15300
|
1 |
(* ID: $Id$
|
|
2 |
Authors: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1996 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* Equivalence Relations in Higher-Order Set Theory *}
|
|
7 |
|
|
8 |
theory Equiv_Relations
|
|
9 |
imports Relation Finite_Set
|
|
10 |
begin
|
|
11 |
|
|
12 |
subsection {* Equivalence relations *}
|
|
13 |
|
|
14 |
locale equiv =
|
|
15 |
fixes A and r
|
|
16 |
assumes refl: "refl A r"
|
|
17 |
and sym: "sym r"
|
|
18 |
and trans: "trans r"
|
|
19 |
|
|
20 |
text {*
|
|
21 |
Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
|
|
22 |
r = r"}.
|
|
23 |
|
|
24 |
First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
|
|
25 |
*}
|
|
26 |
|
|
27 |
lemma sym_trans_comp_subset:
|
|
28 |
"sym r ==> trans r ==> r\<inverse> O r \<subseteq> r"
|
|
29 |
by (unfold trans_def sym_def converse_def) blast
|
|
30 |
|
|
31 |
lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r"
|
|
32 |
by (unfold refl_def) blast
|
|
33 |
|
|
34 |
lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r"
|
|
35 |
apply (unfold equiv_def)
|
|
36 |
apply clarify
|
|
37 |
apply (rule equalityI)
|
17589
|
38 |
apply (iprover intro: sym_trans_comp_subset refl_comp_subset)+
|
15300
|
39 |
done
|
|
40 |
|
|
41 |
text {* Second half. *}
|
|
42 |
|
|
43 |
lemma comp_equivI:
|
|
44 |
"r\<inverse> O r = r ==> Domain r = A ==> equiv A r"
|
|
45 |
apply (unfold equiv_def refl_def sym_def trans_def)
|
|
46 |
apply (erule equalityE)
|
|
47 |
apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r")
|
|
48 |
apply fast
|
|
49 |
apply fast
|
|
50 |
done
|
|
51 |
|
|
52 |
|
|
53 |
subsection {* Equivalence classes *}
|
|
54 |
|
|
55 |
lemma equiv_class_subset:
|
|
56 |
"equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
|
|
57 |
-- {* lemma for the next result *}
|
|
58 |
by (unfold equiv_def trans_def sym_def) blast
|
|
59 |
|
|
60 |
theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
|
|
61 |
apply (assumption | rule equalityI equiv_class_subset)+
|
|
62 |
apply (unfold equiv_def sym_def)
|
|
63 |
apply blast
|
|
64 |
done
|
|
65 |
|
|
66 |
lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
|
|
67 |
by (unfold equiv_def refl_def) blast
|
|
68 |
|
|
69 |
lemma subset_equiv_class:
|
|
70 |
"equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
|
|
71 |
-- {* lemma for the next result *}
|
|
72 |
by (unfold equiv_def refl_def) blast
|
|
73 |
|
|
74 |
lemma eq_equiv_class:
|
|
75 |
"r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
|
17589
|
76 |
by (iprover intro: equalityD2 subset_equiv_class)
|
15300
|
77 |
|
|
78 |
lemma equiv_class_nondisjoint:
|
|
79 |
"equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
|
|
80 |
by (unfold equiv_def trans_def sym_def) blast
|
|
81 |
|
|
82 |
lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A"
|
|
83 |
by (unfold equiv_def refl_def) blast
|
|
84 |
|
|
85 |
theorem equiv_class_eq_iff:
|
|
86 |
"equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
|
|
87 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
|
|
88 |
|
|
89 |
theorem eq_equiv_class_iff:
|
|
90 |
"equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
|
|
91 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
|
|
92 |
|
|
93 |
|
|
94 |
subsection {* Quotients *}
|
|
95 |
|
|
96 |
constdefs
|
|
97 |
quotient :: "['a set, ('a*'a) set] => 'a set set" (infixl "'/'/" 90)
|
|
98 |
"A//r == \<Union>x \<in> A. {r``{x}}" -- {* set of equiv classes *}
|
|
99 |
|
|
100 |
lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
|
|
101 |
