| author | wenzelm | 
| Thu, 06 Mar 2008 20:17:50 +0100 | |
| changeset 26220 | d34b68c21f9a | 
| parent 16417 | 9bc16273c2d4 | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 12776 | 1 | (* Title: ZF/AC/Cardinal_aux.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Krzysztof Grabczewski | |
| 4 | ||
| 5 | Auxiliary lemmas concerning cardinalities | |
| 6 | *) | |
| 7 | ||
| 16417 | 8 | theory Cardinal_aux imports AC_Equiv begin | 
| 12776 | 9 | |
| 10 | lemma Diff_lepoll: "[| A \<lesssim> succ(m); B \<subseteq> A; B\<noteq>0 |] ==> A-B \<lesssim> m" | |
| 12820 | 11 | apply (rule not_emptyE, assumption) | 
| 12776 | 12 | apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll]) | 
| 13 | done | |
| 14 | ||
| 15 | ||
| 16 | (* ********************************************************************** *) | |
| 17 | (* Lemmas involving ordinals and cardinalities used in the proofs *) | |
| 18 | (* concerning AC16 and DC *) | |
| 19 | (* ********************************************************************** *) | |
| 20 | ||
| 21 | ||
| 22 | (* j=|A| *) | |
| 23 | lemma lepoll_imp_ex_le_eqpoll: | |
| 24 | "[| A \<lesssim> i; Ord(i) |] ==> \<exists>j. j le i & A \<approx> j" | |
| 25 | by (blast intro!: lepoll_cardinal_le well_ord_Memrel | |
| 26 | well_ord_cardinal_eqpoll [THEN eqpoll_sym] | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 27 | dest: lepoll_well_ord) | 
| 12776 | 28 | |
| 29 | (* j=|A| *) | |
| 30 | lemma lesspoll_imp_ex_lt_eqpoll: | |
| 31 | "[| A \<prec> i; Ord(i) |] ==> \<exists>j. j<i & A \<approx> j" | |
| 32 | by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE) | |
| 33 | ||
| 34 | lemma Inf_Ord_imp_InfCard_cardinal: "[| ~Finite(i); Ord(i) |] ==> InfCard(|i|)" | |
| 35 | apply (unfold InfCard_def) | |
| 36 | apply (rule conjI) | |
| 37 | apply (rule Card_cardinal) | |
| 38 | apply (rule Card_nat | |
| 39 | [THEN Card_def [THEN def_imp_iff, THEN iffD1, THEN ssubst]]) | |
| 40 | -- "rewriting would loop!" | |
| 41 | apply (rule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption) | |
| 42 | apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+) | |
| 43 | done | |
| 44 | ||
| 45 | text{*An alternative and more general proof goes like this: A and B are both
 | |
| 46 | well-ordered (because they are injected into an ordinal), either A lepoll B | |
| 47 | or B lepoll A. Also both are equipollent to their cardinalities, so | |
| 48 | (if A and B are infinite) then A Un B lepoll |A|+|B| = max(|A|,|B|) lepoll i. | |
| 49 | In fact, the correctly strengthened version of this theorem appears below.*} | |
| 50 | lemma Un_lepoll_Inf_Ord_weak: | |
| 51 | "[|A \<approx> i; B \<approx> i; \<not> Finite(i); Ord(i)|] ==> A \<union> B \<lesssim> i" | |
| 52 | apply (rule Un_lepoll_sum [THEN lepoll_trans]) | |
| 53 | apply (rule lepoll_imp_sum_lepoll_prod [THEN lepoll_trans]) | |
| 54 | apply (erule eqpoll_trans [THEN eqpoll_imp_lepoll]) | |
| 55 | apply (erule eqpoll_sym) | |
| 56 | apply (rule subset_imp_lepoll [THEN lepoll_trans, THEN lepoll_trans]) | |
| 57 | apply (rule nat_2I [THEN OrdmemD], rule Ord_nat) | |
| 58 | apply (rule nat_le_infinite_Ord [THEN le_imp_lepoll], assumption+) | |
| 59 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll]) | |
| 60 | apply (erule prod_eqpoll_cong [THEN eqpoll_imp_lepoll, THEN lepoll_trans], | |
| 61 | assumption) | |
| 62 | apply (rule eqpoll_imp_lepoll) | |
| 63 | apply (rule well_ord_Memrel [THEN well_ord_InfCard_square_eq], assumption) | |
| 64 | apply (rule Inf_Ord_imp_InfCard_cardinal, assumption+) | |
| 65 | done | |
| 66 | ||
| 67 | lemma Un_eqpoll_Inf_Ord: | |
