| author | blanchet | 
| Fri, 05 Sep 2014 00:41:01 +0200 | |
| changeset 58187 | d2ddd401d74d | 
| parent 56777 | 9c3f0ae99532 | 
| child 58606 | 9c66f7c541fb | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 14706 | 5 | header {* Pi and Function Sets *}
 | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 19736 | 11 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 12 |   Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 13 |   "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 15 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 16 |   extensional :: "'a set => ('a => 'b) set" where
 | 
| 28524 | 17 |   "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
 | 
| 13586 | 18 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 19 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 20 |   "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 28524 | 21 | "restrict f A = (%x. if x \<in> A then f x else undefined)" | 
| 13586 | 22 | |
| 19536 | 23 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 24 |   funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 25 | (infixr "->" 60) where | 
| 56777 | 26 | "A -> B \<equiv> Pi A (%_. B)" | 
| 19536 | 27 | |
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 29 | funcset (infixr "\<rightarrow>" 60) | 
| 19536 | 30 | |
| 13586 | 31 | syntax | 
| 19736 | 32 |   "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 33 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 13586 | 34 | |
| 35 | syntax (xsymbols) | |
| 19736 | 36 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 37 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 38 | |
| 14565 | 39 | syntax (HTML output) | 
| 19736 | 40 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 41 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 14565 | 42 | |
| 13586 | 43 | translations | 
| 56777 | 44 | "PI x:A. B" \<rightleftharpoons> "CONST Pi A (%x. B)" | 
| 45 | "%x:A. f" \<rightleftharpoons> "CONST restrict (%x. f) A" | |
| 13586 | 46 | |
| 19736 | 47 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 49 | "compose A g f = (\<lambda>x\<in>A. g (f x))" | 
| 13586 | 50 | |
| 51 | ||
| 52 | subsection{*Basic Properties of @{term Pi}*}
 | |
| 53 | ||
| 31754 | 54 | lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" | 
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 31731 | 57 | lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B" | 
| 58 | by(simp add:Pi_def) | |
| 59 | ||
| 13586 | 60 | lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" | 
| 14706 | 61 | by (simp add: Pi_def) | 
| 13586 | 62 | |
| 63 | lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" | |
| 14706 | 64 | by (simp add: Pi_def) | 
| 13586 | 65 | |
| 47761 | 66 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 67 | unfolding Pi_def by auto | |
| 68 | ||
| 31759 | 69 | lemma PiE [elim]: | 
| 31754 | 70 | "f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q" | 
| 71 | by(auto simp: Pi_def) | |
| 72 | ||
| 38656 | 73 | lemma Pi_cong: | 
| 74 | "(\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | |
| 75 | by (auto simp: Pi_def) | |
| 76 | ||
| 31769 | 77 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 78 | by auto | 
| 31769 | 79 | |
| 13586 | 80 | lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" | 
| 14706 | 81 | by (simp add: Pi_def) | 
| 13586 | 82 | |
| 14762 | 83 | lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" | 
| 50104 | 84 | by auto | 
| 85 | ||
| 86 | lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" | |
| 87 | by auto | |
| 14762 | 88 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 89 | lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B x = {})"
 | 
| 13593 | 90 | apply (simp add: Pi_def, auto) | 
| 13586 | 91 | txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
| 92 | picking an element from each non-empty @{term "B x"}*}
 | |
| 13593 | 93 | apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) | 
| 14706 | 94 | apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) | 
| 13586 | 95 | done | 
| 96 | ||
| 13593 | 97 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 31754 | 98 | by (simp add: Pi_def) | 
| 13593 | 99 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 100 | lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 101 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 102 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 103 | lemma Pi_UN: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 104 | fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 105 | assumes "finite I" and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 106 | shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 107 | proof (intro set_eqI iffI) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 108 | fix f assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 109 | then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 110 | from bchoice[OF this] obtain n where n: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> (A (n i) i)" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 111 | obtain k where k: "\<And>i. i \<in> I \<Longrightarrow> n i \<le> k" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 112 | using `finite I` finite_nat_set_iff_bounded_le[of "n`I"] by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 113 | have "f \<in> Pi I (A k)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 114 | proof (intro Pi_I) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 115 | fix i assume "i \<in> I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 116 | from mono[OF this, of "n i" k] k[OF this] n[OF this] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 117 | show "f i \<in> A k i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 118 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 119 | then show "f \<in> (\<Union>n. Pi I (A n))" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 120 | qed auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 121 | |
| 13593 | 122 | lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" | 
| 31754 | 123 | by (simp add: Pi_def) | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 124 | |
| 13586 | 125 | text{*Covariance of Pi-sets in their second argument*}
 | 
| 126 | lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" | |
| 31754 | 127 | by auto | 
| 13586 | 128 | |
| 129 | text{*Contravariance of Pi-sets in their first argument*}
 | |
| 130 | lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" | |
| 31754 | 131 | by auto | 