by (unfold quotient_def) blast
|
|
102 |
|
|
103 |
lemma quotientE:
|
|
104 |
"X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
|
|
105 |
by (unfold quotient_def) blast
|
|
106 |
|
|
107 |
lemma Union_quotient: "equiv A r ==> Union (A//r) = A"
|
|
108 |
by (unfold equiv_def refl_def quotient_def) blast
|
|
109 |
|
|
110 |
lemma quotient_disj:
|
|
111 |
"equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
|
|
112 |
apply (unfold quotient_def)
|
|
113 |
apply clarify
|
|
114 |
apply (rule equiv_class_eq)
|
|
115 |
apply assumption
|
|
116 |
apply (unfold equiv_def trans_def sym_def)
|
|
117 |
apply blast
|
|
118 |
done
|
|
119 |
|
|
120 |
lemma quotient_eqI:
|
|
121 |
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y"
|
|
122 |
apply (clarify elim!: quotientE)
|
|
123 |
apply (rule equiv_class_eq, assumption)
|
|
124 |
apply (unfold equiv_def sym_def trans_def, blast)
|
|
125 |
done
|
|
126 |
|
|
127 |
lemma quotient_eq_iff:
|
|
128 |
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)"
|
|
129 |
apply (rule iffI)
|
|
130 |
prefer 2 apply (blast del: equalityI intro: quotient_eqI)
|
|
131 |
apply (clarify elim!: quotientE)
|
|
132 |
apply (unfold equiv_def sym_def trans_def, blast)
|
|
133 |
done
|
|
134 |
|
18493
|
135 |
lemma eq_equiv_class_iff2:
|
|
136 |
"\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
|
|
137 |
by(simp add:quotient_def eq_equiv_class_iff)
|
|
138 |
|
15300
|
139 |
|
|
140 |
lemma quotient_empty [simp]: "{}//r = {}"
|
|
141 |
by(simp add: quotient_def)
|
|
142 |
|
|
143 |
lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
|
|
144 |
by(simp add: quotient_def)
|
|
145 |
|
|
146 |
lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
|
|
147 |
by(simp add: quotient_def)
|
|
148 |
|
|
149 |
|
15302
|
150 |
lemma singleton_quotient: "{x}//r = {r `` {x}}"
|
|
151 |
by(simp add:quotient_def)
|
|
152 |
|
|
153 |
lemma quotient_diff1:
|
|
154 |
"\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
|
|
155 |
apply(simp add:quotient_def inj_on_def)
|
|
156 |
apply blast
|
|
157 |
done
|
|
158 |
|
15300
|
159 |
subsection {* Defining unary operations upon equivalence classes *}
|
|
160 |
|
|
161 |
text{*A congruence-preserving function*}
|
|
162 |
locale congruent =
|
|
163 |
fixes r and f
|
|
164 |
assumes congruent: "(y,z) \<in> r ==> f y = f z"
|
|
165 |
|
19363
|
166 |
abbreviation
|
19323
|
167 |
RESPECTS :: "('a => 'b) => ('a * 'a) set => bool" (infixr "respects" 80)
|
19363
|
168 |
"f respects r == congruent r f"
|
15300
|
169 |
|
|
170 |
|
|
171 |
lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c"
|
|
172 |
-- {* lemma required to prove @{text UN_equiv_class} *}
|
|
173 |
by auto
|
|
174 |
|
|
175 |
lemma UN_equiv_class:
|
|
176 |
"equiv A r ==> f respects r ==> a \<in> A
|
|
177 |
==> (\<Union>x \<in> r``{a}. f x) = f a"
|
|
178 |
-- {* Conversion rule *}
|
|
179 |
apply (rule equiv_class_self [THEN UN_constant_eq], assumption+)
|
|
180 |
apply (unfold equiv_def congruent_def sym_def)
|
|
181 |
apply (blast del: equalityI)
|
|
182 |
done
|
|
183 |
|
|
184 |
lemma UN_equiv_class_type:
|
|
185 |
"equiv A r ==> f respects r ==> X \<in> A//r ==>
|
|
186 |
(!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B"
|
|
187 |
apply (unfold quotient_def)
|
|
188 |
apply clarify
|
|
189 |
apply (subst UN_equiv_class)
|
|
190 |
apply auto
|
|
191 |
done
|
|
192 |
|
|
193 |
text {*
|
|
194 |
Sufficient conditions for injectiveness. Could weaken premises!
|
|
195 |
major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
|
|
196 |
A ==> f y \<in> B"}.
