| author | blanchet | 
| Fri, 05 Sep 2014 00:41:01 +0200 | |
| changeset 58187 | d2ddd401d74d | 
| parent 57816 | d8bbb97689d3 | 
| child 58881 | b9556a055632 | 
| permissions | -rw-r--r-- | 
| 11054 | 1 | (* Title: HOL/Library/Permutation.thy | 
| 15005 | 2 | Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker | 
| 11054 | 3 | *) | 
| 4 | ||
| 14706 | 5 | header {* Permutations *}
 | 
| 11054 | 6 | |
| 15131 | 7 | theory Permutation | 
| 51542 | 8 | imports Multiset | 
| 15131 | 9 | begin | 
| 11054 | 10 | |
| 53238 | 11 | inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"  ("_ <~~> _"  [50, 50] 50)  (* FIXME proper infix, without ambiguity!? *)
 | 
| 12 | where | |
| 13 | Nil [intro!]: "[] <~~> []" | |
| 14 | | swap [intro!]: "y # x # l <~~> x # y # l" | |
| 15 | | Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys" | |
| 16 | | trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs" | |
| 11054 | 17 | |
| 18 | lemma perm_refl [iff]: "l <~~> l" | |
| 17200 | 19 | by (induct l) auto | 
| 11054 | 20 | |
| 21 | ||
| 22 | subsection {* Some examples of rule induction on permutations *}
 | |
| 23 | ||
| 53238 | 24 | lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []" | 
| 56796 | 25 | by (induct xs == "[] :: 'a list" ys pred: perm) simp_all | 
| 11054 | 26 | |
| 27 | ||
| 56796 | 28 | text {* \medskip This more general theorem is easier to understand! *}
 | 
| 11054 | 29 | |
| 53238 | 30 | lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys" | 
| 25379 | 31 | by (induct pred: perm) simp_all | 
| 11054 | 32 | |
| 53238 | 33 | lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []" | 
| 17200 | 34 | by (drule perm_length) auto | 
| 11054 | 35 | |
| 53238 | 36 | lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs" | 
| 25379 | 37 | by (induct pred: perm) auto | 
| 11054 | 38 | |
| 39 | ||
| 40 | subsection {* Ways of making new permutations *}
 | |
| 41 | ||
| 56796 | 42 | text {* We can insert the head anywhere in the list. *}
 | 
| 11054 | 43 | |
| 44 | lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys" | |
| 17200 | 45 | by (induct xs) auto | 
| 11054 | 46 | |
| 47 | lemma perm_append_swap: "xs @ ys <~~> ys @ xs" | |
| 17200 | 48 | apply (induct xs) | 
| 49 | apply simp_all | |
| 11054 | 50 | apply (blast intro: perm_append_Cons) | 
| 51 | done | |
| 52 | ||
| 53 | lemma perm_append_single: "a # xs <~~> xs @ [a]" | |
| 17200 | 54 | by (rule perm.trans [OF _ perm_append_swap]) simp | 
| 11054 | 55 | |
| 56 | lemma perm_rev: "rev xs <~~> xs" | |
| 17200 | 57 | apply (induct xs) | 
| 58 | apply simp_all | |
| 11153 | 59 | apply (blast intro!: perm_append_single intro: perm_sym) | 
| 11054 | 60 | done | 
| 61 | ||
| 53238 | 62 | lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys" | 
| 17200 | 63 | by (induct l) auto | 
| 11054 | 64 | |
| 53238 | 65 | lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l" | 
| 17200 | 66 | by (blast intro!: perm_append_swap perm_append1) | 
| 11054 | 67 | |
| 68 | ||
| 69 | subsection {* Further results *}
 | |
| 70 | ||
| 56796 | 71 | lemma perm_empty [iff]: "[] <~~> xs \<longleftrightarrow> xs = []" | 
| 17200 | 72 | by (blast intro: perm_empty_imp) | 
| 11054 | 73 | |
| 56796 | 74 | lemma perm_empty2 [iff]: "xs <~~> [] \<longleftrightarrow> xs = []" | 
| 11054 | 75 | apply auto | 
| 76 | apply (erule perm_sym [THEN perm_empty_imp]) | |
| 77 | done | |
| 78 | ||
| 53238 | 79 | lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]" | 
| 25379 | 80 | by (induct pred: perm) auto | 
| 11054 | 81 | |
| 56796 | 82 | lemma perm_sing_eq [iff]: "ys <~~> [y] \<longleftrightarrow> ys = [y]" | 
| 17200 | 83 | by (blast intro: perm_sing_imp) | 
| 11054 | 84 | |
| 56796 | 85 | lemma perm_sing_eq2 [iff]: "[y] <~~> ys \<longleftrightarrow> ys = [y]" | 
| 17200 | 86 | by (blast dest: perm_sym) | 
| 11054 | 87 | |
| 88 | ||
| 89 | subsection {* Removing elements *}
 | |
| 90 | ||
| 53238 | 91 | lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys" | 