| 13586 | 132 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 133 | lemma prod_final: | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 134 | assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 135 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 136 | proof (rule Pi_I) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 137 | fix z | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 138 | assume z: "z \<in> A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 139 | have "f z = (fst (f z), snd (f z))" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 140 | by simp | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 141 | also have "... \<in> B z \<times> C z" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 142 | by (metis SigmaI PiE o_apply 1 2 z) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 143 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 144 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 145 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 146 | lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 147 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 149 | lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 150 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 151 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 153 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 154 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 155 | lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 156 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 157 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 158 | lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 159 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 160 | apply (drule_tac x=x in Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 161 | apply (simp_all split: split_if_asm) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 162 | apply (drule_tac x=i in Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 163 | apply (auto dest!: Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 164 | done | 
| 13586 | 165 | |
| 166 | subsection{*Composition With a Restricted Domain: @{term compose}*}
 | |
| 167 | ||
| 14706 | 168 | lemma funcset_compose: | 
| 31754 | 169 | "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" | 
| 170 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 171 | |
| 172 | lemma compose_assoc: | |
| 14706 | 173 | "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] | 
| 13586 | 174 | ==> compose A h (compose A g f) = compose A (compose B h g) f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 175 | by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | 
| 13586 | 176 | |
| 177 | lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" | |
| 31754 | 178 | by (simp add: compose_def restrict_def) | 
| 13586 | 179 | |
| 180 | lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" | |
| 14706 | 181 | by (auto simp add: image_def compose_eq) | 
| 13586 | 182 | |
| 183 | ||
| 184 | subsection{*Bounded Abstraction: @{term restrict}*}
 | |
| 185 | ||
| 54417 | 186 | lemma restrict_in_funcset: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> A \<rightarrow> B" | 
| 14706 | 187 | by (simp add: Pi_def restrict_def) | 
| 13586 | 188 | |
| 54417 | 189 | lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 190 | by (simp add: Pi_def restrict_def) | 
| 13586 | 191 | |
| 54417 | 192 | lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 193 | by (simp add: restrict_def) | 
| 13586 | 194 | |
| 54417 | 195 | lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" | 
| 196 | by simp | |
| 197 | ||
| 14706 | 198 | lemma restrict_ext: | 
| 54417 | 199 | "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 200 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 201 | |
| 14853 | 202 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 203 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 204 | |
| 205 | lemma Id_compose: | |
| 14706 | 206 | "[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 207 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 208 | |
| 209 | lemma compose_Id: | |
| 14706 | 210 | "[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 211 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 212 | |
| 14853 | 213 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 214 | by (auto simp add: restrict_def) | 
| 13586 | 215 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 216 | lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 217 | unfolding restrict_def by (simp add: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 218 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 219 | lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 220 | by (auto simp: restrict_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 221 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 222 | lemma restrict_upd[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 223 | "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 224 | by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 225 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 226 | lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 227 | by (auto simp: restrict_def Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 228 | |
| 14745 | 229 | |
| 14762 | 230 | subsection{*Bijections Between Sets*}
 | 
| 231 | ||
| 26106 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 nipkow parents: 
21404diff
changeset | 232 | text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 233 | the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
| 234 | ||
| 39595 | 235 | lemma bij_betwI: | 
| 236 | assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A" | |
| 237 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 238 | shows "bij_betw f A B" | |
| 239 | unfolding bij_betw_def | |
| 240 | proof | |
| 241 | show "inj_on f A" by (metis g_f inj_on_def) | |
| 242 | next | |
| 243 | have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto | |
| 244 | moreover | |
| 245 | have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff) | |
| 246 | ultimately show "f ` A = B" by blast | |
| 247 | qed | |
| 248 | ||
| 14762 | 249 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 32988 | 250 | by (auto simp add: bij_betw_def) | 
| 14762 | 251 | |
| 14853 | 252 | lemma inj_on_compose: | 
| 31754 | 253 | "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" | 
| 254 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 255 | |
| 14762 | 256 | lemma bij_betw_compose: | 
| 31754 | 257 | "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" | 
| 258 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 259 | apply (auto simp add: compose_def image_def) | |
| 260 | done | |
| 14762 | 261 | |
| 14853 | 262 | lemma bij_betw_restrict_eq [simp]: | 
| 31754 | 263 | "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 264 | by (simp add: bij_betw_def) | |
| 14853 | 265 | |
| 266 | ||
| 267 | subsection{*Extensionality*}
 | |
| 268 | ||
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 269 | lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 270 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 271 | |