| 68 | "[| A \<approx> i; B \<approx> i; ~Finite(i); Ord(i) |] ==> A Un B \<approx> i" | |
| 69 | apply (rule eqpollI) | |
| 70 | apply (blast intro: Un_lepoll_Inf_Ord_weak) | |
| 71 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans]) | |
| 72 | apply (rule Un_upper1 [THEN subset_imp_lepoll]) | |
| 73 | done | |
| 74 | ||
| 75 | lemma paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 | |
| 76 | apply (rule RepFun_bijective) | |
| 77 | apply (simp add: doubleton_eq_iff, blast) | |
| 78 | done | |
| 79 | ||
| 80 | lemma paired_eqpoll: "{{y,z}. y \<in> x} \<approx> x"
 | |
| 81 | by (unfold eqpoll_def, fast intro!: paired_bij) | |
| 82 | ||
| 83 | lemma ex_eqpoll_disjoint: "\<exists>B. B \<approx> A & B Int C = 0" | |
| 84 | by (fast intro!: paired_eqpoll equals0I elim: mem_asym) | |
| 85 | ||
| 86 | (*Finally we reach this result. Surely there's a simpler proof, as sketched | |
| 87 | above?*) | |
| 88 | lemma Un_lepoll_Inf_Ord: | |
| 89 | "[| A \<lesssim> i; B \<lesssim> i; ~Finite(i); Ord(i) |] ==> A Un B \<lesssim> i" | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 90 | apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE]) | 
| 12776 | 91 | apply (erule conjE) | 
| 92 | apply (drule lepoll_trans) | |
| 93 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll]) | |
| 94 | apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+)) | |
| 95 | apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll) | |
| 96 | done | |
| 97 | ||
| 98 | lemma Least_in_Ord: "[| P(i); i \<in> j; Ord(j) |] ==> (LEAST i. P(i)) \<in> j" | |
| 99 | apply (erule Least_le [THEN leE]) | |
| 100 | apply (erule Ord_in_Ord, assumption) | |
| 101 | apply (erule ltE) | |
| 102 | apply (fast dest: OrdmemD) | |
| 103 | apply (erule subst_elem, assumption) | |
| 104 | done | |
| 1196 | 105 | |
| 12776 | 106 | lemma Diff_first_lepoll: | 
| 107 | "[| well_ord(x,r); y \<subseteq> x; y \<lesssim> succ(n); n \<in> nat |] | |
| 108 |       ==> y - {THE b. first(b,y,r)} \<lesssim> n"
 | |
| 109 | apply (case_tac "y=0", simp add: empty_lepollI) | |
| 110 | apply (fast intro!: Diff_sing_lepoll the_first_in) | |
| 111 | done | |
| 112 | ||
| 113 | lemma UN_subset_split: | |
| 114 | "(\<Union>x \<in> X. P(x)) \<subseteq> (\<Union>x \<in> X. P(x)-Q(x)) Un (\<Union>x \<in> X. Q(x))" | |
| 115 | by blast | |
| 116 | ||
| 117 | lemma UN_sing_lepoll: "Ord(a) ==> (\<Union>x \<in> a. {P(x)}) \<lesssim> a"
 | |
| 118 | apply (unfold lepoll_def) | |
| 119 | apply (rule_tac x = "\<lambda>z \<in> (\<Union>x \<in> a. {P (x) }) . (LEAST i. P (i) =z) " in exI)
 | |
| 120 | apply (rule_tac d = "%z. P (z) " in lam_injective) | |
| 121 | apply (fast intro!: Least_in_Ord) | |
| 122 | apply (fast intro: LeastI elim!: Ord_in_Ord) | |
| 123 | done | |
| 124 | ||
| 125 | lemma UN_fun_lepoll_lemma [rule_format]: | |
| 126 | "[| well_ord(T, R); ~Finite(a); Ord(a); n \<in> nat |] | |
| 127 | ==> \<forall>f. (\<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T) --> (\<Union>b \<in> a. f`b) \<lesssim> a" | |
| 128 | apply (induct_tac "n") | |
| 129 | apply (rule allI) | |
| 130 | apply (rule impI) | |
| 131 | apply (rule_tac b = "\<Union>b \<in> a. f`b" in subst) | |
| 132 | apply (rule_tac [2] empty_lepollI) | |
| 133 | apply (rule equals0I [symmetric], clarify) | |
| 134 | apply (fast dest: lepoll_0_is_0 [THEN subst]) | |
| 135 | apply (rule allI) | |
| 136 | apply (rule impI) | |
| 137 | apply (erule_tac x = "\<lambda>x \<in> a. f`x - {THE b. first (b,f`x,R) }" in allE)
 | |
| 138 | apply (erule impE, simp) | |
| 139 | apply (fast intro!: Diff_first_lepoll, simp) | |
| 140 | apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans]) | |
