13876
|
1 |
(* Title: HOL/Integ/cooper_proof.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Amine Chaieb and Tobias Nipkow, TU Muenchen
|
|
4 |
License: GPL (GNU GENERAL PUBLIC LICENSE)
|
|
5 |
|
|
6 |
File containing the implementation of the proof
|
|
7 |
generation for Cooper Algorithm
|
|
8 |
*)
|
|
9 |
|
|
10 |
signature COOPER_PROOF =
|
|
11 |
sig
|
|
12 |
val qe_Not : thm
|
|
13 |
val qe_conjI : thm
|
|
14 |
val qe_disjI : thm
|
|
15 |
val qe_impI : thm
|
|
16 |
val qe_eqI : thm
|
|
17 |
val qe_exI : thm
|
|
18 |
val qe_get_terms : thm -> term * term
|
|
19 |
val cooper_prv : Sign.sg -> term -> term -> string list -> thm
|
|
20 |
val proof_of_evalc : Sign.sg -> term -> thm
|
|
21 |
val proof_of_cnnf : Sign.sg -> term -> (term -> thm) -> thm
|
|
22 |
val proof_of_linform : Sign.sg -> string list -> term -> thm
|
|
23 |
end;
|
|
24 |
|
|
25 |
structure CooperProof : COOPER_PROOF =
|
|
26 |
struct
|
|
27 |
|
|
28 |
open CooperDec;
|
|
29 |
|
|
30 |
(*-----------------------------------------------------------------*)
|
|
31 |
(*-----------------------------------------------------------------*)
|
|
32 |
(*-----------------------------------------------------------------*)
|
|
33 |
(*--- ---*)
|
|
34 |
(*--- ---*)
|
|
35 |
(*--- Protocoling part ---*)
|
|
36 |
(*--- ---*)
|
|
37 |
(*--- includes the protocolling datastructure ---*)
|
|
38 |
(*--- ---*)
|
|
39 |
(*--- and the protocolling fuctions ---*)
|
|
40 |
(*--- ---*)
|
|
41 |
(*--- ---*)
|
|
42 |
(*-----------------------------------------------------------------*)
|
|
43 |
(*-----------------------------------------------------------------*)
|
|
44 |
(*-----------------------------------------------------------------*)
|
|
45 |
|
|
46 |
val presburger_ss = simpset_of (theory "Presburger")
|
|
47 |
addsimps [zdiff_def] delsimps [symmetric zdiff_def];
|
|
48 |
val cboolT = ctyp_of (sign_of HOL.thy) HOLogic.boolT;
|
|
49 |
|
|
50 |
(*Theorems that will be used later for the proofgeneration*)
|
|
51 |
|
|
52 |
val zdvd_iff_zmod_eq_0 = thm "zdvd_iff_zmod_eq_0";
|
|
53 |
val unity_coeff_ex = thm "unity_coeff_ex";
|
|
54 |
|
|
55 |
(* Thorems for proving the adjustment of the coeffitients*)
|
|
56 |
|
|
57 |
val ac_lt_eq = thm "ac_lt_eq";
|
|
58 |
val ac_eq_eq = thm "ac_eq_eq";
|
|
59 |
val ac_dvd_eq = thm "ac_dvd_eq";
|
|
60 |
val ac_pi_eq = thm "ac_pi_eq";
|
|
61 |
|
|
62 |
(* The logical compination of the sythetised properties*)
|
|
63 |
val qe_Not = thm "qe_Not";
|
|
64 |
val qe_conjI = thm "qe_conjI";
|
|
65 |
val qe_disjI = thm "qe_disjI";
|
|
66 |
val qe_impI = thm "qe_impI";
|
|
67 |
val qe_eqI = thm "qe_eqI";
|
|
68 |
val qe_exI = thm "qe_exI";
|
|
69 |
val qe_ALLI = thm "qe_ALLI";
|
|
70 |
|
|
71 |
(*Modulo D property for Pminusinf an Plusinf *)
|
|
72 |
val fm_modd_minf = thm "fm_modd_minf";
|
|
73 |
val not_dvd_modd_minf = thm "not_dvd_modd_minf";
|
|
74 |
val dvd_modd_minf = thm "dvd_modd_minf";
|
|
75 |
|
|
76 |
val fm_modd_pinf = thm "fm_modd_pinf";
|
|
