| author | wenzelm | 
| Thu, 06 Mar 2008 20:17:50 +0100 | |
| changeset 26220 | d34b68c21f9a | 
| parent 24893 | b8ef7afe3a6b | 
| child 27678 | 85ea2be46c71 | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/AC/Hartog.thy | 
| 1123 | 2 | ID: $Id$ | 
| 1478 | 3 | Author: Krzysztof Grabczewski | 
| 1123 | 4 | |
| 5 | Hartog's function. | |
| 6 | *) | |
| 7 | ||
| 16417 | 8 | theory Hartog imports AC_Equiv begin | 
| 12776 | 9 | |
| 24893 | 10 | definition | 
| 11 | Hartog :: "i => i" where | |
| 12776 | 12 | "Hartog(X) == LEAST i. ~ i \<lesssim> X" | 
| 13 | ||
| 14 | lemma Ords_in_set: "\<forall>a. Ord(a) --> a \<in> X ==> P" | |
| 15 | apply (rule_tac X1 = "{y \<in> X. Ord (y) }" in ON_class [THEN revcut_rl])
 | |
| 16 | apply fast | |
| 17 | done | |
| 1123 | 18 | |
| 12776 | 19 | lemma Ord_lepoll_imp_ex_well_ord: | 
| 20 | "[| Ord(a); a \<lesssim> X |] | |
| 21 | ==> \<exists>Y. Y \<subseteq> X & (\<exists>R. well_ord(Y,R) & ordertype(Y,R)=a)" | |
| 22 | apply (unfold lepoll_def) | |
| 23 | apply (erule exE) | |
| 24 | apply (intro exI conjI) | |
| 25 | apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset]) | |
| 26 | apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel]) | |
| 27 | apply (erule restrict_bij [THEN bij_converse_bij]) | |
| 12820 | 28 | apply (rule subset_refl, assumption) | 
| 12776 | 29 | apply (rule trans) | 
| 30 | apply (rule bij_ordertype_vimage) | |
| 31 | apply (erule restrict_bij [THEN bij_converse_bij]) | |
| 32 | apply (rule subset_refl) | |
| 33 | apply (erule well_ord_Memrel) | |
| 34 | apply (erule ordertype_Memrel) | |
| 35 | done | |
| 36 | ||
| 37 | lemma Ord_lepoll_imp_eq_ordertype: | |
| 38 | "[| Ord(a); a \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & (\<exists>R. R \<subseteq> X*X & ordertype(Y,R)=a)" | |
| 12820 | 39 | apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify) | 
| 12776 | 40 | apply (intro exI conjI) | 
| 41 | apply (erule_tac [3] ordertype_Int, auto) | |
| 42 | done | |
| 1123 | 43 | |
| 12776 | 44 | lemma Ords_lepoll_set_lemma: | 
| 45 | "(\<forall>a. Ord(a) --> a \<lesssim> X) ==> | |
| 46 | \<forall>a. Ord(a) --> | |
| 47 |         a \<in> {b. Z \<in> Pow(X)*Pow(X*X), \<exists>Y R. Z=<Y,R> & ordertype(Y,R)=b}"
 | |
| 48 | apply (intro allI impI) | |
| 49 | apply (elim allE impE, assumption) | |
| 50 | apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym) | |
| 51 | done | |
| 52 | ||
| 53 | lemma Ords_lepoll_set: "\<forall>a. Ord(a) --> a \<lesssim> X ==> P" | |
| 54 | by (erule Ords_lepoll_set_lemma [THEN Ords_in_set]) | |
| 55 | ||
| 56 | lemma ex_Ord_not_lepoll: "\<exists>a. Ord(a) & ~a \<lesssim> X" | |
| 57 | apply (rule ccontr) | |
| 58 | apply (best intro: Ords_lepoll_set) | |
| 59 | done | |
| 1123 | 60 | |
| 12776 | 61 | lemma not_Hartog_lepoll_self: "~ Hartog(A) \<lesssim> A" | 
| 62 | apply (unfold Hartog_def) | |
| 63 | apply (rule ex_Ord_not_lepoll [THEN exE]) | |
| 64 | apply (rule LeastI, auto) | |
| 65 | done | |
| 66 | ||
| 67 | lemmas Hartog_lepoll_selfE = not_Hartog_lepoll_self [THEN notE, standard] | |
| 1123 | 68 | |
| 12776 | 69 | lemma Ord_Hartog: "Ord(Hartog(A))" | 
| 70 | by (unfold Hartog_def, rule Ord_Least) | |
| 71 | ||
| 72 | lemma less_HartogE1: "[| i < Hartog(A); ~ i \<lesssim> A |] ==> P" | |
| 73 | by (unfold Hartog_def, fast elim: less_LeastE) | |
| 74 | ||
| 75 | lemma less_HartogE: "[| i < Hartog(A); i \<approx> Hartog(A) |] ==> P" | |
| 76 | by (blast intro: less_HartogE1 eqpoll_sym eqpoll_imp_lepoll | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 77 | lepoll_trans [THEN Hartog_lepoll_selfE]) | 
| 12776 | 78 | |
| 79 | lemma Card_Hartog: "Card(Hartog(A))" | |
| 80 | by (fast intro!: CardI Ord_Hartog elim: less_HartogE) | |
| 1123 | 81 | |
| 1203 | 82 | end |