| author | wenzelm | 
| Sat, 03 Oct 2020 14:06:00 +0200 | |
| changeset 72367 | d3069e7e1175 | 
| parent 71461 | 5e25a693c5cf | 
| child 74101 | d804e93ae9ff | 
| permissions | -rw-r--r-- | 
| 58627 | 1 | (* Title: HOL/Library/Linear_Temporal_Logic_on_Streams.thy | 
| 2 | Author: Andrei Popescu, TU Muenchen | |
| 3 | Author: Dmitriy Traytel, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 60500 | 6 | section \<open>Linear Temporal Logic on Streams\<close> | 
| 58627 | 7 | |
| 8 | theory Linear_Temporal_Logic_on_Streams | |
| 59000 | 9 | imports Stream Sublist Extended_Nat Infinite_Set | 
| 58627 | 10 | begin | 
| 11 | ||
| 60500 | 12 | section\<open>Preliminaries\<close> | 
| 58627 | 13 | |
| 14 | lemma shift_prefix: | |
| 15 | assumes "xl @- xs = yl @- ys" and "length xl \<le> length yl" | |
| 63117 | 16 | shows "prefix xl yl" | 
| 58627 | 17 | using assms proof(induct xl arbitrary: yl xs ys) | 
| 18 | case (Cons x xl yl xs ys) | |
| 19 | thus ?case by (cases yl) auto | |
| 20 | qed auto | |
| 21 | ||
| 22 | lemma shift_prefix_cases: | |
| 23 | assumes "xl @- xs = yl @- ys" | |
| 63117 | 24 | shows "prefix xl yl \<or> prefix yl xl" | 
| 61239 | 25 | using shift_prefix[OF assms] | 
| 26 | by (cases "length xl \<le> length yl") (metis, metis assms nat_le_linear shift_prefix) | |
| 58627 | 27 | |
| 28 | ||
| 60500 | 29 | section\<open>Linear temporal logic\<close> | 
| 58627 | 30 | |
| 67408 | 31 | text \<open>Propositional connectives:\<close> | 
| 32 | ||
| 58627 | 33 | abbreviation (input) IMPL (infix "impl" 60) | 
| 34 | where "\<phi> impl \<psi> \<equiv> \<lambda> xs. \<phi> xs \<longrightarrow> \<psi> xs" | |
| 35 | ||
| 36 | abbreviation (input) OR (infix "or" 60) | |
| 37 | where "\<phi> or \<psi> \<equiv> \<lambda> xs. \<phi> xs \<or> \<psi> xs" | |
| 38 | ||
| 39 | abbreviation (input) AND (infix "aand" 60) | |
| 40 | where "\<phi> aand \<psi> \<equiv> \<lambda> xs. \<phi> xs \<and> \<psi> xs" | |
| 41 | ||
| 42 | abbreviation (input) "not \<phi> \<equiv> \<lambda> xs. \<not> \<phi> xs" | |
| 43 | ||
| 44 | abbreviation (input) "true \<equiv> \<lambda> xs. True" | |
| 45 | ||
| 46 | abbreviation (input) "false \<equiv> \<lambda> xs. False" | |
| 47 | ||
| 48 | lemma impl_not_or: "\<phi> impl \<psi> = (not \<phi>) or \<psi>" | |
| 49 | by blast | |
| 50 | ||
| 51 | lemma not_or: "not (\<phi> or \<psi>) = (not \<phi>) aand (not \<psi>)" | |
| 52 | by blast | |
| 53 | ||
| 54 | lemma not_aand: "not (\<phi> aand \<psi>) = (not \<phi>) or (not \<psi>)" | |
| 55 | by blast | |
| 56 | ||
| 57 | lemma non_not[simp]: "not (not \<phi>) = \<phi>" by simp | |
| 58 | ||
| 67408 | 59 | text \<open>Temporal (LTL) connectives:\<close> | 
| 60 | ||
| 58627 | 61 | fun holds where "holds P xs \<longleftrightarrow> P (shd xs)" | 
| 62 | fun nxt where "nxt \<phi> xs = \<phi> (stl xs)" | |
| 63 | ||
| 59000 | 64 | definition "HLD s = holds (\<lambda>x. x \<in> s)" | 
| 65 | ||
| 66 | abbreviation HLD_nxt (infixr "\<cdot>" 65) where | |
| 67 | "s \<cdot> P \<equiv> HLD s aand nxt P" | |
| 68 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 69 | context | 
| 62093 | 70 | notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 71 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 72 | |
| 58627 | 73 | inductive ev for \<phi> where | 
| 74 | base: "\<phi> xs \<Longrightarrow> ev \<phi> xs" | |
| 75 | | | |
| 76 | step: "ev \<phi> (stl xs) \<Longrightarrow> ev \<phi> xs" | |
| 77 | ||
| 78 | coinductive alw for \<phi> where | |
| 79 | alw: "\<lbrakk>\<phi> xs; alw \<phi> (stl xs)\<rbrakk> \<Longrightarrow> alw \<phi> xs" | |
| 80 | ||
| 67408 | 81 | \<comment> \<open>weak until:\<close> | 
| 58627 | 82 | coinductive UNTIL (infix "until" 60) for \<phi> \<psi> where | 
| 83 | base: "\<psi> xs \<Longrightarrow> (\<phi> until \<psi>) xs" | |
| 84 | | | |
| 85 | step: "\<lbrakk>\<phi> xs; (\<phi> until \<psi>) (stl xs)\<rbrakk> \<Longrightarrow> (\<phi> until \<psi>) xs" | |
| 86 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 87 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 88 | |
| 58627 | 89 | lemma holds_mono: | 
| 90 | assumes holds: "holds P xs" and 0: "\<And> x. P x \<Longrightarrow> Q x" | |
| 91 | shows "holds Q xs" | |
| 92 | using assms by auto | |
| 93 | ||
| 94 | lemma holds_aand: | |
| 95 | "(holds P aand holds Q) steps \<longleftrightarrow> holds (\<lambda> step. P step \<and> Q step) steps" by auto | |
| 96 | ||
| 59000 | 97 | lemma HLD_iff: "HLD s \<omega> \<longleftrightarrow> shd \<omega> \<in> s" | 
| 98 | by (simp add: HLD_def) | |
| 99 | ||
| 100 | lemma HLD_Stream[simp]: "HLD X (x ## \<omega>) \<longleftrightarrow> x \<in> X" | |
| 101 | by (simp add: HLD_iff) | |
| 102 | ||
| 58627 | 103 | lemma nxt_mono: | 
| 104 | assumes nxt: "nxt \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 105 | shows "nxt \<psi> xs" | |
| 106 | using assms by auto | |
| 107 | ||
| 59000 | 108 | declare ev.intros[intro] | 
| 109 | declare alw.cases[elim] | |
| 110 | ||
| 111 | lemma ev_induct_strong[consumes 1, case_names base step]: | |
| 112 | "ev \<phi> x \<Longrightarrow> (\<And>xs. \<phi> xs \<Longrightarrow> P xs) \<Longrightarrow> (\<And>xs. ev \<phi> (stl xs) \<Longrightarrow> \<not> \<phi> xs \<Longrightarrow> P (stl xs) \<Longrightarrow> P xs) \<Longrightarrow> P x" | |
| 113 | by (induct rule: ev.induct) auto | |
| 114 | ||
| 115 | lemma alw_coinduct[consumes 1, case_names alw stl]: | |
| 116 | "X x \<Longrightarrow> (\<And>x. X x \<Longrightarrow> \<phi> x) \<Longrightarrow> (\<And>x. X x \<Longrightarrow> \<not> alw \<phi> (stl x) \<Longrightarrow> X (stl x)) \<Longrightarrow> alw \<phi> x" | |
| 117 | using alw.coinduct[of X x \<phi>] by auto | |
| 118 | ||
| 58627 | 119 | lemma ev_mono: | 
| 120 | assumes ev: "ev \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 121 | shows "ev \<psi> xs" | |
| 61239 | 122 | using ev by induct (auto simp: 0) | 
| 58627 | 123 | |
| 124 | lemma alw_mono: | |