77 |
val not_dvd_modd_pinf = thm "not_dvd_modd_pinf";
|
|
78 |
val dvd_modd_pinf = thm "dvd_modd_pinf";
|
|
79 |
|
|
80 |
(* the minusinfinity proprty*)
|
|
81 |
|
|
82 |
val fm_eq_minf = thm "fm_eq_minf";
|
|
83 |
val neq_eq_minf = thm "neq_eq_minf";
|
|
84 |
val eq_eq_minf = thm "eq_eq_minf";
|
|
85 |
val le_eq_minf = thm "le_eq_minf";
|
|
86 |
val len_eq_minf = thm "len_eq_minf";
|
|
87 |
val not_dvd_eq_minf = thm "not_dvd_eq_minf";
|
|
88 |
val dvd_eq_minf = thm "dvd_eq_minf";
|
|
89 |
|
|
90 |
(* the Plusinfinity proprty*)
|
|
91 |
|
|
92 |
val fm_eq_pinf = thm "fm_eq_pinf";
|
|
93 |
val neq_eq_pinf = thm "neq_eq_pinf";
|
|
94 |
val eq_eq_pinf = thm "eq_eq_pinf";
|
|
95 |
val le_eq_pinf = thm "le_eq_pinf";
|
|
96 |
val len_eq_pinf = thm "len_eq_pinf";
|
|
97 |
val not_dvd_eq_pinf = thm "not_dvd_eq_pinf";
|
|
98 |
val dvd_eq_pinf = thm "dvd_eq_pinf";
|
|
99 |
|
|
100 |
(*Logical construction of the Property*)
|
|
101 |
val eq_minf_conjI = thm "eq_minf_conjI";
|
|
102 |
val eq_minf_disjI = thm "eq_minf_disjI";
|
|
103 |
val modd_minf_disjI = thm "modd_minf_disjI";
|
|
104 |
val modd_minf_conjI = thm "modd_minf_conjI";
|
|
105 |
|
|
106 |
val eq_pinf_conjI = thm "eq_pinf_conjI";
|
|
107 |
val eq_pinf_disjI = thm "eq_pinf_disjI";
|
|
108 |
val modd_pinf_disjI = thm "modd_pinf_disjI";
|
|
109 |
val modd_pinf_conjI = thm "modd_pinf_conjI";
|
|
110 |
|
|
111 |
(*A/B - set Theorem *)
|
|
112 |
|
|
113 |
val bst_thm = thm "bst_thm";
|
|
114 |
val ast_thm = thm "ast_thm";
|
|
115 |
|
|
116 |
(*Cooper Backwards...*)
|
|
117 |
(*Bset*)
|
|
118 |
val not_bst_p_fm = thm "not_bst_p_fm";
|
|
119 |
val not_bst_p_ne = thm "not_bst_p_ne";
|
|
120 |
val not_bst_p_eq = thm "not_bst_p_eq";
|
|
121 |
val not_bst_p_gt = thm "not_bst_p_gt";
|
|
122 |
val not_bst_p_lt = thm "not_bst_p_lt";
|
|
123 |
val not_bst_p_ndvd = thm "not_bst_p_ndvd";
|
|
124 |
val not_bst_p_dvd = thm "not_bst_p_dvd";
|
|
125 |
|
|
126 |
(*Aset*)
|
|
127 |
val not_ast_p_fm = thm "not_ast_p_fm";
|
|
128 |
val not_ast_p_ne = thm "not_ast_p_ne";
|
|
129 |
val not_ast_p_eq = thm "not_ast_p_eq";
|
|
130 |
val not_ast_p_gt = thm "not_ast_p_gt";
|
|
131 |
val not_ast_p_lt = thm "not_ast_p_lt";
|
|
132 |
val not_ast_p_ndvd = thm "not_ast_p_ndvd";
|
|
133 |
val not_ast_p_dvd = thm "not_ast_p_dvd";
|
|
134 |
|
|
135 |
(*Logical construction of the prop*)
|
|
136 |
(*Bset*)
|
|
137 |
val not_bst_p_conjI = thm "not_bst_p_conjI";
|
|
138 |
val not_bst_p_disjI = thm "not_bst_p_disjI";
|
|
139 |
val not_bst_p_Q_elim = thm "not_bst_p_Q_elim";
|
|
140 |
|
|
141 |
(*Aset*)
|
|
142 |
val not_ast_p_conjI = thm "not_ast_p_conjI";
|
|
143 |
val not_ast_p_disjI = thm "not_ast_p_disjI";
|
|
144 |
val not_ast_p_Q_elim = thm "not_ast_p_Q_elim";
|
|
145 |
|
|
146 |
(*Cooper*)
|
|
147 |
val cppi_eq = thm "cppi_eq";
|
|
148 |
val cpmi_eq = thm "cpmi_eq";
|
|
149 |
|
|
150 |
(*Others*)
|
|
151 |
val simp_from_to = thm "simp_from_to";
|
|
152 |
val P_eqtrue = thm "P_eqtrue";
|
|
153 |
val P_eqfalse = thm "P_eqfalse";