| 28524 | 272 | lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" | 
| 31754 | 273 | by (simp add: extensional_def) | 
| 14853 | 274 | |
| 275 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 31754 | 276 | by (simp add: restrict_def extensional_def) | 
| 14853 | 277 | |
| 278 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 31754 | 279 | by (simp add: compose_def) | 
| 14853 | 280 | |
| 281 | lemma extensionalityI: | |
| 31754 | 282 | "[| f \<in> extensional A; g \<in> extensional A; | 
| 14853 | 283 | !!x. x\<in>A ==> f x = g x |] ==> f = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 284 | by (force simp add: fun_eq_iff extensional_def) | 
| 14853 | 285 | |
| 39595 | 286 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 287 | by(rule extensionalityI[OF restrict_extensional]) auto | |
| 288 | ||
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 289 | lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 290 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 291 | |
| 33057 | 292 | lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A" | 
| 293 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 294 | |
| 33057 | 295 | lemma compose_inv_into_id: | 
| 296 | "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | |
| 31754 | 297 | apply (simp add: bij_betw_def compose_def) | 
| 298 | apply (rule restrict_ext, auto) | |
| 299 | done | |
| 14853 | 300 | |
| 33057 | 301 | lemma compose_id_inv_into: | 
| 302 | "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | |
| 31754 | 303 | apply (simp add: compose_def) | 
| 304 | apply (rule restrict_ext) | |
| 33057 | 305 | apply (simp add: f_inv_into_f) | 
| 31754 | 306 | done | 
| 14853 | 307 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 308 | lemma extensional_insert[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 309 | assumes "a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 310 | shows "a(i := b) \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 311 | using assms unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 312 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 313 | lemma extensional_Int[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 314 | "extensional I \<inter> extensional I' = extensional (I \<inter> I')" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 315 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 316 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 317 | lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 318 | by (auto simp: extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 319 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 320 | lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 321 | unfolding restrict_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 322 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 323 | lemma extensional_insert_undefined[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 324 | "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 325 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 326 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 327 | lemma extensional_insert_cancel[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 328 | "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 329 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 330 | |
| 14762 | 331 | |
| 14745 | 332 | subsection{*Cardinality*}
 | 
| 333 | ||
| 334 | lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" | |
| 31754 | 335 | by (rule card_inj_on_le) auto | 
| 14745 | 336 | |
| 337 | lemma card_bij: | |
| 31754 | 338 | "[|f \<in> A\<rightarrow>B; inj_on f A; | 
| 339 | g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" | |
| 340 | by (blast intro: card_inj order_antisym) | |
| 14745 | 341 | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 342 | subsection {* Extensional Function Spaces *} 
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 343 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 344 | definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set" where
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 345 | "PiE S T = Pi S T \<inter> extensional S" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 346 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 347 | abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 348 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 349 | syntax "_PiE"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PIE _:_./ _)" 10)
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 350 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 351 | syntax (xsymbols) "_PiE" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 352 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 353 | syntax (HTML output) "_PiE" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 354 | |
| 56777 | 355 | translations "PIE x:A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (%x. B)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 356 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 357 | abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "->\<^sub>E" 60) where
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 358 | "A ->\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 359 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 360 | notation (xsymbols) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 361 | extensional_funcset (infixr "\<rightarrow>\<^sub>E" 60) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 362 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 363 | lemma extensional_funcset_def: "extensional_funcset S T = (S -> T) \<inter> extensional S" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 364 | by (simp add: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 365 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 366 | lemma PiE_empty_domain[simp]: "PiE {} T = {%x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 367 | unfolding PiE_def by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 368 | |
| 54417 | 369 | lemma PiE_UNIV_domain: "PiE UNIV T = Pi UNIV T" | 
| 370 | unfolding PiE_def by simp | |
| 371 | ||
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 372 | lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (PIE i:I. F i) = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 373 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 374 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 | lemma PiE_eq_empty_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 376 |   "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 377 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 378 |   assume "Pi\<^sub>E I F = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 379 |   show "\<exists>i\<in>I. F i = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 380 | proof (rule ccontr) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 381 | assume "\<not> ?thesis" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 382 | then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" by auto | 