| 125 | assumes alw: "alw \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 126 | shows "alw \<psi> xs" | |
| 61239 | 127 | using alw by coinduct (auto simp: 0) | 
| 58627 | 128 | |
| 129 | lemma until_monoL: | |
| 130 | assumes until: "(\<phi>1 until \<psi>) xs" and 0: "\<And> xs. \<phi>1 xs \<Longrightarrow> \<phi>2 xs" | |
| 131 | shows "(\<phi>2 until \<psi>) xs" | |
| 132 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 133 | ||
| 134 | lemma until_monoR: | |
| 135 | assumes until: "(\<phi> until \<psi>1) xs" and 0: "\<And> xs. \<psi>1 xs \<Longrightarrow> \<psi>2 xs" | |
| 136 | shows "(\<phi> until \<psi>2) xs" | |
| 137 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 138 | ||
| 139 | lemma until_mono: | |
| 140 | assumes until: "(\<phi>1 until \<psi>1) xs" and | |
| 141 | 0: "\<And> xs. \<phi>1 xs \<Longrightarrow> \<phi>2 xs" "\<And> xs. \<psi>1 xs \<Longrightarrow> \<psi>2 xs" | |
| 142 | shows "(\<phi>2 until \<psi>2) xs" | |
| 143 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 144 | ||
| 145 | lemma until_false: "\<phi> until false = alw \<phi>" | |
| 146 | proof- | |
| 147 |   {fix xs assume "(\<phi> until false) xs" hence "alw \<phi> xs"
 | |
| 61239 | 148 | by coinduct (auto elim: UNTIL.cases) | 
| 58627 | 149 | } | 
| 150 | moreover | |
| 151 |   {fix xs assume "alw \<phi> xs" hence "(\<phi> until false) xs"
 | |
| 61239 | 152 | by coinduct auto | 
| 58627 | 153 | } | 
| 154 | ultimately show ?thesis by blast | |
| 155 | qed | |
| 156 | ||
| 157 | lemma ev_nxt: "ev \<phi> = (\<phi> or nxt (ev \<phi>))" | |
| 61239 | 158 | by (rule ext) (metis ev.simps nxt.simps) | 
| 58627 | 159 | |
| 160 | lemma alw_nxt: "alw \<phi> = (\<phi> aand nxt (alw \<phi>))" | |
| 61239 | 161 | by (rule ext) (metis alw.simps nxt.simps) | 
| 58627 | 162 | |
| 163 | lemma ev_ev[simp]: "ev (ev \<phi>) = ev \<phi>" | |
| 164 | proof- | |
| 165 |   {fix xs
 | |
| 166 | assume "ev (ev \<phi>) xs" hence "ev \<phi> xs" | |
| 61239 | 167 | by induct auto | 
| 58627 | 168 | } | 
| 61239 | 169 | thus ?thesis by auto | 
| 58627 | 170 | qed | 
| 171 | ||
| 172 | lemma alw_alw[simp]: "alw (alw \<phi>) = alw \<phi>" | |
| 173 | proof- | |
| 174 |   {fix xs
 | |
| 175 | assume "alw \<phi> xs" hence "alw (alw \<phi>) xs" | |
| 61239 | 176 | by coinduct auto | 
| 58627 | 177 | } | 
| 61239 | 178 | thus ?thesis by auto | 
| 58627 | 179 | qed | 
| 180 | ||
| 181 | lemma ev_shift: | |
| 182 | assumes "ev \<phi> xs" | |
| 183 | shows "ev \<phi> (xl @- xs)" | |
| 61239 | 184 | using assms by (induct xl) auto | 
| 58627 | 185 | |
| 186 | lemma ev_imp_shift: | |
| 187 | assumes "ev \<phi> xs" shows "\<exists> xl xs2. xs = xl @- xs2 \<and> \<phi> xs2" | |
| 188 | using assms by induct (metis shift.simps(1), metis shift.simps(2) stream.collapse)+ | |
| 189 | ||
| 190 | lemma alw_ev_shift: "alw \<phi> xs1 \<Longrightarrow> ev (alw \<phi>) (xl @- xs1)" | |
| 61239 | 191 | by (auto intro: ev_shift) | 
| 58627 | 192 | |
| 193 | lemma alw_shift: | |
| 194 | assumes "alw \<phi> (xl @- xs)" | |
| 195 | shows "alw \<phi> xs" | |
| 61239 | 196 | using assms by (induct xl) auto | 
| 58627 | 197 | |
| 198 | lemma ev_ex_nxt: | |
| 199 | assumes "ev \<phi> xs" | |
| 200 | shows "\<exists> n. (nxt ^^ n) \<phi> xs" | |
| 201 | using assms proof induct | |
| 202 | case (base xs) thus ?case by (intro exI[of _ 0]) auto | |
| 203 | next | |
| 204 | case (step xs) | |
| 205 | then obtain n where "(nxt ^^ n) \<phi> (stl xs)" by blast | |
| 206 | thus ?case by (intro exI[of _ "Suc n"]) (metis funpow.simps(2) nxt.simps o_def) | |
| 207 | qed | |
| 208 | ||
| 209 | lemma alw_sdrop: | |
| 210 | assumes "alw \<phi> xs" shows "alw \<phi> (sdrop n xs)" | |
| 211 | by (metis alw_shift assms stake_sdrop) | |
| 212 | ||
| 213 | lemma nxt_sdrop: "(nxt ^^ n) \<phi> xs \<longleftrightarrow> \<phi> (sdrop n xs)" | |
| 214 | by (induct n arbitrary: xs) auto | |
| 215 | ||
| 216 | definition "wait \<phi> xs \<equiv> LEAST n. (nxt ^^ n) \<phi> xs" | |
| 217 | ||
| 218 | lemma nxt_wait: | |
| 219 | assumes "ev \<phi> xs" shows "(nxt ^^ (wait \<phi> xs)) \<phi> xs" | |
| 220 | unfolding wait_def using ev_ex_nxt[OF assms] by(rule LeastI_ex) | |
| 221 | ||
| 222 | lemma nxt_wait_least: | |
| 223 | assumes ev: "ev \<phi> xs" and nxt: "(nxt ^^ n) \<phi> xs" shows "wait \<phi> xs \<le> n" | |
| 224 | unfolding wait_def using ev_ex_nxt[OF ev] by (metis Least_le nxt) | |
| 225 | ||
| 226 | lemma sdrop_wait: | |
| 227 | assumes "ev \<phi> xs" shows "\<phi> (sdrop (wait \<phi> xs) xs)" | |
| 228 | using nxt_wait[OF assms] unfolding nxt_sdrop . | |
| 229 | ||
| 230 | lemma sdrop_wait_least: | |
| 231 | assumes ev: "ev \<phi> xs" and nxt: "\<phi> (sdrop n xs)" shows "wait \<phi> xs \<le> n" | |
| 232 | using assms nxt_wait_least unfolding nxt_sdrop by auto | |
| 233 | ||
| 234 | lemma nxt_ev: "(nxt ^^ n) \<phi> xs \<Longrightarrow> ev \<phi> xs" | |
| 61239 | 235 | by (induct n arbitrary: xs) auto | 
| 58627 | 236 | |
| 237 | lemma not_ev: "not (ev \<phi>) = alw (not \<phi>)" | |
| 238 | proof(rule ext, safe) | |
| 239 | fix xs assume "not (ev \<phi>) xs" thus "alw (not \<phi>) xs" | |
| 61239 | 240 | by (coinduct) auto | 
| 58627 | 241 | next | 
| 242 | fix xs assume "ev \<phi> xs" and "alw (not \<phi>) xs" thus False | |
| 61239 | 243 | by (induct) auto | 
| 58627 | 244 | qed | 
| 245 | ||
| 246 | lemma not_alw: "not (alw \<phi>) = ev (not \<phi>)" | |
| 247 | proof- | |
| 248 | have "not (alw \<phi>) = not (alw (not (not \<phi>)))" by simp | |
| 249 | also have "... = ev (not \<phi>)" unfolding not_ev[symmetric] by simp | |
| 250 | finally show ?thesis . | |
| 251 | qed | |
| 252 | ||
| 253 | lemma not_ev_not[simp]: "not (ev (not \<phi>)) = alw \<phi>" | |
| 254 | unfolding not_ev by simp | |
| 255 | ||
| 256 | lemma not_alw_not[simp]: "not (alw (not \<phi>)) = ev \<phi>" | |
| 257 | unfolding not_alw by simp | |
| 258 | ||
| 259 | lemma alw_ev_sdrop: | |
| 260 | assumes "alw (ev \<phi>) (sdrop m xs)" | |
| 261 | shows "alw (ev \<phi>) xs" | |