|
|
154 |
|
|
155 |
(*For Proving NNF*)
|
|
156 |
|
|
157 |
val nnf_nn = thm "nnf_nn";
|
|
158 |
val nnf_im = thm "nnf_im";
|
|
159 |
val nnf_eq = thm "nnf_eq";
|
|
160 |
val nnf_sdj = thm "nnf_sdj";
|
|
161 |
val nnf_ncj = thm "nnf_ncj";
|
|
162 |
val nnf_nim = thm "nnf_nim";
|
|
163 |
val nnf_neq = thm "nnf_neq";
|
|
164 |
val nnf_ndj = thm "nnf_ndj";
|
|
165 |
|
|
166 |
(*For Proving term linearizition*)
|
|
167 |
val linearize_dvd = thm "linearize_dvd";
|
|
168 |
val lf_lt = thm "lf_lt";
|
|
169 |
val lf_eq = thm "lf_eq";
|
|
170 |
val lf_dvd = thm "lf_dvd";
|
|
171 |
|
|
172 |
|
|
173 |
|
|
174 |
(* ------------------------------------------------------------------------- *)
|
|
175 |
(*Datatatype declarations for Proofprotocol for the cooperprocedure.*)
|
|
176 |
(* ------------------------------------------------------------------------- *)
|
|
177 |
|
|
178 |
|
|
179 |
|
|
180 |
(* ------------------------------------------------------------------------- *)
|
|
181 |
(*Datatatype declarations for Proofprotocol for the adjustcoeff step.*)
|
|
182 |
(* ------------------------------------------------------------------------- *)
|
|
183 |
datatype CpLog = No
|
|
184 |
|Simp of term*CpLog
|
|
185 |
|Blast of CpLog*CpLog
|
|
186 |
|Aset of (term*term*(term list)*term)
|
|
187 |
|Bset of (term*term*(term list)*term)
|
|
188 |
|Minusinf of CpLog*CpLog
|
|
189 |
|Cooper of term*CpLog*CpLog*CpLog
|
|
190 |
|Eq_minf of term*term
|
|
191 |
|Modd_minf of term*term
|
|
192 |
|Eq_minf_conjI of CpLog*CpLog
|
|
193 |
|Modd_minf_conjI of CpLog*CpLog
|
|
194 |
|Modd_minf_disjI of CpLog*CpLog
|
|
195 |
|Eq_minf_disjI of CpLog*CpLog
|
|
196 |
|Not_bst_p of term*term*term*term*CpLog
|
|
197 |
|Not_bst_p_atomic of term
|
|
198 |
|Not_bst_p_conjI of CpLog*CpLog
|
|
199 |
|Not_bst_p_disjI of CpLog*CpLog
|
|
200 |
|Not_ast_p of term*term*term*term*CpLog
|
|
201 |
|Not_ast_p_atomic of term
|
|
202 |
|Not_ast_p_conjI of CpLog*CpLog
|
|
203 |
|Not_ast_p_disjI of CpLog*CpLog
|
|
204 |
|CpLogError;
|
|
205 |
|
|
206 |
|
|
207 |
|
|
208 |
datatype ACLog = ACAt of int*term
|
|
209 |
|ACPI of int*term
|
|
210 |
|ACfm of term
|
|
211 |
|ACNeg of ACLog
|
|
212 |
|ACConst of string*ACLog*ACLog;
|
|
213 |
|
|
214 |
|
|
215 |
|
|
216 |
(* ------------------------------------------------------------------------- *)
|
|
217 |
(*Datatatype declarations for Proofprotocol for the CNNF step.*)
|
|
218 |
(* ------------------------------------------------------------------------- *)
|
|
219 |
|
|
220 |
|
|
221 |
datatype NNFLog = NNFAt of term
|
|
222 |
|NNFSimp of NNFLog
|
|
223 |
|NNFNN of NNFLog
|
|
224 |
|NNFConst of string*NNFLog*NNFLog;
|
|
225 |
|
|
226 |
(* ------------------------------------------------------------------------- *)
|
|
227 |
(*Datatatype declarations for Proofprotocol for the linform step.*)
|
|
228 |
(* ------------------------------------------------------------------------- *)
|
|
229 |
|
|
230 |
|
|
231 |
datatype LfLog = LfAt of term
