| author | berghofe | 
| Tue, 28 Feb 2012 11:10:09 +0100 | |
| changeset 46725 | d34ec0512dfb | 
| parent 42870 | 36abaf4cce1f | 
| child 47255 | 30a1692557b0 | 
| permissions | -rw-r--r-- | 
| 31708 | 1 | |
| 32554 | 2 | (* Authors: Jeremy Avigad and Amine Chaieb *) | 
| 31708 | 3 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 4 | header {* Generic transfer machinery;  specific transfer from nats to ints and back. *}
 | 
| 31708 | 5 | |
| 32558 | 6 | theory Nat_Transfer | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 7 | imports Nat_Numeral | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 8 | uses ("Tools/transfer.ML")
 | 
| 31708 | 9 | begin | 
| 10 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 11 | subsection {* Generic transfer machinery *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 12 | |
| 35821 | 13 | definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 42870 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 krauss parents: 
39302diff
changeset | 14 | where "transfer_morphism f A \<longleftrightarrow> True" | 
| 35644 | 15 | |
| 42870 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 krauss parents: 
39302diff
changeset | 16 | lemma transfer_morphismI[intro]: "transfer_morphism f A" | 
| 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 krauss parents: 
39302diff
changeset | 17 | by (simp add: transfer_morphism_def) | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 18 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 19 | use "Tools/transfer.ML" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 20 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 21 | setup Transfer.setup | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 22 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 23 | |
| 31708 | 24 | subsection {* Set up transfer from nat to int *}
 | 
| 25 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 26 | text {* set up transfer direction *}
 | 
| 31708 | 27 | |
| 42870 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 krauss parents: 
39302diff
changeset | 28 | lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))" .. | 
| 31708 | 29 | |
| 35683 | 30 | declare transfer_morphism_nat_int [transfer add | 
| 31 | mode: manual | |
| 31708 | 32 | return: nat_0_le | 
| 35683 | 33 | labels: nat_int | 
| 31708 | 34 | ] | 
| 35 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 36 | text {* basic functions and relations *}
 | 
| 31708 | 37 | |
| 35683 | 38 | lemma transfer_nat_int_numerals [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 39 | "(0::nat) = nat 0" | 
| 40 | "(1::nat) = nat 1" | |
| 41 | "(2::nat) = nat 2" | |
| 42 | "(3::nat) = nat 3" | |
| 43 | by auto | |
| 44 | ||
| 45 | definition | |
| 46 | tsub :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 47 | where | |
| 48 | "tsub x y = (if x >= y then x - y else 0)" | |
| 49 | ||
| 50 | lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y" | |
| 51 | by (simp add: tsub_def) | |
| 52 | ||
| 35683 | 53 | lemma transfer_nat_int_functions [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 54 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)" | 
| 55 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)" | |
| 56 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)" | |
| 57 | "(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)" | |
| 58 | by (auto simp add: eq_nat_nat_iff nat_mult_distrib | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 59 | nat_power_eq tsub_def) | 
| 31708 | 60 | |
| 35683 | 61 | lemma transfer_nat_int_function_closures [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 62 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0" | 
| 63 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0" | |
| 64 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0" | |
| 65 | "(x::int) >= 0 \<Longrightarrow> x^n >= 0" | |
| 66 | "(0::int) >= 0" | |
| 67 | "(1::int) >= 0" | |
| 68 | "(2::int) >= 0" | |
| 69 | "(3::int) >= 0" | |