| 262 | using assms | |
| 263 | by coinduct (metis alw_nxt ev_shift funpow_swap1 nxt.simps nxt_sdrop stake_sdrop) | |
| 264 | ||
| 265 | lemma ev_alw_imp_alw_ev: | |
| 266 | assumes "ev (alw \<phi>) xs" shows "alw (ev \<phi>) xs" | |
| 61239 | 267 | using assms by induct (metis (full_types) alw_mono ev.base, metis alw alw_nxt ev.step) | 
| 58627 | 268 | |
| 269 | lemma alw_aand: "alw (\<phi> aand \<psi>) = alw \<phi> aand alw \<psi>" | |
| 270 | proof- | |
| 271 |   {fix xs assume "alw (\<phi> aand \<psi>) xs" hence "(alw \<phi> aand alw \<psi>) xs"
 | |
| 272 | by (auto elim: alw_mono) | |
| 273 | } | |
| 274 | moreover | |
| 275 |   {fix xs assume "(alw \<phi> aand alw \<psi>) xs" hence "alw (\<phi> aand \<psi>) xs"
 | |
| 61239 | 276 | by coinduct auto | 
| 58627 | 277 | } | 
| 278 | ultimately show ?thesis by blast | |
| 279 | qed | |
| 280 | ||
| 281 | lemma ev_or: "ev (\<phi> or \<psi>) = ev \<phi> or ev \<psi>" | |
| 282 | proof- | |
| 283 |   {fix xs assume "(ev \<phi> or ev \<psi>) xs" hence "ev (\<phi> or \<psi>) xs"
 | |
| 284 | by (auto elim: ev_mono) | |
| 285 | } | |
| 286 | moreover | |
| 287 |   {fix xs assume "ev (\<phi> or \<psi>) xs" hence "(ev \<phi> or ev \<psi>) xs"
 | |
| 61239 | 288 | by induct auto | 
| 58627 | 289 | } | 
| 290 | ultimately show ?thesis by blast | |
| 291 | qed | |
| 292 | ||
| 293 | lemma ev_alw_aand: | |
| 294 | assumes \<phi>: "ev (alw \<phi>) xs" and \<psi>: "ev (alw \<psi>) xs" | |
| 295 | shows "ev (alw (\<phi> aand \<psi>)) xs" | |
| 296 | proof- | |
| 297 | obtain xl xs1 where xs1: "xs = xl @- xs1" and \<phi>\<phi>: "alw \<phi> xs1" | |
| 298 | using \<phi> by (metis ev_imp_shift) | |
| 299 | moreover obtain yl ys1 where xs2: "xs = yl @- ys1" and \<psi>\<psi>: "alw \<psi> ys1" | |
| 300 | using \<psi> by (metis ev_imp_shift) | |
| 301 | ultimately have 0: "xl @- xs1 = yl @- ys1" by auto | |
| 63117 | 302 | hence "prefix xl yl \<or> prefix yl xl" using shift_prefix_cases by auto | 
| 58627 | 303 | thus ?thesis proof | 
| 63117 | 304 | assume "prefix xl yl" | 
| 305 | then obtain yl1 where yl: "yl = xl @ yl1" by (elim prefixE) | |
| 58627 | 306 | have xs1': "xs1 = yl1 @- ys1" using 0 unfolding yl by simp | 
| 307 | have "alw \<phi> ys1" using \<phi>\<phi> unfolding xs1' by (metis alw_shift) | |
| 308 | hence "alw (\<phi> aand \<psi>) ys1" using \<psi>\<psi> unfolding alw_aand by auto | |
| 309 | thus ?thesis unfolding xs2 by (auto intro: alw_ev_shift) | |
| 310 | next | |
| 63117 | 311 | assume "prefix yl xl" | 
| 312 | then obtain xl1 where xl: "xl = yl @ xl1" by (elim prefixE) | |
| 58627 | 313 | have ys1': "ys1 = xl1 @- xs1" using 0 unfolding xl by simp | 
| 314 | have "alw \<psi> xs1" using \<psi>\<psi> unfolding ys1' by (metis alw_shift) | |
| 315 | hence "alw (\<phi> aand \<psi>) xs1" using \<phi>\<phi> unfolding alw_aand by auto | |
| 316 | thus ?thesis unfolding xs1 by (auto intro: alw_ev_shift) | |
| 317 | qed | |
| 318 | qed | |
| 319 | ||
| 320 | lemma ev_alw_alw_impl: | |
| 321 | assumes "ev (alw \<phi>) xs" and "alw (alw \<phi> impl ev \<psi>) xs" | |
| 322 | shows "ev \<psi> xs" | |
| 61239 | 323 | using assms by induct auto | 
| 58627 | 324 | |
| 325 | lemma ev_alw_stl[simp]: "ev (alw \<phi>) (stl x) \<longleftrightarrow> ev (alw \<phi>) x" | |
| 326 | by (metis (full_types) alw_nxt ev_nxt nxt.simps) | |
| 327 | ||
| 328 | lemma alw_alw_impl_ev: | |
| 329 | "alw (alw \<phi> impl ev \<psi>) = (ev (alw \<phi>) impl alw (ev \<psi>))" (is "?A = ?B") | |
| 330 | proof- | |
| 331 |   {fix xs assume "?A xs \<and> ev (alw \<phi>) xs" hence "alw (ev \<psi>) xs"
 | |
| 61239 | 332 | by coinduct (auto elim: ev_alw_alw_impl) | 
| 58627 | 333 | } | 
| 334 | moreover | |
| 335 |   {fix xs assume "?B xs" hence "?A xs"
 | |
| 61239 | 336 | by coinduct auto | 
| 58627 | 337 | } | 
| 338 | ultimately show ?thesis by blast | |
| 339 | qed | |
| 340 | ||
| 341 | lemma ev_alw_impl: | |
| 342 | assumes "ev \<phi> xs" and "alw (\<phi> impl \<psi>) xs" shows "ev \<psi> xs" | |
| 61239 | 343 | using assms by induct auto | 
| 58627 | 344 | |
| 345 | lemma ev_alw_impl_ev: | |
| 346 | assumes "ev \<phi> xs" and "alw (\<phi> impl ev \<psi>) xs" shows "ev \<psi> xs" | |
| 347 | using ev_alw_impl[OF assms] by simp | |
| 348 | ||
| 349 | lemma alw_mp: | |
| 350 | assumes "alw \<phi> xs" and "alw (\<phi> impl \<psi>) xs" | |
| 351 | shows "alw \<psi> xs" | |
| 352 | proof- | |
| 353 |   {assume "alw \<phi> xs \<and> alw (\<phi> impl \<psi>) xs" hence ?thesis
 | |
| 61239 | 354 | by coinduct auto | 
| 58627 | 355 | } | 
| 356 | thus ?thesis using assms by auto | |
| 357 | qed | |
| 358 | ||
| 359 | lemma all_imp_alw: | |
| 360 | assumes "\<And> xs. \<phi> xs" shows "alw \<phi> xs" | |
| 361 | proof- | |
| 362 |   {assume "\<forall> xs. \<phi> xs"
 | |
| 363 | hence ?thesis by coinduct auto | |
| 364 | } | |
| 365 | thus ?thesis using assms by auto | |
| 366 | qed | |
| 367 | ||
| 368 | lemma alw_impl_ev_alw: | |
| 369 | assumes "alw (\<phi> impl ev \<psi>) xs" | |
| 370 | shows "alw (ev \<phi> impl ev \<psi>) xs" | |
| 61239 | 371 | using assms by coinduct (auto dest: ev_alw_impl) | 
| 58627 | 372 | |
| 373 | lemma ev_holds_sset: | |
| 374 | "ev (holds P) xs \<longleftrightarrow> (\<exists> x \<in> sset xs. P x)" (is "?L \<longleftrightarrow> ?R") | |
| 375 | proof safe | |
| 376 | assume ?L thus ?R by induct (metis holds.simps stream.set_sel(1), metis stl_sset) | |
| 377 | next | |
| 378 | fix x assume "x \<in> sset xs" "P x" | |
| 379 | thus ?L by (induct rule: sset_induct) (simp_all add: ev.base ev.step) | |
| 380 | qed | |
| 381 | ||
| 67408 | 382 | text \<open>LTL as a program logic:\<close> | 
| 58627 | 383 | lemma alw_invar: | 
| 384 | assumes "\<phi> xs" and "alw (\<phi> impl nxt \<phi>) xs" | |
| 385 | shows "alw \<phi> xs" | |
| 386 | proof- | |
| 387 |   {assume "\<phi> xs \<and> alw (\<phi> impl nxt \<phi>) xs" hence ?thesis
 | |
| 61239 | 388 | by coinduct auto | 
| 58627 | 389 | } | 