| 17200 | 92 | by (induct ys) auto | 
| 11054 | 93 | |
| 94 | ||
| 95 | text {* \medskip Congruence rule *}
 | |
| 96 | ||
| 53238 | 97 | lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys" | 
| 25379 | 98 | by (induct pred: perm) auto | 
| 11054 | 99 | |
| 36903 | 100 | lemma remove_hd [simp]: "remove1 z (z # xs) = xs" | 
| 15072 | 101 | by auto | 
| 11054 | 102 | |
| 53238 | 103 | lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys" | 
| 17200 | 104 | by (drule_tac z = z in perm_remove_perm) auto | 
| 11054 | 105 | |
| 56796 | 106 | lemma cons_perm_eq [iff]: "z#xs <~~> z#ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 107 | by (blast intro: cons_perm_imp_perm) | 
| 11054 | 108 | |
| 53238 | 109 | lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys" | 
| 110 | by (induct zs arbitrary: xs ys rule: rev_induct) auto | |
| 11054 | 111 | |
| 56796 | 112 | lemma perm_append1_eq [iff]: "zs @ xs <~~> zs @ ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 113 | by (blast intro: append_perm_imp_perm perm_append1) | 
| 11054 | 114 | |
| 56796 | 115 | lemma perm_append2_eq [iff]: "xs @ zs <~~> ys @ zs \<longleftrightarrow> xs <~~> ys" | 
| 11054 | 116 | apply (safe intro!: perm_append2) | 
| 117 | apply (rule append_perm_imp_perm) | |
| 118 | apply (rule perm_append_swap [THEN perm.trans]) | |
| 119 |     -- {* the previous step helps this @{text blast} call succeed quickly *}
 | |
| 120 | apply (blast intro: perm_append_swap) | |
| 121 | done | |
| 122 | ||
| 56796 | 123 | lemma multiset_of_eq_perm: "multiset_of xs = multiset_of ys \<longleftrightarrow> xs <~~> ys" | 
| 17200 | 124 | apply (rule iffI) | 
| 56796 | 125 | apply (erule_tac [2] perm.induct) | 
| 126 | apply (simp_all add: union_ac) | |
| 127 | apply (erule rev_mp) | |
| 128 | apply (rule_tac x=ys in spec) | |
| 129 | apply (induct_tac xs) | |
| 130 | apply auto | |
| 131 | apply (erule_tac x = "remove1 a x" in allE) | |
| 132 | apply (drule sym) | |
| 133 | apply simp | |
| 17200 | 134 | apply (subgoal_tac "a \<in> set x") | 
| 53238 | 135 | apply (drule_tac z = a in perm.Cons) | 
| 56796 | 136 | apply (erule perm.trans) | 
| 137 | apply (rule perm_sym) | |
| 138 | apply (erule perm_remove) | |
| 139 | apply (drule_tac f=set_of in arg_cong) | |
| 140 | apply simp | |
| 15005 | 141 | done | 
| 142 | ||
| 53238 | 143 | lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)" | 
| 17200 | 144 | apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv) | 
| 56796 | 145 | apply (insert surj_multiset_of) | 
| 146 | apply (drule surjD) | |
| 15072 | 147 | apply (blast intro: sym)+ | 
| 148 | done | |
| 15005 | 149 | |
| 53238 | 150 | lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys" | 
| 25379 | 151 | by (metis multiset_of_eq_perm multiset_of_eq_setD) | 
| 25277 | 152 | |
| 53238 | 153 | lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys" | 
| 25379 | 154 | apply (induct pred: perm) | 
| 155 | apply simp_all | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 156 | apply fastforce | 
| 25379 | 157 | apply (metis perm_set_eq) | 
| 158 | done | |
| 25277 | 159 | |
| 53238 | 160 | lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys" | 
| 25379 | 161 | apply (induct xs arbitrary: ys rule: length_induct) | 
| 53238 | 162 | apply (case_tac "remdups xs") | 
| 163 | apply simp_all | |
| 164 | apply (subgoal_tac "a \<in> set (remdups ys)") | |
| 57816 
d8bbb97689d3
no need for 'set_simps' now that 'datatype_new' generates the desired 'set' property
 blanchet parents: 
56796diff
changeset | 165 | prefer 2 apply (metis list.set(2) insert_iff set_remdups) | 
| 56796 | 166 | apply (drule split_list) apply (elim exE conjE) | 
| 167 | apply (drule_tac x = list in spec) apply (erule impE) prefer 2 | |
| 168 | apply (drule_tac x = "ysa @ zs" in spec) apply (erule impE) prefer 2 | |
| 25379 | 169 | apply simp | 
| 53238 | 170 | apply (subgoal_tac "a # list <~~> a # ysa @ zs") | 
