 26 | ||
| 36623 | 27 | lemma convex_alt: | 
| 28 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 29 | (is "_ \<longleftrightarrow> ?alt") | |
| 30 | proof | |
| 31 | assume alt[rule_format]: ?alt | |
| 56796 | 32 |   {
 | 
| 33 | fix x y and u v :: real | |
| 34 | assume mem: "x \<in> s" "y \<in> s" | |
| 49609 | 35 | assume "0 \<le> u" "0 \<le> v" | 
| 56796 | 36 | moreover | 
| 37 | assume "u + v = 1" | |
| 38 | then have "u = 1 - v" by auto | |
| 39 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 40 | using alt[OF mem] by auto | |
| 41 | } | |
| 42 | then show "convex s" | |
| 43 | unfolding convex_def by auto | |
| 36623 | 44 | qed (auto simp: convex_def) | 
| 45 | ||
| 46 | lemma mem_convex: | |
| 47 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 48 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 49 | using assms unfolding convex_alt by auto | |
| 50 | ||
| 51 | lemma convex_empty[intro]: "convex {}"
 | |
| 52 | unfolding convex_def by simp | |
| 53 | ||
| 54 | lemma convex_singleton[intro]: "convex {a}"
 | |
| 55 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | |
| 56 | ||
| 57 | lemma convex_UNIV[intro]: "convex UNIV" | |
| 58 | unfolding convex_def by auto | |
| 59 | ||
| 56796 | 60 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) \<Longrightarrow> convex(\<Inter> f)" | 
| 36623 | 61 | unfolding convex_def by auto | 
| 62 | ||
| 63 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 64 | unfolding convex_def by auto | |
| 65 | ||
| 53596 | 66 | lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" | 
| 67 | unfolding convex_def by auto | |
| 68 | ||
| 69 | lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" | |
| 70 | unfolding convex_def by auto | |
| 71 | ||
| 36623 | 72 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
| 73 | unfolding convex_def | |
| 44142 | 74 | by (auto simp: inner_add intro!: convex_bound_le) | 
| 36623 | 75 | |
| 76 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 77 | proof - | |
| 56796 | 78 |   have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
 | 
| 79 | by auto | |
| 80 | show ?thesis | |
| 81 | unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | |
| 36623 | 82 | qed | 
| 83 | ||
| 84 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 49609 | 85 | proof - | 
| 56796 | 86 |   have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
 | 
| 87 | by auto | |
| 36623 | 88 | show ?thesis using convex_halfspace_le convex_halfspace_ge | 
| 89 | by (auto intro!: convex_Int simp: *) | |
| 90 | qed | |
| 91 | ||
| 92 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 93 | unfolding convex_def | |
| 94 | by (auto simp: convex_bound_lt inner_add) | |
| 95 | ||
| 96 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 97 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 98 | ||
| 99 | lemma convex_real_interval: | |
| 100 | fixes a b :: "real" | |
| 101 |   shows "convex {a..}" and "convex {..b}"
 | |
| 49609 | 102 |     and "convex {a<..}" and "convex {..<b}"
 | 
| 103 |     and "convex {a..b}" and "convex {a<..b}"
 | |
| 104 |     and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 36623 | 105 | proof - | 
| 106 |   have "{a..} = {x. a \<le> inner 1 x}" by auto
 | |
| 49609 | 107 |   then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
 | 
| 36623 | 108 |   have "{..b} = {x. inner 1 x \<le> b}" by auto
 | 
| 49609 | 109 |   then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
 | 
| 36623 | 110 |   have "{a<..} = {x. a < inner 1 x}" by auto
 | 
| 49609 | 111 |   then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
 | 
| 36623 | 112 |   have "{..<b} = {x. inner 1 x < b}" by auto
 | 
| 49609 | 113 |   then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
 | 
| 36623 | 114 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | 
| 49609 | 115 |   then show "convex {a..b}" by (simp only: convex_Int 1 2)
 | 
| 36623 | 116 |   have "{a<..b} = {a<..} \<inter> {..b}" by auto
 | 
| 49609 | 117 |   then show "convex {a<..b}" by (simp only: convex_Int 3 2)
 | 
| 36623 | 118 |   have "{a..<b} = {a..} \<inter> {..<b}" by auto
 | 
| 49609 | 119 |   then show "convex {a..<b}" by (simp only: convex_Int 1 4)
 | 
| 36623 | 120 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | 
| 49609 | 121 |   then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
 | 
| 36623 | 122 | qed | 
| 123 | ||
| 124 | subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | |
| 125 | ||
| 126 | lemma convex_setsum: | |