| 390 | thus ?thesis using assms by auto | |
| 391 | qed | |
| 392 | ||
| 393 | lemma variance: | |
| 394 | assumes 1: "\<phi> xs" and 2: "alw (\<phi> impl (\<psi> or nxt \<phi>)) xs" | |
| 395 | shows "(alw \<phi> or ev \<psi>) xs" | |
| 396 | proof- | |
| 397 |   {assume "\<not> ev \<psi> xs" hence "alw (not \<psi>) xs" unfolding not_ev[symmetric] .
 | |
| 398 | moreover have "alw (not \<psi> impl (\<phi> impl nxt \<phi>)) xs" | |
| 61239 | 399 | using 2 by coinduct auto | 
| 58627 | 400 | ultimately have "alw (\<phi> impl nxt \<phi>) xs" by(auto dest: alw_mp) | 
| 401 | with 1 have "alw \<phi> xs" by(rule alw_invar) | |
| 402 | } | |
| 403 | thus ?thesis by blast | |
| 404 | qed | |
| 405 | ||
| 406 | lemma ev_alw_imp_nxt: | |
| 407 | assumes e: "ev \<phi> xs" and a: "alw (\<phi> impl (nxt \<phi>)) xs" | |
| 408 | shows "ev (alw \<phi>) xs" | |
| 409 | proof- | |
| 410 | obtain xl xs1 where xs: "xs = xl @- xs1" and \<phi>: "\<phi> xs1" | |
| 411 | using e by (metis ev_imp_shift) | |
| 412 | have "\<phi> xs1 \<and> alw (\<phi> impl (nxt \<phi>)) xs1" using a \<phi> unfolding xs by (metis alw_shift) | |
| 61239 | 413 | hence "alw \<phi> xs1" by(coinduct xs1 rule: alw.coinduct) auto | 
| 58627 | 414 | thus ?thesis unfolding xs by (auto intro: alw_ev_shift) | 
| 415 | qed | |
| 416 | ||
| 417 | ||
| 59000 | 418 | inductive ev_at :: "('a stream \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a stream \<Rightarrow> bool" for P :: "'a stream \<Rightarrow> bool" where
 | 
| 419 | base: "P \<omega> \<Longrightarrow> ev_at P 0 \<omega>" | |
| 420 | | step:"\<not> P \<omega> \<Longrightarrow> ev_at P n (stl \<omega>) \<Longrightarrow> ev_at P (Suc n) \<omega>" | |
| 421 | ||
| 422 | inductive_simps ev_at_0[simp]: "ev_at P 0 \<omega>" | |
| 423 | inductive_simps ev_at_Suc[simp]: "ev_at P (Suc n) \<omega>" | |
| 424 | ||
| 425 | lemma ev_at_imp_snth: "ev_at P n \<omega> \<Longrightarrow> P (sdrop n \<omega>)" | |
| 426 | by (induction n arbitrary: \<omega>) auto | |
| 427 | ||
| 428 | lemma ev_at_HLD_imp_snth: "ev_at (HLD X) n \<omega> \<Longrightarrow> \<omega> !! n \<in> X" | |
| 429 | by (auto dest!: ev_at_imp_snth simp: HLD_iff) | |
| 430 | ||
| 431 | lemma ev_at_HLD_single_imp_snth: "ev_at (HLD {x}) n \<omega> \<Longrightarrow> \<omega> !! n = x"
 | |
| 432 | by (drule ev_at_HLD_imp_snth) simp | |
| 433 | ||
| 434 | lemma ev_at_unique: "ev_at P n \<omega> \<Longrightarrow> ev_at P m \<omega> \<Longrightarrow> n = m" | |
| 435 | proof (induction arbitrary: m rule: ev_at.induct) | |
| 436 | case (base \<omega>) then show ?case | |
| 437 | by (simp add: ev_at.simps[of _ _ \<omega>]) | |
| 438 | next | |
| 439 | case (step \<omega> n) from step.prems step.hyps step.IH[of "m - 1"] show ?case | |
| 440 | by (auto simp add: ev_at.simps[of _ _ \<omega>]) | |
| 441 | qed | |
| 442 | ||
| 443 | lemma ev_iff_ev_at: "ev P \<omega> \<longleftrightarrow> (\<exists>n. ev_at P n \<omega>)" | |
| 444 | proof | |
| 445 | assume "ev P \<omega>" then show "\<exists>n. ev_at P n \<omega>" | |
| 446 | by (induction rule: ev_induct_strong) (auto intro: ev_at.intros) | |
| 447 | next | |
| 448 | assume "\<exists>n. ev_at P n \<omega>" | |
| 449 | then obtain n where "ev_at P n \<omega>" | |
| 450 | by auto | |
| 451 | then show "ev P \<omega>" | |
| 452 | by induction auto | |
| 453 | qed | |
| 454 | ||
| 455 | lemma ev_at_shift: "ev_at (HLD X) i (stake (Suc i) \<omega> @- \<omega>' :: 's stream) \<longleftrightarrow> ev_at (HLD X) i \<omega>" | |
| 456 | by (induction i arbitrary: \<omega>) (auto simp: HLD_iff) | |
| 457 | ||
| 71064 | 458 | lemma ev_iff_ev_at_unique: "ev P \<omega> \<longleftrightarrow> (\<exists>!n. ev_at P n \<omega>)" | 
| 59000 | 459 | by (auto intro: ev_at_unique simp: ev_iff_ev_at) | 
| 460 | ||
| 461 | lemma alw_HLD_iff_streams: "alw (HLD X) \<omega> \<longleftrightarrow> \<omega> \<in> streams X" | |
| 462 | proof | |
| 463 | assume "alw (HLD X) \<omega>" then show "\<omega> \<in> streams X" | |
| 464 | proof (coinduction arbitrary: \<omega>) | |
| 465 | case (streams \<omega>) then show ?case by (cases \<omega>) auto | |
| 466 | qed | |
| 467 | next | |
| 468 | assume "\<omega> \<in> streams X" then show "alw (HLD X) \<omega>" | |
| 469 | proof (coinduction arbitrary: \<omega>) | |
| 470 | case (alw \<omega>) then show ?case by (cases \<omega>) auto | |
| 471 | qed | |
| 472 | qed | |
| 473 | ||
| 474 | lemma not_HLD: "not (HLD X) = HLD (- X)" | |
| 475 | by (auto simp: HLD_iff) | |
| 476 | ||
| 477 | lemma not_alw_iff: "\<not> (alw P \<omega>) \<longleftrightarrow> ev (not P) \<omega>" | |
| 478 | using not_alw[of P] by (simp add: fun_eq_iff) | |
| 479 | ||
| 480 | lemma not_ev_iff: "\<not> (ev P \<omega>) \<longleftrightarrow> alw (not P) \<omega>" | |
| 481 | using not_alw_iff[of "not P" \<omega>, symmetric] by simp | |
| 482 | ||
| 483 | lemma ev_Stream: "ev P (x ## s) \<longleftrightarrow> P (x ## s) \<or> ev P s" | |
| 484 | by (auto elim: ev.cases) | |
| 485 | ||
| 486 | lemma alw_ev_imp_ev_alw: | |
| 487 | assumes "alw (ev P) \<omega>" shows "ev (P aand alw (ev P)) \<omega>" | |
| 488 | proof - | |
| 489 | have "ev P \<omega>" using assms by auto | |
| 490 | from this assms show ?thesis | |
| 491 | by induct auto | |
| 492 | qed | |
| 493 | ||
| 494 | lemma ev_False: "ev (\<lambda>x. False) \<omega> \<longleftrightarrow> False" | |
| 495 | proof | |
| 496 | assume "ev (\<lambda>x. False) \<omega>" then show False | |
| 497 | by induct auto | |
| 498 | qed auto | |
| 499 | ||
| 500 | lemma alw_False: "alw (\<lambda>x. False) \<omega> \<longleftrightarrow> False" | |
| 501 | by auto | |
| 502 | ||
| 503 | lemma ev_iff_sdrop: "ev P \<omega> \<longleftrightarrow> (\<exists>m. P (sdrop m \<omega>))" | |
| 504 | proof safe | |
| 505 | assume "ev P \<omega>" then show "\<exists>m. P (sdrop m \<omega>)" | |
| 506 | by (induct rule: ev_induct_strong) (auto intro: exI[of _ 0] exI[of _ "Suc n" for n]) | |
| 507 | next | |