| 70 | "int z >= 0" | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 71 | by (auto simp add: zero_le_mult_iff tsub_def) | 
| 31708 | 72 | |
| 35683 | 73 | lemma transfer_nat_int_relations [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 74 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | 
| 75 | (nat (x::int) = nat y) = (x = y)" | |
| 76 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 77 | (nat (x::int) < nat y) = (x < y)" | |
| 78 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 79 | (nat (x::int) <= nat y) = (x <= y)" | |
| 80 | "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> | |
| 81 | (nat (x::int) dvd nat y) = (x dvd y)" | |
| 32558 | 82 | by (auto simp add: zdvd_int) | 
| 31708 | 83 | |
| 84 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 85 | text {* first-order quantifiers *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 86 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 87 | lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 88 | by (simp split add: split_nat) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 89 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 90 | lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 91 | proof | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 92 | assume "\<exists>x. P x" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 93 | then obtain x where "P x" .. | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 94 | then have "int x \<ge> 0 \<and> P (nat (int x))" by simp | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 95 | then show "\<exists>x\<ge>0. P (nat x)" .. | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 96 | next | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 97 | assume "\<exists>x\<ge>0. P (nat x)" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 98 | then show "\<exists>x. P x" by auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 99 | qed | 
| 31708 | 100 | |
| 35683 | 101 | lemma transfer_nat_int_quantifiers [transfer key: transfer_morphism_nat_int]: | 
| 31708 | 102 | "(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))" | 
| 103 | "(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))" | |
| 104 | by (rule all_nat, rule ex_nat) | |
| 105 | ||
| 106 | (* should we restrict these? *) | |
| 107 | lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 108 | (ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)" | |
| 109 | by auto | |
| 110 | ||
| 111 | lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 112 | (EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)" | |
| 113 | by auto | |
| 114 | ||
| 35644 | 115 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 116 | cong: all_cong ex_cong] | 
| 117 | ||
| 118 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 119 | text {* if *}
 | 
| 31708 | 120 | |
| 35683 | 121 | lemma nat_if_cong [transfer key: transfer_morphism_nat_int]: | 
| 122 | "(if P then (nat x) else (nat y)) = nat (if P then x else y)" | |
| 31708 | 123 | by auto | 
| 124 | ||
| 125 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 126 | text {* operations with sets *}
 | 
| 31708 | 127 | |
| 128 | definition | |
| 129 | nat_set :: "int set \<Rightarrow> bool" | |
| 130 | where | |
| 131 | "nat_set S = (ALL x:S. x >= 0)" | |
| 132 | ||
| 133 | lemma transfer_nat_int_set_functions: | |
| 134 | "card A = card (int ` A)" | |
| 135 |     "{} = nat ` ({}::int set)"
 | |
| 136 | "A Un B = nat ` (int ` A Un int ` B)" | |
| 137 | "A Int B = nat ` (int ` A Int int ` B)" | |
| 138 |     "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
 | |
| 139 | apply (rule card_image [symmetric]) | |
| 140 | apply (auto simp add: inj_on_def image_def) | |
| 141 | apply (rule_tac x = "int x" in bexI) | |
| 142 | apply auto | |
| 143 | apply (rule_tac x = "int x" in bexI) | |
| 144 | apply auto | |
| 145 | apply (rule_tac x = "int x" in bexI) | |
| 146 | apply auto | |
| 147 | apply (rule_tac x = "int x" in exI) | |
| 148 | apply auto | |
| 149 | done | |