|
|
232 |
|LfAtdvd of term
|
|
233 |
|Lffm of term
|
|
234 |
|LfConst of string*LfLog*LfLog
|
|
235 |
|LfNot of LfLog
|
|
236 |
|LfQ of string*string*typ*LfLog;
|
|
237 |
|
|
238 |
|
|
239 |
(* ------------------------------------------------------------------------- *)
|
|
240 |
(*Datatatype declarations for Proofprotocol for the evaluation- evalc- step.*)
|
|
241 |
(* ------------------------------------------------------------------------- *)
|
|
242 |
|
|
243 |
|
|
244 |
datatype EvalLog = EvalAt of term
|
|
245 |
|Evalfm of term
|
|
246 |
|EvalConst of string*EvalLog*EvalLog;
|
|
247 |
|
|
248 |
(* ------------------------------------------------------------------------- *)
|
|
249 |
(*This function norm_zero_one replaces the occurences of Numeral1 and Numeral0*)
|
|
250 |
(*Respectively by their abstract representation Const("1",..) and COnst("0",..)*)
|
|
251 |
(*this is necessary because the theorems use this representation.*)
|
|
252 |
(* This function should be elminated in next versions...*)
|
|
253 |
(* ------------------------------------------------------------------------- *)
|
|
254 |
|
|
255 |
fun norm_zero_one fm = case fm of
|
|
256 |
(Const ("op *",_) $ c $ t) =>
|
|
257 |
if c = one then (norm_zero_one t)
|
|
258 |
else if (dest_numeral c = ~1)
|
|
259 |
then (Const("uminus",HOLogic.intT --> HOLogic.intT) $ (norm_zero_one t))
|
|
260 |
else (HOLogic.mk_binop "op *" (norm_zero_one c,norm_zero_one t))
|
|
261 |
|(node $ rest) => ((norm_zero_one node)$(norm_zero_one rest))
|
|
262 |
|(Abs(x,T,p)) => (Abs(x,T,(norm_zero_one p)))
|
|
263 |
|_ => fm;
|
|
264 |
|
|
265 |
|
|
266 |
(* ------------------------------------------------------------------------- *)
|
|
267 |
(* Intended to tell that here we changed the structure of the formula with respect to the posineq theorem : ~(0 < t) = 0 < 1-t*)
|
|
268 |
(* ------------------------------------------------------------------------- *)
|
|
269 |
fun adjustcoeffeq_wp x l fm =
|
|
270 |
case fm of
|
|
271 |
(Const("Not",_)$(Const("op <",_) $(Const("0",_)) $(rt as (Const ("op +", _)$(Const ("op *",_) $ c $ y ) $z )))) =>
|
|
272 |
if (x = y)
|
|
273 |
then let
|
|
274 |
val m = l div (dest_numeral c)
|
|
275 |
val n = abs (m)
|
|
276 |
val xtm = (HOLogic.mk_binop "op *" ((mk_numeral ((m div n)*l) ), x))
|
13905
|
277 |
val rs = (HOLogic.mk_binrel "op <" (zero,linear_sub [] (mk_numeral n) (HOLogic.mk_binop "op +" ( xtm ,( linear_cmul n z) ))))
|
13876
|
278 |
in (ACPI(n,fm),rs)
|
|
279 |
end
|
|
280 |
else let val rs = (HOLogic.mk_binrel "op <" (zero,linear_sub [] one rt ))
|
|
281 |
in (ACPI(1,fm),rs)
|
|
282 |
end
|
|
283 |
|
|
284 |
|(Const(p,_) $d $( Const ("op +", _)$(Const ("op *",_) $
|
|
285 |
c $ y ) $z )) => if (is_arith_rel fm) andalso (x = y) then
|
|
286 |
let val m = l div (dest_numeral c)
|
|
287 |
val n = (if p = "op <" then abs(m) else m)
|
|
288 |
val xtm = (HOLogic.mk_binop "op *" ((mk_numeral ((m div n)*l) ), x))
|
|
289 |