| 508 | fix m assume "P (sdrop m \<omega>)" then show "ev P \<omega>" | |
| 509 | by (induct m arbitrary: \<omega>) auto | |
| 510 | qed | |
| 511 | ||
| 512 | lemma alw_iff_sdrop: "alw P \<omega> \<longleftrightarrow> (\<forall>m. P (sdrop m \<omega>))" | |
| 513 | proof safe | |
| 514 | fix m assume "alw P \<omega>" then show "P (sdrop m \<omega>)" | |
| 515 | by (induct m arbitrary: \<omega>) auto | |
| 516 | next | |
| 517 | assume "\<forall>m. P (sdrop m \<omega>)" then show "alw P \<omega>" | |
| 518 | by (coinduction arbitrary: \<omega>) (auto elim: allE[of _ 0] allE[of _ "Suc n" for n]) | |
| 519 | qed | |
| 520 | ||
| 521 | lemma infinite_iff_alw_ev: "infinite {m. P (sdrop m \<omega>)} \<longleftrightarrow> alw (ev P) \<omega>"
 | |
| 522 | unfolding infinite_nat_iff_unbounded_le alw_iff_sdrop ev_iff_sdrop | |
| 523 | by simp (metis le_Suc_ex le_add1) | |
| 524 | ||
| 525 | lemma alw_inv: | |
| 526 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 527 | shows "alw P (f s) \<longleftrightarrow> alw (\<lambda>x. P (f x)) s" | |
| 528 | proof | |
| 529 | assume "alw P (f s)" then show "alw (\<lambda>x. P (f x)) s" | |
| 530 | by (coinduction arbitrary: s rule: alw_coinduct) | |
| 531 | (auto simp: stl) | |
| 532 | next | |
| 533 | assume "alw (\<lambda>x. P (f x)) s" then show "alw P (f s)" | |
| 68406 | 534 | by (coinduction arbitrary: s rule: alw_coinduct) (auto simp flip: stl) | 
| 59000 | 535 | qed | 
| 536 | ||
| 537 | lemma ev_inv: | |
| 538 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 539 | shows "ev P (f s) \<longleftrightarrow> ev (\<lambda>x. P (f x)) s" | |
| 540 | proof | |
| 541 | assume "ev P (f s)" then show "ev (\<lambda>x. P (f x)) s" | |
| 542 | by (induction "f s" arbitrary: s) (auto simp: stl) | |
| 543 | next | |
| 544 | assume "ev (\<lambda>x. P (f x)) s" then show "ev P (f s)" | |
| 68406 | 545 | by induction (auto simp flip: stl) | 
| 59000 | 546 | qed | 
| 547 | ||
| 548 | lemma alw_smap: "alw P (smap f s) \<longleftrightarrow> alw (\<lambda>x. P (smap f x)) s" | |
| 549 | by (rule alw_inv) simp | |
| 550 | ||
| 551 | lemma ev_smap: "ev P (smap f s) \<longleftrightarrow> ev (\<lambda>x. P (smap f x)) s" | |
| 552 | by (rule ev_inv) simp | |
| 553 | ||
| 554 | lemma alw_cong: | |
| 555 | assumes P: "alw P \<omega>" and eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>" | |
| 556 | shows "alw Q1 \<omega> \<longleftrightarrow> alw Q2 \<omega>" | |
| 557 | proof - | |
| 558 | from eq have "(alw P aand Q1) = (alw P aand Q2)" by auto | |
| 559 | then have "alw (alw P aand Q1) \<omega> = alw (alw P aand Q2) \<omega>" by auto | |
| 560 | with P show "alw Q1 \<omega> \<longleftrightarrow> alw Q2 \<omega>" | |
| 561 | by (simp add: alw_aand) | |
| 562 | qed | |
| 563 | ||
| 564 | lemma ev_cong: | |
| 565 | assumes P: "alw P \<omega>" and eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>" | |
| 566 | shows "ev Q1 \<omega> \<longleftrightarrow> ev Q2 \<omega>" | |
| 567 | proof - | |
| 568 | from P have "alw (\<lambda>xs. Q1 xs \<longrightarrow> Q2 xs) \<omega>" by (rule alw_mono) (simp add: eq) | |
| 569 | moreover from P have "alw (\<lambda>xs. Q2 xs \<longrightarrow> Q1 xs) \<omega>" by (rule alw_mono) (simp add: eq) | |
| 570 | moreover note ev_alw_impl[of Q1 \<omega> Q2] ev_alw_impl[of Q2 \<omega> Q1] | |
| 571 | ultimately show "ev Q1 \<omega> \<longleftrightarrow> ev Q2 \<omega>" | |
| 572 | by auto | |
| 573 | qed | |
| 574 | ||
| 575 | lemma alwD: "alw P x \<Longrightarrow> P x" | |
| 576 | by auto | |
| 577 | ||
| 578 | lemma alw_alwD: "alw P \<omega> \<Longrightarrow> alw (alw P) \<omega>" | |
| 579 | by simp | |
| 580 | ||
| 581 | lemma alw_ev_stl: "alw (ev P) (stl \<omega>) \<longleftrightarrow> alw (ev P) \<omega>" | |
| 582 | by (auto intro: alw.intros) | |
| 583 | ||
| 584 | lemma holds_Stream: "holds P (x ## s) \<longleftrightarrow> P x" | |
| 585 | by simp | |
| 586 | ||
| 67399 | 587 | lemma holds_eq1[simp]: "holds ((=) x) = HLD {x}"
 | 
| 59000 | 588 | by rule (auto simp: HLD_iff) | 
| 589 | ||
| 590 | lemma holds_eq2[simp]: "holds (\<lambda>y. y = x) = HLD {x}"
 | |
| 591 | by rule (auto simp: HLD_iff) | |
| 592 | ||
| 67399 | 593 | lemma not_holds_eq[simp]: "holds (- (=) x) = not (HLD {x})"
 | 
| 59000 | 594 | by rule (auto simp: HLD_iff) | 
| 595 | ||
| 60500 | 596 | text \<open>Strong until\<close> | 
| 59000 | 597 | |
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 598 | context | 
| 62093 | 599 | notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 600 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 601 | |
| 59000 | 602 | inductive suntil (infix "suntil" 60) for \<phi> \<psi> where | 
| 603 | base: "\<psi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) \<omega>" | |
| 604 | | step: "\<phi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) (stl \<omega>) \<Longrightarrow> (\<phi> suntil \<psi>) \<omega>" | |
| 605 | ||
| 606 | inductive_simps suntil_Stream: "(\<phi> suntil \<psi>) (x ## s)" | |
| 607 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 608 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 609 | |
| 59000 | 610 | lemma suntil_induct_strong[consumes 1, case_names base step]: | 
| 611 | "(\<phi> suntil \<psi>) x \<Longrightarrow> | |
| 612 | (\<And>\<omega>. \<psi> \<omega> \<Longrightarrow> P \<omega>) \<Longrightarrow> | |
| 613 | (\<And>\<omega>. \<phi> \<omega> \<Longrightarrow> \<not> \<psi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) (stl \<omega>) \<Longrightarrow> P (stl \<omega>) \<Longrightarrow> P \<omega>) \<Longrightarrow> P x" | |
| 614 | using suntil.induct[of \<phi> \<psi> x P] by blast | |
| 615 | ||
| 616 | lemma ev_suntil: "(\<phi> suntil \<psi>) \<omega> \<Longrightarrow> ev \<psi> \<omega>" | |
| 61239 | 617 | by (induct rule: suntil.induct) auto | 
| 59000 | 618 | |
| 619 | lemma suntil_inv: | |
| 620 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 621 | shows "(P suntil Q) (f s) \<longleftrightarrow> ((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" | |