| 150 | ||
| 151 | lemma transfer_nat_int_set_function_closures: | |
| 152 |     "nat_set {}"
 | |
| 153 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" | |
| 154 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" | |
| 155 |     "nat_set {x. x >= 0 & P x}"
 | |
| 156 | "nat_set (int ` C)" | |
| 157 | "nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *) | |
| 158 | unfolding nat_set_def apply auto | |
| 159 | done | |
| 160 | ||
| 161 | lemma transfer_nat_int_set_relations: | |
| 162 | "(finite A) = (finite (int ` A))" | |
| 163 | "(x : A) = (int x : int ` A)" | |
| 164 | "(A = B) = (int ` A = int ` B)" | |
| 165 | "(A < B) = (int ` A < int ` B)" | |
| 166 | "(A <= B) = (int ` A <= int ` B)" | |
| 167 | apply (rule iffI) | |
| 168 | apply (erule finite_imageI) | |
| 169 | apply (erule finite_imageD) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 170 | apply (auto simp add: image_def set_eq_iff inj_on_def) | 
| 31708 | 171 | apply (drule_tac x = "int x" in spec, auto) | 
| 172 | apply (drule_tac x = "int x" in spec, auto) | |
| 173 | apply (drule_tac x = "int x" in spec, auto) | |
| 174 | done | |
| 175 | ||
| 176 | lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow> | |
| 177 | (int ` nat ` A = A)" | |
| 178 | by (auto simp add: nat_set_def image_def) | |
| 179 | ||
| 180 | lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow> | |
| 181 |     {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
 | |
| 182 | by auto | |
| 183 | ||
| 35644 | 184 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 185 | return: transfer_nat_int_set_functions | 
| 186 | transfer_nat_int_set_function_closures | |
| 187 | transfer_nat_int_set_relations | |
| 188 | transfer_nat_int_set_return_embed | |
| 189 | cong: transfer_nat_int_set_cong | |
| 190 | ] | |
| 191 | ||
| 192 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 193 | text {* setsum and setprod *}
 | 
| 31708 | 194 | |
| 195 | (* this handles the case where the *domain* of f is nat *) | |
| 196 | lemma transfer_nat_int_sum_prod: | |
| 197 | "setsum f A = setsum (%x. f (nat x)) (int ` A)" | |
| 198 | "setprod f A = setprod (%x. f (nat x)) (int ` A)" | |
| 199 | apply (subst setsum_reindex) | |
| 200 | apply (unfold inj_on_def, auto) | |
| 201 | apply (subst setprod_reindex) | |
| 202 | apply (unfold inj_on_def o_def, auto) | |
| 203 | done | |
| 204 | ||
| 205 | (* this handles the case where the *range* of f is nat *) | |
| 206 | lemma transfer_nat_int_sum_prod2: | |
| 207 | "setsum f A = nat(setsum (%x. int (f x)) A)" | |
| 208 | "setprod f A = nat(setprod (%x. int (f x)) A)" | |
| 209 | apply (subst int_setsum [symmetric]) | |
| 210 | apply auto | |
| 211 | apply (subst int_setprod [symmetric]) | |
| 212 | apply auto | |
| 213 | done | |
| 214 | ||
| 215 | lemma transfer_nat_int_sum_prod_closure: | |
| 216 | "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" | |
| 217 | "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" | |
| 218 | unfolding nat_set_def | |
| 219 | apply (rule setsum_nonneg) | |
| 220 | apply auto | |
| 221 | apply (rule setprod_nonneg) | |
| 222 | apply auto | |
| 223 | done | |
| 224 | ||
| 225 | (* this version doesn't work, even with nat_set A \<Longrightarrow> | |
| 226 | x : A \<Longrightarrow> x >= 0 turned on. Why not? | |
| 227 | ||
| 228 | also: what does =simp=> do? | |
| 229 | ||
| 230 | lemma transfer_nat_int_sum_prod_closure: | |
| 231 | "(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0" | |
| 232 | "(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0" | |
| 233 | unfolding nat_set_def simp_implies_def | |
| 234 | apply (rule setsum_nonneg) | |
| 235 | apply auto | |
| 236 | apply (rule setprod_nonneg) | |
| 237 | apply auto | |
| 238 | done | |
| 239 | *) | |
| 240 | ||
| 241 | (* Making A = B in this lemma doesn't work. Why not? | |
| 242 | Also, why aren't setsum_cong and setprod_cong enough, | |
| 243 | with the previously mentioned rule turned on? *) | |
| 244 | ||