| 127 | fixes C :: "'a::real_vector set" | |
| 56796 | 128 | assumes "finite s" | 
| 129 | and "convex C" | |
| 130 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 131 | assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 132 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 133 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | 
| 55909 | 134 | using assms(1,3,4,5) | 
| 135 | proof (induct arbitrary: a set: finite) | |
| 49609 | 136 | case empty | 
| 55909 | 137 | then show ?case by simp | 
| 36623 | 138 | next | 
| 55909 | 139 | case (insert i s) note IH = this(3) | 
| 56796 | 140 | have "a i + setsum a s = 1" | 
| 141 | and "0 \<le> a i" | |
| 142 | and "\<forall>j\<in>s. 0 \<le> a j" | |
| 143 | and "y i \<in> C" | |
| 144 | and "\<forall>j\<in>s. y j \<in> C" | |
| 55909 | 145 | using insert.hyps(1,2) insert.prems by simp_all | 
| 56796 | 146 | then have "0 \<le> setsum a s" | 
| 147 | by (simp add: setsum_nonneg) | |
| 55909 | 148 | have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C" | 
| 149 | proof (cases) | |
| 150 | assume z: "setsum a s = 0" | |
| 56796 | 151 | with `a i + setsum a s = 1` have "a i = 1" | 
| 152 | by simp | |
| 153 | from setsum_nonneg_0 [OF `finite s` _ z] `\<forall>j\<in>s. 0 \<le> a j` have "\<forall>j\<in>s. a j = 0" | |
| 154 | by simp | |
| 155 | show ?thesis using `a i = 1` and `\<forall>j\<in>s. a j = 0` and `y i \<in> C` | |
| 156 | by simp | |
| 55909 | 157 | next | 
| 158 | assume nz: "setsum a s \<noteq> 0" | |
| 56796 | 159 | with `0 \<le> setsum a s` have "0 < setsum a s" | 
| 160 | by simp | |
| 55909 | 161 | then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 162 | using `\<forall>j\<in>s. 0 \<le> a j` and `\<forall>j\<in>s. y j \<in> C` | |
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 163 | by (simp add: IH setsum_divide_distrib [symmetric]) | 
| 55909 | 164 | from `convex C` and `y i \<in> C` and this and `0 \<le> a i` | 
| 165 | and `0 \<le> setsum a s` and `a i + setsum a s = 1` | |
| 166 | have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | |
| 167 | by (rule convexD) | |
| 56796 | 168 | then show ?thesis | 
| 169 | by (simp add: scaleR_setsum_right nz) | |
| 55909 | 170 | qed | 
| 56796 | 171 | then show ?case using `finite s` and `i \<notin> s` | 
| 172 | by simp | |
| 36623 | 173 | qed | 
| 174 | ||
| 175 | lemma convex: | |
| 49609 | 176 |   "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
| 177 |       \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 36623 | 178 | proof safe | 
| 49609 | 179 | fix k :: nat | 
| 180 | fix u :: "nat \<Rightarrow> real" | |
| 181 | fix x | |
| 36623 | 182 | assume "convex s" | 
| 183 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 184 |     "setsum u {1..k} = 1"
 | |
| 185 |   from this convex_setsum[of "{1 .. k}" s]
 | |
| 56796 | 186 |   show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
 | 
| 187 | by auto | |
| 36623 | 188 | next | 
| 189 |   assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | |
| 190 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | |
| 56796 | 191 |   {
 | 
| 192 | fix \<mu> :: real | |
| 49609 | 193 | fix x y :: 'a | 
| 194 | assume xy: "x \<in> s" "y \<in> s" | |
| 195 | assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 196 | let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 197 | let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" | |
| 56796 | 198 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
 | 
| 199 | by auto | |
| 200 |     then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
 | |
| 201 | by simp | |
| 49609 | 202 |     then have "setsum ?u {1 .. 2} = 1"
 | 
| 57418 | 203 |       using setsum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
| 36623 | 204 | by auto | 
| 49609 | 205 |     with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
| 36623 | 206 | using mu xy by auto | 
| 207 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 208 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 209 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 56796 | 210 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
 | 
| 211 | by auto | |
| 212 | then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 213 | using s by (auto simp:add.commute) | 
| 49609 | 214 | } | 
| 56796 | 215 | then show "convex s" | 
| 216 | unfolding convex_alt by auto | |
| 36623 | 217 | qed | 
| 218 | ||
| 219 | ||
| 220 | lemma convex_explicit: | |
| 221 | fixes s :: "'a::real_vector set" | |