| 622 | proof | |
| 623 | assume "(P suntil Q) (f s)" then show "((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" | |
| 624 | by (induction "f s" arbitrary: s) (auto simp: stl intro: suntil.intros) | |
| 625 | next | |
| 626 | assume "((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" then show "(P suntil Q) (f s)" | |
| 68406 | 627 | by induction (auto simp flip: stl intro: suntil.intros) | 
| 59000 | 628 | qed | 
| 629 | ||
| 630 | lemma suntil_smap: "(P suntil Q) (smap f s) \<longleftrightarrow> ((\<lambda>x. P (smap f x)) suntil (\<lambda>x. Q (smap f x))) s" | |
| 631 | by (rule suntil_inv) simp | |
| 632 | ||
| 633 | lemma hld_smap: "HLD x (smap f s) = holds (\<lambda>y. f y \<in> x) s" | |
| 634 | by (simp add: HLD_def) | |
| 635 | ||
| 636 | lemma suntil_mono: | |
| 637 | assumes eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<Longrightarrow> Q2 \<omega>" "\<And>\<omega>. P \<omega> \<Longrightarrow> R1 \<omega> \<Longrightarrow> R2 \<omega>" | |
| 638 | assumes *: "(Q1 suntil R1) \<omega>" "alw P \<omega>" shows "(Q2 suntil R2) \<omega>" | |
| 639 | using * by induct (auto intro: eq suntil.intros) | |
| 640 | ||
| 641 | lemma suntil_cong: | |
| 642 | "alw P \<omega> \<Longrightarrow> (\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>) \<Longrightarrow> (\<And>\<omega>. P \<omega> \<Longrightarrow> R1 \<omega> \<longleftrightarrow> R2 \<omega>) \<Longrightarrow> | |
| 643 | (Q1 suntil R1) \<omega> \<longleftrightarrow> (Q2 suntil R2) \<omega>" | |
| 644 | using suntil_mono[of P Q1 Q2 R1 R2 \<omega>] suntil_mono[of P Q2 Q1 R2 R1 \<omega>] by auto | |
| 645 | ||
| 646 | lemma ev_suntil_iff: "ev (P suntil Q) \<omega> \<longleftrightarrow> ev Q \<omega>" | |
| 647 | proof | |
| 648 | assume "ev (P suntil Q) \<omega>" then show "ev Q \<omega>" | |
| 649 | by induct (auto dest: ev_suntil) | |
| 650 | next | |
| 651 | assume "ev Q \<omega>" then show "ev (P suntil Q) \<omega>" | |
| 652 | by induct (auto intro: suntil.intros) | |
| 653 | qed | |
| 654 | ||
| 655 | lemma true_suntil: "((\<lambda>_. True) suntil P) = ev P" | |
| 656 | by (simp add: suntil_def ev_def) | |
| 657 | ||
| 658 | lemma suntil_lfp: "(\<phi> suntil \<psi>) = lfp (\<lambda>P s. \<psi> s \<or> (\<phi> s \<and> P (stl s)))" | |
| 659 | by (simp add: suntil_def) | |
| 660 | ||
| 661 | lemma sfilter_P[simp]: "P (shd s) \<Longrightarrow> sfilter P s = shd s ## sfilter P (stl s)" | |
| 662 | using sfilter_Stream[of P "shd s" "stl s"] by simp | |
| 663 | ||
| 664 | lemma sfilter_not_P[simp]: "\<not> P (shd s) \<Longrightarrow> sfilter P s = sfilter P (stl s)" | |
| 665 | using sfilter_Stream[of P "shd s" "stl s"] by simp | |
| 666 | ||
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 667 | lemma sfilter_eq: | 
| 59000 | 668 | assumes "ev (holds P) s" | 
| 669 | shows "sfilter P s = x ## s' \<longleftrightarrow> | |
| 670 |     P x \<and> (not (holds P) suntil (HLD {x} aand nxt (\<lambda>s. sfilter P s = s'))) s"
 | |
| 671 | using assms | |
| 672 | by (induct rule: ev_induct_strong) | |
| 673 | (auto simp add: HLD_iff intro: suntil.intros elim: suntil.cases) | |
| 674 | ||
| 675 | lemma sfilter_streams: | |
| 676 |   "alw (ev (holds P)) \<omega> \<Longrightarrow> \<omega> \<in> streams A \<Longrightarrow> sfilter P \<omega> \<in> streams {x\<in>A. P x}"
 | |
| 677 | proof (coinduction arbitrary: \<omega>) | |
| 678 | case (streams \<omega>) | |
| 679 | then have "ev (holds P) \<omega>" by blast | |
| 680 | from this streams show ?case | |
| 681 | by (induct rule: ev_induct_strong) (auto elim: streamsE) | |
| 682 | qed | |
| 683 | ||
| 684 | lemma alw_sfilter: | |
| 685 | assumes *: "alw (ev (holds P)) s" | |
| 686 | shows "alw Q (sfilter P s) \<longleftrightarrow> alw (\<lambda>x. Q (sfilter P x)) s" | |
| 687 | proof | |
| 688 | assume "alw Q (sfilter P s)" with * show "alw (\<lambda>x. Q (sfilter P x)) s" | |
| 689 | proof (coinduction arbitrary: s rule: alw_coinduct) | |
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 690 | case (stl s) | 
| 59000 | 691 | then have "ev (holds P) s" | 
| 692 | by blast | |
| 693 | from this stl show ?case | |
| 694 | by (induct rule: ev_induct_strong) auto | |
| 695 | qed auto | |
| 696 | next | |
| 697 | assume "alw (\<lambda>x. Q (sfilter P x)) s" with * show "alw Q (sfilter P s)" | |
| 698 | proof (coinduction arbitrary: s rule: alw_coinduct) | |
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 699 | case (stl s) | 
| 59000 | 700 | then have "ev (holds P) s" | 
| 701 | by blast | |
| 702 | from this stl show ?case | |
| 703 | by (induct rule: ev_induct_strong) auto | |
| 704 | qed auto | |
| 705 | qed | |
| 706 | ||
| 707 | lemma ev_sfilter: | |
| 708 | assumes *: "alw (ev (holds P)) s" | |
| 709 | shows "ev Q (sfilter P s) \<longleftrightarrow> ev (\<lambda>x. Q (sfilter P x)) s" | |
| 710 | proof | |
| 711 | assume "ev Q (sfilter P s)" from this * show "ev (\<lambda>x. Q (sfilter P x)) s" | |
| 712 | proof (induction "sfilter P s" arbitrary: s rule: ev_induct_strong) | |
| 713 | case (step s) | |
| 714 | then have "ev (holds P) s" | |
| 715 | by blast | |
| 716 | from this step show ?case | |
| 717 | by (induct rule: ev_induct_strong) auto | |
| 718 | qed auto | |
| 719 | next | |
| 720 | assume "ev (\<lambda>x. Q (sfilter P x)) s" then show "ev Q (sfilter P s)" | |
| 721 | proof (induction rule: ev_induct_strong) | |
| 722 | case (step s) then show ?case | |
| 723 | by (cases "P (shd s)") auto | |
| 724 | qed auto | |
| 725 | qed | |
| 726 | ||
| 727 | lemma holds_sfilter: | |
| 728 | assumes "ev (holds Q) s" shows "holds P (sfilter Q s) \<longleftrightarrow> (not (holds Q) suntil (holds (Q aand P))) s" | |
| 729 | proof | |
| 730 | assume "holds P (sfilter Q s)" with assms show "(not (holds Q) suntil (holds (Q aand P))) s" | |
| 731 | by (induct rule: ev_induct_strong) (auto intro: suntil.intros) | |
| 732 | next | |
| 733 | assume "(not (holds Q) suntil (holds (Q aand P))) s" then show "holds P (sfilter Q s)" | |