| 245 | lemma transfer_nat_int_sum_prod_cong: | |
| 246 | "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> | |
| 247 | setsum f A = setsum g B" | |
| 248 | "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> | |
| 249 | setprod f A = setprod g B" | |
| 250 | unfolding nat_set_def | |
| 251 | apply (subst setsum_cong, assumption) | |
| 252 | apply auto [2] | |
| 253 | apply (subst setprod_cong, assumption, auto) | |
| 254 | done | |
| 255 | ||
| 35644 | 256 | declare transfer_morphism_nat_int [transfer add | 
| 31708 | 257 | return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2 | 
| 258 | transfer_nat_int_sum_prod_closure | |
| 259 | cong: transfer_nat_int_sum_prod_cong] | |
| 260 | ||
| 261 | ||
| 262 | subsection {* Set up transfer from int to nat *}
 | |
| 263 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 264 | text {* set up transfer direction *}
 | 
| 31708 | 265 | |
| 42870 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 krauss parents: 
39302diff
changeset | 266 | lemma transfer_morphism_int_nat: "transfer_morphism int (\<lambda>n. True)" .. | 
| 31708 | 267 | |
| 35644 | 268 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 269 | mode: manual | 
| 270 | return: nat_int | |
| 35683 | 271 | labels: int_nat | 
| 31708 | 272 | ] | 
| 273 | ||
| 274 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 275 | text {* basic functions and relations *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 276 | |
| 31708 | 277 | definition | 
| 278 | is_nat :: "int \<Rightarrow> bool" | |
| 279 | where | |
| 280 | "is_nat x = (x >= 0)" | |
| 281 | ||
| 282 | lemma transfer_int_nat_numerals: | |
| 283 | "0 = int 0" | |
| 284 | "1 = int 1" | |
| 285 | "2 = int 2" | |
| 286 | "3 = int 3" | |
| 287 | by auto | |
| 288 | ||
| 289 | lemma transfer_int_nat_functions: | |
| 290 | "(int x) + (int y) = int (x + y)" | |
| 291 | "(int x) * (int y) = int (x * y)" | |
| 292 | "tsub (int x) (int y) = int (x - y)" | |
| 293 | "(int x)^n = int (x^n)" | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 294 | by (auto simp add: int_mult tsub_def int_power) | 
| 31708 | 295 | |
| 296 | lemma transfer_int_nat_function_closures: | |
| 297 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)" | |
| 298 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)" | |
| 299 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)" | |
| 300 | "is_nat x \<Longrightarrow> is_nat (x^n)" | |
| 301 | "is_nat 0" | |
| 302 | "is_nat 1" | |
| 303 | "is_nat 2" | |
| 304 | "is_nat 3" | |
| 305 | "is_nat (int z)" | |
| 306 | by (simp_all only: is_nat_def transfer_nat_int_function_closures) | |
| 307 | ||
| 308 | lemma transfer_int_nat_relations: | |
| 309 | "(int x = int y) = (x = y)" | |
| 310 | "(int x < int y) = (x < y)" | |
| 311 | "(int x <= int y) = (x <= y)" | |
| 312 | "(int x dvd int y) = (x dvd y)" | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 313 | by (auto simp add: zdvd_int) | 
| 32121 | 314 | |
| 35644 | 315 | declare transfer_morphism_int_nat [transfer add return: | 
| 31708 | 316 | transfer_int_nat_numerals | 
| 317 | transfer_int_nat_functions | |
| 318 | transfer_int_nat_function_closures | |
| 319 | transfer_int_nat_relations | |
| 320 | ] | |
| 321 | ||
| 322 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 323 | text {* first-order quantifiers *}
 | 
| 31708 | 324 | |
| 325 | lemma transfer_int_nat_quantifiers: | |
| 326 | "(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))" | |
| 327 | "(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))" | |
| 328 | apply (subst all_nat) | |
| 329 | apply auto [1] | |
| 330 | apply (subst ex_nat) | |
| 331 | apply auto | |
| 332 | done | |
| 333 | ||
| 35644 | 334 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 335 | return: transfer_int_nat_quantifiers] | 
| 336 | ||
| 337 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 338 | text {* if *}
 | 
| 31708 | 339 | |
| 340 | lemma int_if_cong: "(if P then (int x) else (int y)) = | |
| 341 | int (if P then x else y)" | |