|
|
197 |
*}
|
|
198 |
|
|
199 |
lemma UN_equiv_class_inject:
|
|
200 |
"equiv A r ==> f respects r ==>
|
|
201 |
(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r
|
|
202 |
==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r)
|
|
203 |
==> X = Y"
|
|
204 |
apply (unfold quotient_def)
|
|
205 |
apply clarify
|
|
206 |
apply (rule equiv_class_eq)
|
|
207 |
apply assumption
|
|
208 |
apply (subgoal_tac "f x = f xa")
|
|
209 |
apply blast
|
|
210 |
apply (erule box_equals)
|
|
211 |
apply (assumption | rule UN_equiv_class)+
|
|
212 |
done
|
|
213 |
|
|
214 |
|
|
215 |
subsection {* Defining binary operations upon equivalence classes *}
|
|
216 |
|
|
217 |
text{*A congruence-preserving function of two arguments*}
|
|
218 |
locale congruent2 =
|
|
219 |
fixes r1 and r2 and f
|
|
220 |
assumes congruent2:
|
|
221 |
"(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2"
|
|
222 |
|
|
223 |
text{*Abbreviation for the common case where the relations are identical*}
|
19979
|
224 |
abbreviation
|
|
225 |
RESPECTS2:: "['a => 'a => 'b, ('a * 'a)set] => bool" (infixr "respects2 " 80)
|
|
226 |
"f respects2 r == congruent2 r r f"
|
|
227 |
|
15300
|
228 |
|
|
229 |
lemma congruent2_implies_congruent:
|
|
230 |
"equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)"
|
|
231 |
by (unfold congruent_def congruent2_def equiv_def refl_def) blast
|
|
232 |
|
|
233 |
lemma congruent2_implies_congruent_UN:
|
|
234 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==>
|
|
235 |
congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
|
|
236 |
apply (unfold congruent_def)
|
|
237 |
apply clarify
|
|
238 |
apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)
|
|
239 |
apply (simp add: UN_equiv_class congruent2_implies_congruent)
|
|
240 |
apply (unfold congruent2_def equiv_def refl_def)
|
|
241 |
apply (blast del: equalityI)
|
|
242 |
done
|
|
243 |
|
|
244 |
lemma UN_equiv_class2:
|
|
245 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2
|
|
246 |
==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
|
|
247 |
by (simp add: UN_equiv_class congruent2_implies_congruent
|
|
248 |
congruent2_implies_congruent_UN)
|
|
249 |
|
|
250 |
lemma UN_equiv_class_type2:
|
|
251 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f
|
|
252 |
==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2
|
|
253 |
==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B)
|
|
254 |
==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"
|
|
255 |
apply (unfold quotient_def)
|
|
256 |
apply clarify
|
|
257 |
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
|
|
258 |
congruent2_implies_congruent quotientI)
|
|
259 |
done
|
|
260 |
|
|
261 |
lemma UN_UN_split_split_eq:
|
|
262 |
"(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =
|
|
263 |
(\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"
|
|
264 |
-- {* Allows a natural expression of binary operators, *}
|
|
265 |
-- {* without explicit calls to @{text split} *}
|
|
266 |
by auto
|
|
267 |
|
|
268 |
lemma congruent2I:
|
|
269 |
"equiv A1 r1 ==> equiv A2 r2
|
|
270 |
==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w)
|
|
271 |
==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z)
|
|
272 |
==> congruent2 r1 r2 f"
|
|
273 |
-- {* Suggested by John Harrison -- the two subproofs may be *}
|
|
274 |
-- {* \emph{much} simpler than the direct proof. *}
|
|
275 |
apply (unfold congruent2_def equiv_def refl_def)
|
|
276 |
apply clarify
|
|
277 |
apply (blast intro: trans)
|
|
278 |
done
|
|
279 |
|
|
280 |
lemma congruent2_commuteI:
|
|
281 |
assumes equivA: "equiv A r"
|
|
282 |
and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y"
|
|
283 |
and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z"
|
|
284 |
shows "f respects2 r"
|
|
285 |