| 734 | by induct auto | |
| 735 | qed | |
| 736 | ||
| 737 | lemma suntil_aand_nxt: | |
| 738 | "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega> \<longleftrightarrow> (\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 739 | proof | |
| 740 | assume "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega>" then show "(\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 741 | by induction (auto intro: suntil.intros) | |
| 742 | next | |
| 743 | assume "(\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 744 | then have "(\<phi> suntil \<psi>) (stl \<omega>)" "\<phi> \<omega>" | |
| 745 | by auto | |
| 746 | then show "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega>" | |
| 747 | by (induction "stl \<omega>" arbitrary: \<omega>) | |
| 748 | (auto elim: suntil.cases intro: suntil.intros) | |
| 749 | qed | |
| 750 | ||
| 751 | lemma alw_sconst: "alw P (sconst x) \<longleftrightarrow> P (sconst x)" | |
| 752 | proof | |
| 753 | assume "P (sconst x)" then show "alw P (sconst x)" | |
| 754 | by coinduction auto | |
| 755 | qed auto | |
| 756 | ||
| 757 | lemma ev_sconst: "ev P (sconst x) \<longleftrightarrow> P (sconst x)" | |
| 758 | proof | |
| 759 | assume "ev P (sconst x)" then show "P (sconst x)" | |
| 760 | by (induction "sconst x") auto | |
| 761 | qed auto | |
| 762 | ||
| 763 | lemma suntil_sconst: "(\<phi> suntil \<psi>) (sconst x) \<longleftrightarrow> \<psi> (sconst x)" | |
| 764 | proof | |
| 765 | assume "(\<phi> suntil \<psi>) (sconst x)" then show "\<psi> (sconst x)" | |
| 766 | by (induction "sconst x") auto | |
| 767 | qed (auto intro: suntil.intros) | |
| 768 | ||
| 769 | lemma hld_smap': "HLD x (smap f s) = HLD (f -` x) s" | |
| 770 | by (simp add: HLD_def) | |
| 58627 | 771 | |
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 772 | lemma pigeonhole_stream: | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 773 | assumes "alw (HLD s) \<omega>" | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 774 | assumes "finite s" | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 775 |   shows "\<exists>x\<in>s. alw (ev (HLD {x})) \<omega>"
 | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 776 | proof - | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 777 | have "\<forall>i\<in>UNIV. \<exists>x\<in>s. \<omega> !! i = x" | 
| 64911 | 778 | using \<open>alw (HLD s) \<omega>\<close> by (simp add: alw_iff_sdrop HLD_iff) | 
| 779 | from pigeonhole_infinite_rel[OF infinite_UNIV_nat \<open>finite s\<close> this] | |
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 780 | show ?thesis | 
| 68406 | 781 | by (simp add: HLD_iff flip: infinite_iff_alw_ev) | 
| 64320 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 782 | qed | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 783 | |
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 784 | lemma ev_eq_suntil: "ev P \<omega> \<longleftrightarrow> (not P suntil P) \<omega>" | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 785 | proof | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 786 | assume "ev P \<omega>" then show "((\<lambda>xs. \<not> P xs) suntil P) \<omega>" | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 787 | by (induction rule: ev_induct_strong) (auto intro: suntil.intros) | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 788 | qed (auto simp: ev_suntil) | 
| 
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
 hoelzl parents: 
63117diff
changeset | 789 | |
| 71061 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 790 | section \<open>Weak vs. strong until (contributed by Michael Foster, University of Sheffield)\<close> | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 791 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 792 | lemma suntil_implies_until: "(\<phi> suntil \<psi>) \<omega> \<Longrightarrow> (\<phi> until \<psi>) \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 793 | by (induct rule: suntil_induct_strong) (auto intro: UNTIL.intros) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 794 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 795 | lemma alw_implies_until: "alw \<phi> \<omega> \<Longrightarrow> (\<phi> until \<psi>) \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 796 | unfolding until_false[symmetric] by (auto elim: until_mono) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 797 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 798 | lemma until_ev_suntil: "(\<phi> until \<psi>) \<omega> \<Longrightarrow> ev \<psi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 799 | proof (rotate_tac, induction rule: ev.induct) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 800 | case (base xs) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 801 | then show ?case | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 802 | by (simp add: suntil.base) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 803 | next | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 804 | case (step xs) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 805 | then show ?case | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 806 | by (metis UNTIL.cases suntil.base suntil.step) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 807 | qed | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 808 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 809 | lemma suntil_as_until: "(\<phi> suntil \<psi>) \<omega> = ((\<phi> until \<psi>) \<omega> \<and> ev \<psi> \<omega>)" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 810 | using ev_suntil suntil_implies_until until_ev_suntil by blast | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 811 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 812 | lemma until_not_relesased_now: "(\<phi> until \<psi>) \<omega> \<Longrightarrow> \<not> \<psi> \<omega> \<Longrightarrow> \<phi> \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 813 | using