| 222 | shows "convex s \<longleftrightarrow> | |
| 49609 | 223 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | 
| 36623 | 224 | proof safe | 
| 49609 | 225 | fix t | 
| 226 | fix u :: "'a \<Rightarrow> real" | |
| 56796 | 227 | assume "convex s" | 
| 228 | and "finite t" | |
| 229 | and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 49609 | 230 | then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 231 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | 
| 232 | next | |
| 56796 | 233 | assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> | 
| 234 | setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 36623 | 235 | show "convex s" | 
| 236 | unfolding convex_alt | |
| 237 | proof safe | |
| 49609 | 238 | fix x y | 
| 239 | fix \<mu> :: real | |
| 36623 | 240 | assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 56796 | 241 |     {
 | 
| 242 | assume "x \<noteq> y" | |
| 49609 | 243 | then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | 
| 36623 | 244 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
 | 
| 56796 | 245 | asm by auto | 
| 246 | } | |
| 36623 | 247 | moreover | 
| 56796 | 248 |     {
 | 
| 249 | assume "x = y" | |
| 49609 | 250 | then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | 
| 36623 | 251 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
 | 
| 56796 | 252 | asm by (auto simp: field_simps real_vector.scale_left_diff_distrib) | 
| 253 | } | |
| 254 | ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 255 | by blast | |
| 36623 | 256 | qed | 
| 257 | qed | |
| 258 | ||
| 49609 | 259 | lemma convex_finite: | 
| 260 | assumes "finite s" | |
| 56796 | 261 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | 
| 36623 | 262 | unfolding convex_explicit | 
| 49609 | 263 | proof safe | 
| 264 | fix t u | |
| 265 | assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 36623 | 266 | and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | 
| 56796 | 267 | have *: "s \<inter> t = t" | 
| 268 | using as(2) by auto | |
| 49609 | 269 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" | 
| 270 | by simp | |
| 36623 | 271 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 272 | using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * | |
| 57418 | 273 | by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg) | 
| 36623 | 274 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | 
| 275 | ||
| 56796 | 276 | |
| 55909 | 277 | subsection {* Functions that are convex on a set *}
 | 
| 278 | ||
| 49609 | 279 | definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 280 | where "convex_on s f \<longleftrightarrow> | |
| 281 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 36623 | 282 | |
| 283 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 284 | unfolding convex_on_def by auto | |
| 285 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 286 | lemma convex_on_add [intro]: | 
| 56796 | 287 | assumes "convex_on s f" | 
| 288 | and "convex_on s g" | |
| 36623 | 289 | shows "convex_on s (\<lambda>x. f x + g x)" | 
| 49609 | 290 | proof - | 
| 56796 | 291 |   {
 | 
| 292 | fix x y | |
| 293 | assume "x \<in> s" "y \<in> s" | |
| 49609 | 294 | moreover | 
| 295 | fix u v :: real | |
| 296 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 297 | ultimately | |
| 298 | have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 299 | using assms unfolding convex_on_def by (auto simp add: add_mono) | |
| 300 | then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" | |
| 301 | by (simp add: field_simps) | |
| 302 | } | |
| 56796 | 303 | then show ?thesis | 
| 304 | unfolding convex_on_def by auto | |
| 36623 | 305 | qed | 
| 306 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 307 | lemma convex_on_cmul [intro]: | 
| 56796 | 308 | fixes c :: real | 
| 309 | assumes "0 \<le> c" | |
| 310 | and "convex_on s f" | |
| 36623 | 311 | shows "convex_on s (\<lambda>x. c * f x)" | 
| 56796 | 312 | proof - | 
| 49609 | 313 | have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" | 
| 314 | by (simp add: field_simps) | |
| 315 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] | |
| 316 | unfolding convex_on_def and * by auto | |
| 36623 | 317 | qed | 
| 318 | ||
| 319 | lemma convex_lower: | |
| 56796 | 320 | assumes "convex_on s f" | 
| 321 | and "x \<in> s" | |
| 322 | and "y \<in> s" | |
| 323 | and "0 \<le> u" | |
| 324 | and "0 \<le> v" | |
| 325 | and "u + v = 1" | |