| 53381 | 383 | from choice[OF this] | 
| 384 | obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 385 | then have "f \<in> Pi\<^sub>E I F" by (auto simp: extensional_def PiE_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 386 |     with `Pi\<^sub>E I F = {}` show False by auto
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 387 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 388 | qed (auto simp: PiE_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 389 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 390 | lemma PiE_arb: "f \<in> PiE S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 391 | unfolding PiE_def by auto (auto dest!: extensional_arb) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 392 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 393 | lemma PiE_mem: "f \<in> PiE S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 394 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 395 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 396 | lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> PiE S T \<Longrightarrow> f(x := y) \<in> PiE (insert x S) T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 397 | unfolding PiE_def extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 398 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 399 | lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> PiE (insert x S) T \<Longrightarrow> f(x := undefined) \<in> PiE S T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 400 | unfolding PiE_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 401 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 402 | lemma PiE_insert_eq: | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 403 | assumes "x \<notin> S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 404 | shows "PiE (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 405 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 406 |   {
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 407 | fix f assume "f \<in> PiE (insert x S) T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 408 | with assms have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 409 | by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 410 | } | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 411 | then show ?thesis using assms by (auto intro: PiE_fun_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 412 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 413 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 414 | lemma PiE_Int: "(Pi\<^sub>E I A) \<inter> (Pi\<^sub>E I B) = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 415 | by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 416 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 417 | lemma PiE_cong: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 418 | "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 419 | unfolding PiE_def by (auto simp: Pi_cong) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 420 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 421 | lemma PiE_E [elim]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 422 | "f \<in> PiE A B \<Longrightarrow> (x \<in> A \<Longrightarrow> f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> f x = undefined \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 423 | by(auto simp: Pi_def PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 424 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 425 | lemma PiE_I[intro!]: "(\<And>x. x \<in> A ==> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> PiE A B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 426 | by (simp add: PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 427 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 428 | lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> PiE A B \<subseteq> PiE A C" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 429 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 430 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 431 | lemma PiE_iff: "f \<in> PiE I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 432 | by (simp add: PiE_def Pi_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 433 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 434 | lemma PiE_restrict[simp]: "f \<in> PiE A B \<Longrightarrow> restrict f A = f" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 435 | by (simp add: extensional_restrict PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 436 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 437 | lemma restrict_PiE[simp]: "restrict f I \<in> PiE I S \<longleftrightarrow> f \<in> Pi I S" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 438 | by (auto simp: PiE_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 439 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 440 | lemma PiE_eq_subset: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 441 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 442 | assumes eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" and "i \<in> I" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 443 | shows "F i \<subseteq> F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 444 | proof | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 445 | fix x assume "x \<in> F i" | 
| 53381 | 446 | with ne have "\<forall>j. \<exists>y. ((j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined))" | 
| 447 | by auto | |
| 448 | from choice[OF this] obtain f | |
| 449 | where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 450 | then have "f \<in> Pi\<^sub>E I F" by (auto simp: extensional_def PiE_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 451 | then have "f \<in> Pi\<^sub>E I F'" using assms by simp | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 452 | then show "x \<in> F' i" using f `i \<in> I` by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 453 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 454 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 455 | lemma PiE_eq_iff_not_empty: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 456 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 457 | shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 458 | proof (intro iffI ballI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 459 | fix i assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" and i: "i \<in> I" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 460 | show "F i = F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 461 | using PiE_eq_subset[of I F F', OF ne eq i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 462 | using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 463 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 