UNTIL.cases by auto | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 814 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 815 | lemma until_must_release_ev: "(\<phi> until \<psi>) \<omega> \<Longrightarrow> ev (not \<phi>) \<omega> \<Longrightarrow> ev \<psi> \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 816 | proof (rotate_tac, induction rule: ev.induct) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 817 | case (base xs) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 818 | then show ?case | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 819 | using until_not_relesased_now by blast | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 820 | next | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 821 | case (step xs) | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 822 | then show ?case | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 823 | using UNTIL.cases by blast | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 824 | qed | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 825 | |
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 826 | lemma until_as_suntil: "(\<phi> until \<psi>) \<omega> = ((\<phi> suntil \<psi>) or (alw \<phi>)) \<omega>" | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 827 | using alw_implies_until not_alw_iff suntil_implies_until until_ev_suntil until_must_release_ev | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 828 | by blast | 
| 
1d19e844fa4d
characterization of until in terms of strong until (and vice versa), contributed by Michael Foster
 traytel parents: 
68406diff
changeset | 829 | |
| 71461 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 830 | lemma alw_holds: "alw (holds P) (h##t) = (P h \<and> alw (holds P) t)" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 831 | by (metis alw.simps holds_Stream stream.sel(2)) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 832 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 833 | lemma alw_holds2: "alw (holds P) ss = (P (shd ss) \<and> alw (holds P) (stl ss))" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 834 | by (meson alw.simps holds.elims(2) holds.elims(3)) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 835 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 836 | lemma alw_eq_sconst: "(alw (HLD {h}) t) = (t = sconst h)"
 | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 837 | unfolding sconst_alt alw_HLD_iff_streams streams_iff_sset | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 838 | using stream.set_sel(1) by force | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 839 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 840 | lemma sdrop_if_suntil: "(p suntil q) \<omega> \<Longrightarrow> \<exists>j. q (sdrop j \<omega>) \<and> (\<forall>k < j. p (sdrop k \<omega>))" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 841 | proof(induction rule: suntil.induct) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 842 | case (base \<omega>) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 843 | then show ?case | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 844 | by force | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 845 | next | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 846 | case (step \<omega>) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 847 | then obtain j where "q (sdrop j (stl \<omega>))" "\<forall>k<j. p (sdrop k (stl \<omega>))" by blast | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 848 | with step(1,2) show ?case | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 849 | using ev_at_imp_snth less_Suc_eq_0_disj by (auto intro!: exI[where x="j+1"]) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 850 | qed | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 851 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 852 | lemma not_suntil: "(\<not> (p suntil q) \<omega>) = (\<not> (p until q) \<omega> \<or> alw (not q) \<omega>)" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 853 | by (simp add: suntil_as_until alw_iff_sdrop ev_iff_sdrop) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 854 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 855 | lemma sdrop_until: "q (sdrop j \<omega>) \<Longrightarrow> \<forall>k<j. p (sdrop k \<omega>) \<Longrightarrow> (p until q) \<omega>" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 856 | proof(induct j arbitrary: \<omega>) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 857 | case 0 | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 858 | then show ?case | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 859 | by (simp add: UNTIL.base) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 860 | next | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 861 | case (Suc j) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 862 | then show ?case | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 863 | by (metis Suc_mono UNTIL.simps sdrop.simps(1) sdrop.simps(2) zero_less_Suc) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 864 | qed | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 865 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 866 | lemma sdrop_suntil: "q (sdrop j \<omega>) \<Longrightarrow> (\<forall>k < j. p (sdrop k \<omega>)) \<Longrightarrow> (p suntil q) \<omega>" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 867 | by (metis ev_iff_sdrop sdrop_until suntil_as_until) | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 868 | |
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 869 | lemma suntil_iff_sdrop: "(p suntil q) \<omega> = (\<exists>j. q (sdrop j \<omega>) \<and> (\<forall>k < j. p (sdrop k \<omega>)))" | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 870 | using sdrop_if_suntil sdrop_suntil by blast | 
| 
5e25a693c5cf
additional lemmas about alw and suntil (by Michael Foster)
 traytel parents: 
71064diff
changeset | 871 | |
| 62390 | 872 | end |