| 36623 | 326 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | 
| 56796 | 327 | proof - | 
| 36623 | 328 | let ?m = "max (f x) (f y)" | 
| 329 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 330 | using assms(4,5) by (auto simp add: mult_left_mono add_mono) | 
| 56796 | 331 | also have "\<dots> = max (f x) (f y)" | 
| 332 | using assms(6) unfolding distrib[symmetric] by auto | |
| 36623 | 333 | finally show ?thesis | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 334 | using assms unfolding convex_on_def by fastforce | 
| 36623 | 335 | qed | 
| 336 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 337 | lemma convex_on_dist [intro]: | 
| 36623 | 338 | fixes s :: "'a::real_normed_vector set" | 
| 339 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 49609 | 340 | proof (auto simp add: convex_on_def dist_norm) | 
| 341 | fix x y | |
| 56796 | 342 | assume "x \<in> s" "y \<in> s" | 
| 49609 | 343 | fix u v :: real | 
| 56796 | 344 | assume "0 \<le> u" | 
| 345 | assume "0 \<le> v" | |
| 346 | assume "u + v = 1" | |
| 49609 | 347 | have "a = u *\<^sub>R a + v *\<^sub>R a" | 
| 56796 | 348 | unfolding scaleR_left_distrib[symmetric] and `u + v = 1` by simp | 
| 49609 | 349 | then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | 
| 36623 | 350 | by (auto simp add: algebra_simps) | 
| 351 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | |
| 352 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 353 | using `0 \<le> u` `0 \<le> v` by auto | |
| 354 | qed | |
| 355 | ||
| 49609 | 356 | |
| 36623 | 357 | subsection {* Arithmetic operations on sets preserve convexity. *}
 | 
| 49609 | 358 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 359 | lemma convex_linear_image: | 
| 56796 | 360 | assumes "linear f" | 
| 361 | and "convex s" | |
| 362 | shows "convex (f ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 363 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 364 | interpret f: linear f by fact | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 365 | from `convex s` show "convex (f ` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 366 | by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) | 
| 36623 | 367 | qed | 
| 368 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 369 | lemma convex_linear_vimage: | 
| 56796 | 370 | assumes "linear f" | 
| 371 | and "convex s" | |
| 372 | shows "convex (f -` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 373 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 374 | interpret f: linear f by fact | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 375 | from `convex s` show "convex (f -` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 376 | by (simp add: convex_def f.add f.scaleR) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 377 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 378 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 379 | lemma convex_scaling: | 
| 56796 | 380 | assumes "convex s" | 
| 381 | shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 382 | proof - | 
| 56796 | 383 | have "linear (\<lambda>x. c *\<^sub>R x)" | 
| 384 | by (simp add: linearI scaleR_add_right) | |
| 385 | then show ?thesis | |
| 386 | using `convex s` by (rule convex_linear_image) | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 387 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 388 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 389 | lemma convex_negations: | 
| 56796 | 390 | assumes "convex s" | 
| 391 | shows "convex ((\<lambda>x. - x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 392 | proof - | 
| 56796 | 393 | have "linear (\<lambda>x. - x)" | 
| 394 | by (simp add: linearI) | |
| 395 | then show ?thesis | |
| 396 | using `convex s` by (rule convex_linear_image) | |
| 36623 | 397 | qed | 
| 398 | ||
| 399 | lemma convex_sums: | |
| 56796 | 400 | assumes "convex s" | 
| 401 | and "convex t" | |
| 36623 | 402 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 403 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 404 | have "linear (\<lambda>(x, y). x + y)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 405 | by (auto intro: linearI simp add: scaleR_add_right) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 406 | with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 407 | by (intro convex_linear_image convex_Times) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 408 |   also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 409 | by auto | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 410 | finally show ?thesis . | 