464 | qed (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 465 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 466 | lemma PiE_eq_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 467 |   "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 468 | proof (intro iffI disjCI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 469 | assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 470 |   assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 471 |   then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 472 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 473 | with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 474 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 475 |   assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 476 | then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 477 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 478 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 479 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 480 | lemma extensional_funcset_fun_upd_restricts_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 481 |   "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f : (insert x S) \<rightarrow>\<^sub>E T ==> f(x := undefined) : S \<rightarrow>\<^sub>E (T - {f x})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 482 | unfolding extensional_funcset_def extensional_def | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 483 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 484 | apply (case_tac "x = xa") | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 485 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 486 | done | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 487 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 488 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 489 |   assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 490 | shows "f(x := a) \<in> (insert x S) \<rightarrow>\<^sub>E T" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 491 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 492 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 493 | subsubsection {* Injective Extensional Function Spaces *}
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 494 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 495 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 496 |   assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})" "inj_on f S"
 | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 497 | shows "inj_on (f(x := a)) S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 498 | using assms unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 499 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 500 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 501 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 502 |   shows"{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 503 |     (%(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 504 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 505 | from assms show ?thesis | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 506 | apply (auto del: PiE_I PiE_E) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 507 | apply (auto intro: extensional_funcset_fun_upd_inj_onI extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 508 | apply (auto simp add: image_iff inj_on_def) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 509 | apply (rule_tac x="xa x" in exI) | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 510 | apply (auto intro: PiE_mem del: PiE_I PiE_E) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 511 | apply (rule_tac x="xa(x := undefined)" in exI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 512 | apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 513 | apply (auto dest!: PiE_mem split: split_if_asm) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 514 | done | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 515 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 516 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 517 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 518 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 519 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 520 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 521 | from assms show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 522 | apply (auto intro!: inj_onI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 523 | apply (metis fun_upd_same) | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 524 | by (metis assms PiE_arb fun_upd_triv fun_upd_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 525 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 526 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 527 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 528 | subsubsection {* Cardinality *}
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 529 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 530 | lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (PIE i : S. T i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 531 | by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 532 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 533 | lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 534 | proof (safe intro!: inj_onI ext) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 535 | fix f y g z assume "x \<notin> S" and fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 536 | assume "f(x := y) = g(x := z)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 537 | then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 538 | unfolding fun_eq_iff by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 539 | from this[of x] show "y = z" by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 540 | fix i from *[of i] `x \<notin> S` fg show "f i = g i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 541 | by (auto split: split_if_asm simp: PiE_def extensional_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 542 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 543 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 544 | lemma card_PiE: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 545 | "finite S \<Longrightarrow> card (PIE i : S. T i) = (\<Prod> i\<in>S. card (T i))" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 546 | proof (induct rule: finite_induct) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 547 | case empty then show ?case by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 548 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 549 | case (insert x S) then show ?case | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 550 | by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 551 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 552 | |
| 13586 | 553 | end |