apply (rule congruent2I [OF equivA equivA])
|
|
286 |
apply (rule commute [THEN trans])
|
|
287 |
apply (rule_tac [3] commute [THEN trans, symmetric])
|
|
288 |
apply (rule_tac [5] sym)
|
|
289 |
apply (assumption | rule congt |
|
|
290 |
erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+
|
|
291 |
done
|
|
292 |
|
|
293 |
|
|
294 |
subsection {* Cardinality results *}
|
|
295 |
|
|
296 |
text {*Suggested by Florian Kammüller*}
|
|
297 |
|
|
298 |
lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
|
|
299 |
-- {* recall @{thm equiv_type} *}
|
|
300 |
apply (rule finite_subset)
|
|
301 |
apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
|
|
302 |
apply (unfold quotient_def)
|
|
303 |
apply blast
|
|
304 |
done
|
|
305 |
|
|
306 |
lemma finite_equiv_class:
|
|
307 |
"finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"
|
|
308 |
apply (unfold quotient_def)
|
|
309 |
apply (rule finite_subset)
|
|
310 |
prefer 2 apply assumption
|
|
311 |
apply blast
|
|
312 |
done
|
|
313 |
|
|
314 |
lemma equiv_imp_dvd_card:
|
|
315 |
"finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X
|
|
316 |
==> k dvd card A"
|
|
317 |
apply (rule Union_quotient [THEN subst])
|
|
318 |
apply assumption
|
|
319 |
apply (rule dvd_partition)
|
15392
|
320 |
prefer 3 apply (blast dest: quotient_disj)
|
|
321 |
apply (simp_all add: Union_quotient equiv_type)
|
15300
|
322 |
done
|
|
323 |
|
15303
|
324 |
lemma card_quotient_disjoint:
|
|
325 |
"\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
|
|
326 |
apply(simp add:quotient_def)
|
|
327 |
apply(subst card_UN_disjoint)
|
|
328 |
apply assumption
|
|
329 |
apply simp
|
|
330 |
apply(fastsimp simp add:inj_on_def)
|
15539
|
331 |
apply (simp add:setsum_constant)
|
15303
|
332 |
done
|
19323
|
333 |
(*
|
15300
|
334 |
ML
|
|
335 |
{*
|
|
336 |
val UN_UN_split_split_eq = thm "UN_UN_split_split_eq";
|
|
337 |
val UN_constant_eq = thm "UN_constant_eq";
|
|
338 |
val UN_equiv_class = thm "UN_equiv_class";
|
|
339 |
val UN_equiv_class2 = thm "UN_equiv_class2";
|
|
340 |
val UN_equiv_class_inject = thm "UN_equiv_class_inject";
|
|
341 |
val UN_equiv_class_type = thm "UN_equiv_class_type";
|
|
342 |
val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
|
|
343 |
val Union_quotient = thm "Union_quotient";
|
|
344 |
val comp_equivI = thm "comp_equivI";
|
|
345 |
val congruent2I = thm "congruent2I";
|
|
346 |
val congruent2_commuteI = thm "congruent2_commuteI";
|
|
347 |
val congruent2_def = thm "congruent2_def";
|
|
348 |
val congruent2_implies_congruent = thm "congruent2_implies_congruent";
|
|
349 |
val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
|
|
350 |
val congruent_def = thm "congruent_def";
|
|
351 |
val eq_equiv_class = thm "eq_equiv_class";
|
|
352 |
val eq_equiv_class_iff = thm "eq_equiv_class_iff";
|
|
353 |
val equiv_class_eq = thm "equiv_class_eq";
|
|
354 |
val equiv_class_eq_iff = thm "equiv_class_eq_iff";
|
|
355 |
val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
|
|
356 |
val equiv_class_self = thm "equiv_class_self";
|
|
357 |
val equiv_comp_eq = thm "equiv_comp_eq";
|
|
358 |
val equiv_def = thm "equiv_def";
|
|
359 |
val equiv_imp_dvd_card = thm "equiv_imp_dvd_card";
|
|
360 |
val equiv_type = thm "equiv_type";
|
|
361 |
val finite_equiv_class = thm "finite_equiv_class";
|
|
362 |
val finite_quotient = thm "finite_quotient";
|
|
363 |
val quotientE = thm "quotientE";
|
|
364 |
val quotientI = thm "quotientI";
|
|
365 |
val quotient_def = thm "quotient_def";
|
|
366 |
val quotient_disj = thm "quotient_disj";
|
|
367 |
val refl_comp_subset = thm "refl_comp_subset";
|
|
368 |
val subset_equiv_class = thm "subset_equiv_class";
|
|
369 |
val sym_trans_comp_subset = thm "sym_trans_comp_subset";
|
|
370 |
*}
|
19323
|
371 |
*)
|
15300
|
372 |
end
|