| 36623 | 411 | qed | 
| 412 | ||
| 413 | lemma convex_differences: | |
| 414 | assumes "convex s" "convex t" | |
| 415 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 416 | proof - | |
| 417 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53676diff
changeset | 418 | by (auto simp add: diff_conv_add_uminus simp del: add_uminus_conv_diff) | 
| 49609 | 419 | then show ?thesis | 
| 420 | using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 36623 | 421 | qed | 
| 422 | ||
| 49609 | 423 | lemma convex_translation: | 
| 424 | assumes "convex s" | |
| 425 | shows "convex ((\<lambda>x. a + x) ` s)" | |
| 426 | proof - | |
| 56796 | 427 |   have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s"
 | 
| 428 | by auto | |
| 49609 | 429 | then show ?thesis | 
| 430 | using convex_sums[OF convex_singleton[of a] assms] by auto | |
| 431 | qed | |
| 36623 | 432 | |
| 49609 | 433 | lemma convex_affinity: | 
| 434 | assumes "convex s" | |
| 435 | shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 436 | proof - | |
| 56796 | 437 | have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" | 
| 438 | by auto | |
| 49609 | 439 | then show ?thesis | 
| 440 | using convex_translation[OF convex_scaling[OF assms], of a c] by auto | |
| 441 | qed | |
| 36623 | 442 | |
| 49609 | 443 | lemma pos_is_convex: "convex {0 :: real <..}"
 | 
| 444 | unfolding convex_alt | |
| 36623 | 445 | proof safe | 
| 446 | fix y x \<mu> :: real | |
| 447 | assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 56796 | 448 |   {
 | 
| 449 | assume "\<mu> = 0" | |
| 49609 | 450 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp | 
| 56796 | 451 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp | 
| 452 | } | |
| 36623 | 453 | moreover | 
| 56796 | 454 |   {
 | 
| 455 | assume "\<mu> = 1" | |
| 456 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp | |
| 457 | } | |
| 36623 | 458 | moreover | 
| 56796 | 459 |   {
 | 
| 460 | assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0" | |
| 49609 | 461 | then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto | 
| 462 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms | |
| 56796 | 463 | by (auto simp add: add_pos_pos) | 
| 464 | } | |
| 465 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" | |
| 466 | using assms by fastforce | |
| 36623 | 467 | qed | 
| 468 | ||
| 469 | lemma convex_on_setsum: | |
| 470 | fixes a :: "'a \<Rightarrow> real" | |
| 49609 | 471 | and y :: "'a \<Rightarrow> 'b::real_vector" | 
| 472 | and f :: "'b \<Rightarrow> real" | |
| 36623 | 473 |   assumes "finite s" "s \<noteq> {}"
 | 
| 49609 | 474 | and "convex_on C f" | 
| 475 | and "convex C" | |
| 476 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 477 | and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 478 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 479 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | 
| 49609 | 480 | using assms | 
| 481 | proof (induct s arbitrary: a rule: finite_ne_induct) | |
| 36623 | 482 | case (singleton i) | 
| 49609 | 483 | then have ai: "a i = 1" by auto | 
| 484 | then show ?case by auto | |
| 36623 | 485 | next | 
| 486 | case (insert i s) note asms = this | |
| 49609 | 487 | then have "convex_on C f" by simp | 
| 36623 | 488 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 489 | have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow> | 
| 490 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 491 | by simp | 
| 56796 | 492 |   {
 | 
| 493 | assume "a i = 1" | |
| 49609 | 494 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 36623 | 495 | using asms by auto | 
| 49609 | 496 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 497 | using setsum_nonneg_0[where 'b=real] asms by fastforce | 
| 56796 | 498 | then have ?case using asms by auto | 
| 499 | } | |
| 36623 | 500 | moreover | 
| 56796 | 501 |   {
 | 
| 502 | assume asm: "a i \<noteq> 1" | |
| 36623 | 503 | from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto | 
| 504 | have fis: "finite (insert i s)" using asms by auto | |
| 49609 | 505 | then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp | 
| 506 | then have "a i < 1" using asm by auto | |
| 507 | then have i0: "1 - a i > 0" by auto | |
| 508 | let ?a = "\<lambda>j. a j / (1 - a i)" | |
| 56796 | 509 |     {
 | 
| 510 | fix j | |
| 511 | assume "j \<in> s" | |
| 512 | with i0 asms have "?a j \<ge> 0" | |