| 25379 | 171 | apply (metis Cons_eq_appendI perm_append_Cons trans) | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
39916diff
changeset | 172 | apply (metis Cons Cons_eq_appendI distinct.simps(2) | 
| 25379 | 173 | distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff) | 
| 56796 | 174 | apply (subgoal_tac "set (a # list) = | 
| 175 | set (ysa @ a # zs) \<and> distinct (a # list) \<and> distinct (ysa @ a # zs)") | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 176 | apply (fastforce simp add: insert_ident) | 
| 25379 | 177 | apply (metis distinct_remdups set_remdups) | 
| 30742 | 178 | apply (subgoal_tac "length (remdups xs) < Suc (length xs)") | 
| 179 | apply simp | |
| 180 | apply (subgoal_tac "length (remdups xs) \<le> length xs") | |
| 181 | apply simp | |
| 182 | apply (rule length_remdups_leq) | |
| 25379 | 183 | done | 
| 25287 | 184 | |
| 56796 | 185 | lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> set x = set y" | 
| 25379 | 186 | by (metis List.set_remdups perm_set_eq eq_set_perm_remdups) | 
| 25287 | 187 | |
| 39075 | 188 | lemma permutation_Ex_bij: | 
| 189 | assumes "xs <~~> ys" | |
| 190 |   shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
 | |
| 56796 | 191 | using assms | 
| 192 | proof induct | |
| 53238 | 193 | case Nil | 
| 56796 | 194 | then show ?case | 
| 195 | unfolding bij_betw_def by simp | |
| 39075 | 196 | next | 
| 197 | case (swap y x l) | |
| 198 | show ?case | |
| 199 | proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI) | |
| 200 |     show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
 | |
| 50037 | 201 | by (auto simp: bij_betw_def) | 
| 53238 | 202 | fix i | 
| 56796 | 203 | assume "i < length (y # x # l)" | 
| 39075 | 204 | show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i" | 
| 205 | by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc) | |
| 206 | qed | |
| 207 | next | |
| 208 | case (Cons xs ys z) | |
| 56796 | 209 |   then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}"
 | 
| 210 | and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" | |
| 211 | by blast | |
| 53238 | 212 | let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0" | 
| 39075 | 213 | show ?case | 
| 214 | proof (intro exI[of _ ?f] allI conjI impI) | |
| 215 |     have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
 | |
| 216 |             "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
 | |
| 39078 | 217 | by (simp_all add: lessThan_Suc_eq_insert_0) | 
| 53238 | 218 |     show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
 | 
| 219 | unfolding * | |
| 39075 | 220 | proof (rule bij_betw_combine) | 
| 221 |       show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
 | |
| 222 | using bij unfolding bij_betw_def | |
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55584diff
changeset | 223 | by (auto intro!: inj_onI imageI dest: inj_onD simp: image_comp comp_def) | 
| 39075 | 224 | qed (auto simp: bij_betw_def) | 
| 53238 | 225 | fix i | 
| 56796 | 226 | assume "i < length (z # xs)" | 
| 39075 | 227 | then show "(z # xs) ! i = (z # ys) ! (?f i)" | 
| 228 | using perm by (cases i) auto | |
| 229 | qed | |
| 230 | next | |
| 231 | case (trans xs ys zs) | |
| 56796 | 232 | then obtain f g | 
| 233 |     where bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}"
 | |
| 234 | and perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" | |
| 235 | by blast | |
| 39075 | 236 | show ?case | 
| 53238 | 237 | proof (intro exI[of _ "g \<circ> f"] conjI allI impI) | 
| 39075 | 238 |     show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
 | 
| 239 | using bij by (rule bij_betw_trans) | |
| 56796 | 240 | fix i | 
| 241 | assume "i < length xs" | |
| 242 | with bij have "f i < length ys" | |
| 243 | unfolding bij_betw_def by force | |
| 39075 | 244 | with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i" | 
| 53238 | 245 | using trans(1,3)[THEN perm_length] perm by auto | 
| 39075 | 246 | qed | 
| 247 | qed | |
| 248 | ||
| 11054 | 249 | end |