| 141 | apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll) | |
| 142 | done | |
| 143 | ||
| 144 | lemma UN_fun_lepoll: | |
| 145 | "[| \<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T; well_ord(T, R); | |
| 146 | ~Finite(a); Ord(a); n \<in> nat |] ==> (\<Union>b \<in> a. f`b) \<lesssim> a" | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 147 | by (blast intro: UN_fun_lepoll_lemma) | 
| 12776 | 148 | |
| 149 | lemma UN_lepoll: | |
| 150 | "[| \<forall>b \<in> a. F(b) \<lesssim> n & F(b) \<subseteq> T; well_ord(T, R); | |
| 151 | ~Finite(a); Ord(a); n \<in> nat |] | |
| 152 | ==> (\<Union>b \<in> a. F(b)) \<lesssim> a" | |
| 153 | apply (rule rev_mp) | |
| 12820 | 154 | apply (rule_tac f="\<lambda>b \<in> a. F (b)" in UN_fun_lepoll) | 
| 12776 | 155 | apply auto | 
| 156 | done | |
| 157 | ||
| 158 | lemma UN_eq_UN_Diffs: | |
| 159 | "Ord(a) ==> (\<Union>b \<in> a. F(b)) = (\<Union>b \<in> a. F(b) - (\<Union>c \<in> b. F(c)))" | |
| 160 | apply (rule equalityI) | |
| 161 | prefer 2 apply fast | |
| 162 | apply (rule subsetI) | |
| 163 | apply (erule UN_E) | |
| 164 | apply (rule UN_I) | |
| 165 | apply (rule_tac P = "%z. x \<in> F (z) " in Least_in_Ord, (assumption+)) | |
| 166 | apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 167 | apply (erule_tac P = "%z. x \<in> F (z) " and i = c in less_LeastE) | 
| 12776 | 168 | apply (blast intro: Ord_Least ltI) | 
| 169 | done | |
| 170 | ||
| 171 | lemma lepoll_imp_eqpoll_subset: | |
| 172 | "a \<lesssim> X ==> \<exists>Y. Y \<subseteq> X & a \<approx> Y" | |
| 173 | apply (unfold lepoll_def eqpoll_def, clarify) | |
| 174 | apply (blast intro: restrict_bij | |
| 175 | dest: inj_is_fun [THEN fun_is_rel, THEN image_subset]) | |
| 176 | done | |
| 177 | ||
| 178 | (* ********************************************************************** *) | |
| 179 | (* Diff_lesspoll_eqpoll_Card *) | |
| 180 | (* ********************************************************************** *) | |
| 181 | ||
| 182 | lemma Diff_lesspoll_eqpoll_Card_lemma: | |
| 183 | "[| A\<approx>a; ~Finite(a); Card(a); B \<prec> a; A-B \<prec> a |] ==> P" | |
| 184 | apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE) | |
| 185 | apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption) | |
| 186 | apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption) | |
| 187 | apply (drule Un_least_lt, assumption) | |
| 188 | apply (drule eqpoll_imp_lepoll [THEN lepoll_trans], | |
| 189 | rule le_imp_lepoll, assumption)+ | |
| 12820 | 190 | apply (case_tac "Finite(x Un xa)") | 
| 12776 | 191 | txt{*finite case*}
 | 
| 192 | apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+) | |
| 193 | apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite]) | |
| 194 | apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite]) | |
| 195 | txt{*infinite case*}
 | |
| 196 | apply (drule Un_lepoll_Inf_Ord, (assumption+)) | |
| 197 | apply (blast intro: le_Ord2) | |
| 198 | apply (drule lesspoll_trans1 | |
| 199 | [OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans] | |
| 200 | lt_Card_imp_lesspoll], assumption+) | |
| 201 | apply (simp add: lesspoll_def) | |
| 202 | done | |
| 203 | ||
| 204 | lemma Diff_lesspoll_eqpoll_Card: | |
| 205 | "[| A \<approx> a; ~Finite(a); Card(a); B \<prec> a |] ==> A - B \<approx> a" | |
| 206 | apply (rule ccontr) | |
| 207 | apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+)) | |
| 208 | apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2] | |
| 209 | subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans) | |
| 210 | done | |
| 211 | ||
| 212 | end |