| 513 | by fastforce | |
| 514 | } | |
| 49609 | 515 | note a_nonneg = this | 
| 36623 | 516 | have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto | 
| 49609 | 517 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce | 
| 518 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto | |
| 519 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp | |
| 36623 | 520 | have "convex C" using asms by auto | 
| 49609 | 521 | then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | 
| 36623 | 522 | using asms convex_setsum[OF `finite s` | 
| 523 | `convex C` a1 a_nonneg] by auto | |
| 524 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | |
| 525 | using a_nonneg a1 asms by blast | |
| 526 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 527 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 528 | by (auto simp only:add.commute) | 
| 36623 | 529 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 530 | using i0 by auto | |
| 531 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 49609 | 532 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] | 
| 533 | by (auto simp:algebra_simps) | |
| 36623 | 534 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 535 | by (auto simp: divide_inverse) | 
| 36623 | 536 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 537 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 538 | by (auto simp add:add.commute) | 
| 36623 | 539 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | 
| 540 | using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", | |
| 541 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp | |
| 542 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44142diff
changeset | 543 | unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto | 
| 36623 | 544 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto | 
| 545 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto | |
| 546 | finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 56796 | 547 | by simp | 
| 548 | } | |
| 36623 | 549 | ultimately show ?case by auto | 
| 550 | qed | |
| 551 | ||
| 552 | lemma convex_on_alt: | |
| 553 | fixes C :: "'a::real_vector set" | |
| 554 | assumes "convex C" | |
| 56796 | 555 | shows "convex_on C f \<longleftrightarrow> | 
| 556 | (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow> | |
| 557 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 36623 | 558 | proof safe | 
| 49609 | 559 | fix x y | 
| 560 | fix \<mu> :: real | |
| 36623 | 561 | assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 562 | from this[unfolded convex_on_def, rule_format] | |
| 56796 | 563 | have "\<And>u v. 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 564 | by auto | |
| 36623 | 565 | from this[of "\<mu>" "1 - \<mu>", simplified] asms | 
| 56796 | 566 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 567 | by auto | |
| 36623 | 568 | next | 
| 56796 | 569 | assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> | 
| 570 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 571 |   {
 | |
| 572 | fix x y | |
| 49609 | 573 | fix u v :: real | 
| 36623 | 574 | assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 49609 | 575 | then have[simp]: "1 - u = v" by auto | 
| 36623 | 576 | from asm[rule_format, of x y u] | 
| 56796 | 577 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 578 | using lasm by auto | |
| 49609 | 579 | } | 
| 56796 | 580 | then show "convex_on C f" | 
| 581 | unfolding convex_on_def by auto | |
| 36623 | 582 | qed | 
| 583 | ||
| 43337 | 584 | lemma convex_on_diff: | 
| 585 | fixes f :: "real \<Rightarrow> real" | |
| 56796 | 586 | assumes f: "convex_on I f" | 
| 587 | and I: "x \<in> I" "y \<in> I" | |
| 588 | and t: "x < t" "t < y" | |
| 49609 | 589 | shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 56796 | 590 | and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 43337 | 591 | proof - | 
| 592 | def a \<equiv> "(t - y) / (x - y)" | |
| 56796 | 593 | with t have "0 \<le> a" "0 \<le> 1 - a" | 
| 594 | by (auto simp: field_simps) | |
| 43337 | 595 | with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" | 
| 596 | by (auto simp: convex_on_def) | |
| 56796 | 597 | have "a * x + (1 - a) * y = a * (x - y) + y" | 
| 598 | by (simp add: field_simps) | |
| 599 | also have "\<dots> = t" | |
| 600 | unfolding a_def using `x < t` `t < y` by simp | |
| 601 | finally have "f t \<le> a * f x + (1 - a) * f y" | |
| 602 | using cvx by simp | |