val rs = (HOLogic.mk_binrel p ((linear_cmul n d),(HOLogic.mk_binop "op +" ( xtm ,( linear_cmul n z) ))))
|
|
290 |
in (ACAt(n,fm),rs)
|
|
291 |
end
|
|
292 |
else (ACfm(fm),fm)
|
|
293 |
|( Const ("Not", _) $ p) => let val (rsp,rsr) = adjustcoeffeq_wp x l p
|
|
294 |
in (ACNeg(rsp),HOLogic.Not $ rsr)
|
|
295 |
end
|
|
296 |
|( Const ("op &",_) $ p $ q) =>let val (rspp,rspr) = adjustcoeffeq_wp x l p
|
|
297 |
val (rsqp,rsqr) = adjustcoeffeq_wp x l q
|
|
298 |
|
|
299 |
in (ACConst ("CJ",rspp,rsqp), HOLogic.mk_conj (rspr,rsqr))
|
|
300 |
end
|
|
301 |
|( Const ("op |",_) $ p $ q) =>let val (rspp,rspr) = adjustcoeffeq_wp x l p
|
|
302 |
val (rsqp,rsqr) = adjustcoeffeq_wp x l q
|
|
303 |
|
|
304 |
in (ACConst ("DJ",rspp,rsqp), HOLogic.mk_disj (rspr,rsqr))
|
|
305 |
end
|
|
306 |
|
|
307 |
|_ => (ACfm(fm),fm);
|
|
308 |
|
|
309 |
|
|
310 |
(*_________________________________________*)
|
|
311 |
(*-----------------------------------------*)
|
|
312 |
(* Protocol generation for the liform step *)
|
|
313 |
(*_________________________________________*)
|
|
314 |
(*-----------------------------------------*)
|
|
315 |
|
|
316 |
|
|
317 |
fun linform_wp fm =
|
|
318 |
let fun at_linform_wp at =
|
|
319 |
case at of
|
|
320 |
(Const("op <=",_)$s$t) => LfAt(at)
|
|
321 |
|(Const("op <",_)$s$t) => LfAt(at)
|
|
322 |
|(Const("op =",_)$s$t) => LfAt(at)
|
|
323 |
|(Const("Divides.op dvd",_)$s$t) => LfAtdvd(at)
|
|
324 |
in
|
|
325 |
if is_arith_rel fm
|
|
326 |
then at_linform_wp fm
|
|
327 |
else case fm of
|
|
328 |
(Const("Not",_) $ A) => LfNot(linform_wp A)
|
|
329 |
|(Const("op &",_)$ A $ B) => LfConst("CJ",linform_wp A, linform_wp B)
|
|
330 |
|(Const("op |",_)$ A $ B) => LfConst("DJ",linform_wp A, linform_wp B)
|
|
331 |
|(Const("op -->",_)$ A $ B) => LfConst("IM",linform_wp A, linform_wp B)
|
|
332 |
|(Const("op =",Type ("fun",[Type ("bool", []),_]))$ A $ B) => LfConst("EQ",linform_wp A, linform_wp B)
|
|
333 |
|Const("Ex",_)$Abs(x,T,p) =>
|
|
334 |
let val (xn,p1) = variant_abs(x,T,p)
|
|
335 |
in LfQ("Ex",xn,T,linform_wp p1)
|
|
336 |
end
|
|
337 |
|Const("All",_)$Abs(x,T,p) =>
|
|
338 |
let val (xn,p1) = variant_abs(x,T,p)
|
|
339 |
in LfQ("All",xn,T,linform_wp p1)
|
|
340 |
end
|
|
341 |
end;
|
|
342 |
|
|
343 |
|
|
344 |
(* ------------------------------------------------------------------------- *)
|
|
345 |
(*For simlified formulas we just notice the original formula, for whitch we habe been
|
|
346 |
intendes to make the proof.*)
|
|
347 |
(* ------------------------------------------------------------------------- *)
|
|
348 |
fun simpl_wp (fm,pr) = let val fm2 = simpl fm
|
|
349 |
in (fm2,Simp(fm,pr))
|
|
350 |
end;
|
|
351 |
|
|
352 |
|
|
353 |
(* ------------------------------------------------------------------------- *)
|
|
354 |
(*Help function for the generation of the proof EX.P_{minus \infty} --> EX. P(x) *)
|
|
355 |
(* ------------------------------------------------------------------------- *)
|
|
356 |