| 342 | by auto | |
| 343 | ||
| 35644 | 344 | declare transfer_morphism_int_nat [transfer add return: int_if_cong] | 
| 31708 | 345 | |
| 346 | ||
| 347 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 348 | text {* operations with sets *}
 | 
| 31708 | 349 | |
| 350 | lemma transfer_int_nat_set_functions: | |
| 351 | "nat_set A \<Longrightarrow> card A = card (nat ` A)" | |
| 352 |     "{} = int ` ({}::nat set)"
 | |
| 353 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)" | |
| 354 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)" | |
| 355 |     "{x. x >= 0 & P x} = int ` {x. P(int x)}"
 | |
| 356 | (* need all variants of these! *) | |
| 357 | by (simp_all only: is_nat_def transfer_nat_int_set_functions | |
| 358 | transfer_nat_int_set_function_closures | |
| 359 | transfer_nat_int_set_return_embed nat_0_le | |
| 360 | cong: transfer_nat_int_set_cong) | |
| 361 | ||
| 362 | lemma transfer_int_nat_set_function_closures: | |
| 363 |     "nat_set {}"
 | |
| 364 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" | |
| 365 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" | |
| 366 |     "nat_set {x. x >= 0 & P x}"
 | |
| 367 | "nat_set (int ` C)" | |
| 368 | "nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x" | |
| 369 | by (simp_all only: transfer_nat_int_set_function_closures is_nat_def) | |
| 370 | ||
| 371 | lemma transfer_int_nat_set_relations: | |
| 372 | "nat_set A \<Longrightarrow> finite A = finite (nat ` A)" | |
| 373 | "is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)" | |
| 374 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)" | |
| 375 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)" | |
| 376 | "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)" | |
| 377 | by (simp_all only: is_nat_def transfer_nat_int_set_relations | |
| 378 | transfer_nat_int_set_return_embed nat_0_le) | |
| 379 | ||
| 380 | lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A" | |
| 381 | by (simp only: transfer_nat_int_set_relations | |
| 382 | transfer_nat_int_set_function_closures | |
| 383 | transfer_nat_int_set_return_embed nat_0_le) | |
| 384 | ||
| 385 | lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow> | |
| 386 |     {(x::nat). P x} = {x. P' x}"
 | |
| 387 | by auto | |
| 388 | ||
| 35644 | 389 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 390 | return: transfer_int_nat_set_functions | 
| 391 | transfer_int_nat_set_function_closures | |
| 392 | transfer_int_nat_set_relations | |
| 393 | transfer_int_nat_set_return_embed | |
| 394 | cong: transfer_int_nat_set_cong | |
| 395 | ] | |
| 396 | ||
| 397 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
32558diff
changeset | 398 | text {* setsum and setprod *}
 | 
| 31708 | 399 | |
| 400 | (* this handles the case where the *domain* of f is int *) | |
| 401 | lemma transfer_int_nat_sum_prod: | |
| 402 | "nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)" | |
| 403 | "nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)" | |
| 404 | apply (subst setsum_reindex) | |
| 405 | apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff) | |
| 406 | apply (subst setprod_reindex) | |
| 407 | apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff | |
| 408 | cong: setprod_cong) | |
| 409 | done | |
| 410 | ||
| 411 | (* this handles the case where the *range* of f is int *) | |
| 412 | lemma transfer_int_nat_sum_prod2: | |
| 413 | "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)" | |
| 414 | "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> | |
| 415 | setprod f A = int(setprod (%x. nat (f x)) A)" | |
| 416 | unfolding is_nat_def | |
| 417 | apply (subst int_setsum, auto) | |
| 418 | apply (subst int_setprod, auto simp add: cong: setprod_cong) | |
| 419 | done | |
| 420 | ||
| 35644 | 421 | declare transfer_morphism_int_nat [transfer add | 
| 31708 | 422 | return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 | 
| 423 | cong: setsum_cong setprod_cong] | |
| 424 | ||
| 425 | end |