| 603 | also have "\<dots> = a * (f x - f y) + f y" | |
| 604 | by (simp add: field_simps) | |
| 605 | finally have "f t - f y \<le> a * (f x - f y)" | |
| 606 | by simp | |
| 43337 | 607 | with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 44142 | 608 | by (simp add: le_divide_eq divide_le_eq field_simps a_def) | 
| 43337 | 609 | with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 44142 | 610 | by (simp add: le_divide_eq divide_le_eq field_simps) | 
| 43337 | 611 | qed | 
| 36623 | 612 | |
| 613 | lemma pos_convex_function: | |
| 614 | fixes f :: "real \<Rightarrow> real" | |
| 615 | assumes "convex C" | |
| 56796 | 616 | and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | 
| 36623 | 617 | shows "convex_on C f" | 
| 49609 | 618 | unfolding convex_on_alt[OF assms(1)] | 
| 619 | using assms | |
| 36623 | 620 | proof safe | 
| 621 | fix x y \<mu> :: real | |
| 622 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 623 | assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 49609 | 624 | then have "1 - \<mu> \<ge> 0" by auto | 
| 56796 | 625 | then have xpos: "?x \<in> C" | 
| 626 | using asm unfolding convex_alt by fastforce | |
| 627 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge> | |
| 628 | \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 629 | using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`] | 
| 56796 | 630 | mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] | 
| 631 | by auto | |
| 49609 | 632 | then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 633 | by (auto simp add: field_simps) | |
| 634 | then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 635 | using convex_on_alt by auto | 
| 636 | qed | |
| 637 | ||
| 638 | lemma atMostAtLeast_subset_convex: | |
| 639 | fixes C :: "real set" | |
| 640 | assumes "convex C" | |
| 49609 | 641 | and "x \<in> C" "y \<in> C" "x < y" | 
| 36623 | 642 |   shows "{x .. y} \<subseteq> C"
 | 
| 643 | proof safe | |
| 644 |   fix z assume zasm: "z \<in> {x .. y}"
 | |
| 56796 | 645 |   {
 | 
| 646 | assume asm: "x < z" "z < y" | |
| 49609 | 647 | let ?\<mu> = "(y - z) / (y - x)" | 
| 56796 | 648 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" | 
| 649 | using assms asm by (auto simp add: field_simps) | |
| 49609 | 650 | then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | 
| 651 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] | |
| 652 | by (simp add: algebra_simps) | |
| 36623 | 653 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | 
| 49609 | 654 | by (auto simp add: field_simps) | 
| 36623 | 655 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | 
| 49609 | 656 | using assms unfolding add_divide_distrib by (auto simp: field_simps) | 
| 36623 | 657 | also have "\<dots> = z" | 
| 49609 | 658 | using assms by (auto simp: field_simps) | 
| 36623 | 659 | finally have "z \<in> C" | 
| 56796 | 660 | using comb by auto | 
| 661 | } | |
| 49609 | 662 | note less = this | 
| 36623 | 663 | show "z \<in> C" using zasm less assms | 
| 664 | unfolding atLeastAtMost_iff le_less by auto | |
| 665 | qed | |
| 666 | ||
| 667 | lemma f''_imp_f': | |
| 668 | fixes f :: "real \<Rightarrow> real" | |
| 669 | assumes "convex C" | |
| 49609 | 670 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 671 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 672 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 673 | and "x \<in> C" "y \<in> C" | |
| 36623 | 674 | shows "f' x * (y - x) \<le> f y - f x" | 
| 49609 | 675 | using assms | 
| 36623 | 676 | proof - | 
| 56796 | 677 |   {
 | 
| 678 | fix x y :: real | |
| 49609 | 679 | assume asm: "x \<in> C" "y \<in> C" "y > x" | 
| 680 | then have ge: "y - x > 0" "y - x \<ge> 0" by auto | |
| 36623 | 681 | from asm have le: "x - y < 0" "x - y \<le> 0" by auto | 
| 682 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | |
| 683 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`], | |
| 684 | THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | |
| 685 | by auto | |
| 49609 | 686 | then have "z1 \<in> C" using atMostAtLeast_subset_convex | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 687 | `convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce | 
| 36623 | 688 | from z1 have z1': "f x - f y = (x - y) * f' z1" | 
| 689 | by (simp add:field_simps) | |
| 690 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | |
| 691 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`], | |
| 692 | THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 693 | by auto | |
| 694 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 695 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`], | |
| 696 | THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 697 | by auto | |
| 698 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 699 | using asm z1' by auto | |
| 700 | also have "\<dots> = (y - z1) * f'' z3" using z3 by auto | |
| 701 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp | |
| 702 | have A': "y - z1 \<ge> 0" using z1 by auto | |
| 703 | have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 704 | `convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce | 
| 49609 | 705 | then have B': "f'' z3 \<ge> 0" using assms by auto | 
| 56536 | 706 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" by auto | 
| 36623 | 707 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto | 
| 708 | from mult_right_mono_neg[OF this le(2)] | |
| 709 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 710 | by (simp add: algebra_simps) | 
| 49609 | 711 | then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto | 
| 712 | then have res: "f' y * (x - y) \<le> f x - f y" by auto | |
| 36623 | 713 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | 
| 714 | using asm z1 by auto | |
| 715 | also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto | |
| 716 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp | |
| 717 | have A: "z1 - x \<ge> 0" using z1 by auto | |
| 718 | have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 719 | `convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce | 
| 49609 | 720 | then have B: "f'' z2 \<ge> 0" using assms by auto | 
| 56536 | 721 | from A B have "(z1 - x) * f'' z2 \<ge> 0" by auto | 
| 36623 | 722 | from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto | 
| 723 | from mult_right_mono[OF this ge(2)] | |
| 724 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 725 | by (simp add: algebra_simps) | 
| 49609 | 726 | then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto | 
| 727 | then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | |
| 36623 | 728 | using res by auto } note less_imp = this | 
| 56796 | 729 |   {
 | 
| 730 | fix x y :: real | |
| 49609 | 731 | assume "x \<in> C" "y \<in> C" "x \<noteq> y" | 
| 732 | then have"f y - f x \<ge> f' x * (y - x)" | |
| 56796 | 733 | unfolding neq_iff using less_imp by auto | 
| 734 | } | |
| 36623 | 735 | moreover | 
| 56796 | 736 |   {
 | 
| 737 | fix x y :: real | |
| 49609 | 738 | assume asm: "x \<in> C" "y \<in> C" "x = y" | 
| 56796 | 739 | then have "f y - f x \<ge> f' x * (y - x)" by auto | 
| 740 | } | |
| 36623 | 741 | ultimately show ?thesis using assms by blast | 
| 742 | qed | |
| 743 | ||
| 744 | lemma f''_ge0_imp_convex: | |
| 745 | fixes f :: "real \<Rightarrow> real" | |
| 746 | assumes conv: "convex C" | |
| 49609 | 747 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 748 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 749 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 36623 | 750 | shows "convex_on C f" | 
| 56796 | 751 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function | 
| 752 | by fastforce | |
| 36623 | 753 | |
| 754 | lemma minus_log_convex: | |
| 755 | fixes b :: real | |
| 756 | assumes "b > 1" | |
| 757 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 758 | proof - | |
| 56796 | 759 | have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" | 
| 760 | using DERIV_log by auto | |
| 49609 | 761 | then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 762 | by (auto simp: DERIV_minus) | 
| 49609 | 763 | have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | 
| 36623 | 764 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | 
| 765 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 49609 | 766 | have "\<And>z :: real. z > 0 \<Longrightarrow> | 
| 767 | DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | |
| 36623 | 768 | by auto | 
| 56796 | 769 | then have f''0: "\<And>z::real. z > 0 \<Longrightarrow> | 
| 770 | DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 771 | unfolding inverse_eq_divide by (auto simp add: mult.assoc) | 
| 56796 | 772 | have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 56544 | 773 | using `b > 1` by (auto intro!:less_imp_le) | 
| 36623 | 774 | from f''_ge0_imp_convex[OF pos_is_convex, | 
| 775 | unfolded greaterThan_iff, OF f' f''0 f''_ge0] | |
| 776 | show ?thesis by auto | |
| 777 | qed | |
| 778 | ||
| 779 | end |