fun minusinf_wph x fm = let fun mk_atomar_minusinf_proof x fm = (Modd_minf(x,fm),Eq_minf(x,fm))
|
|
357 |
|
|
358 |
fun combine_minusinf_proofs opr (ppr1,ppr2) (qpr1,qpr2) = case opr of
|
|
359 |
"CJ" => (Modd_minf_conjI(ppr1,qpr1),Eq_minf_conjI(ppr2,qpr2))
|
|
360 |
|"DJ" => (Modd_minf_disjI(ppr1,qpr1),Eq_minf_disjI(ppr2,qpr2))
|
|
361 |
in
|
|
362 |
|
|
363 |
case fm of
|
|
364 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
365 |
if (x=y) andalso (c1= zero) andalso (c2= one) then (HOLogic.true_const ,(mk_atomar_minusinf_proof x fm))
|
|
366 |
else (fm ,(mk_atomar_minusinf_proof x fm))
|
|
367 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
368 |
if (is_arith_rel fm) andalso (x=y) andalso (c1= zero) andalso (c2= one)
|
|
369 |
then (HOLogic.false_const ,(mk_atomar_minusinf_proof x fm))
|
|
370 |
else (fm,(mk_atomar_minusinf_proof x fm))
|
|
371 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y ) $ z )) =>
|
|
372 |
if (y=x) andalso (c1 = zero) then
|
|
373 |
if c2 = one then (HOLogic.false_const,(mk_atomar_minusinf_proof x fm)) else
|
|
374 |
(HOLogic.true_const,(mk_atomar_minusinf_proof x fm))
|
|
375 |
else (fm,(mk_atomar_minusinf_proof x fm))
|
|
376 |
|
|
377 |
|(Const("Not",_)$(Const ("Divides.op dvd",_) $_ )) => (fm,mk_atomar_minusinf_proof x fm)
|
|
378 |
|
|
379 |
|(Const ("Divides.op dvd",_) $_ ) => (fm,mk_atomar_minusinf_proof x fm)
|
|
380 |
|
|
381 |
|(Const ("op &",_) $ p $ q) => let val (pfm,ppr) = minusinf_wph x p
|
|
382 |
val (qfm,qpr) = minusinf_wph x q
|
|
383 |
val pr = (combine_minusinf_proofs "CJ" ppr qpr)
|
|
384 |
in
|
|
385 |
(HOLogic.conj $ pfm $qfm , pr)
|
|
386 |
end
|
|
387 |
|(Const ("op |",_) $ p $ q) => let val (pfm,ppr) = minusinf_wph x p
|
|
388 |
val (qfm,qpr) = minusinf_wph x q
|
|
389 |
val pr = (combine_minusinf_proofs "DJ" ppr qpr)
|
|
390 |
in
|
|
391 |
(HOLogic.disj $ pfm $qfm , pr)
|
|
392 |
end
|
|
393 |
|
|
394 |
|_ => (fm,(mk_atomar_minusinf_proof x fm))
|
|
395 |
|
|
396 |
end;
|
|
397 |
(* ------------------------------------------------------------------------- *) (* Protokol for the Proof of the property of the minusinfinity formula*)
|
|
398 |
(* Just combines the to protokols *)
|
|
399 |
(* ------------------------------------------------------------------------- *)
|
|
400 |
fun minusinf_wp x fm = let val (fm2,pr) = (minusinf_wph x fm)
|
|
401 |
in (fm2,Minusinf(pr))
|
|
402 |
end;
|
|
403 |
|
|
404 |
(* ------------------------------------------------------------------------- *)
|
|
405 |
(*Help function for the generation of the proof EX.P_{plus \infty} --> EX. P(x) *)
|
|
406 |
(* ------------------------------------------------------------------------- *)
|
|
407 |
|
|
408 |
fun plusinf_wph x fm = let fun mk_atomar_plusinf_proof x fm = (Modd_minf(x,fm),Eq_minf(x,fm))
|
|
409 |
|
|
410 |
fun combine_plusinf_proofs opr (ppr1,ppr2) (qpr1,qpr2) = case opr of
|
|
411 |
"CJ" => (Modd_minf_conjI(ppr1,qpr1),Eq_minf_conjI(ppr2,qpr2))
|
|
412 |
|"DJ" => (Modd_minf_disjI(ppr1,qpr1),Eq_minf_disjI(ppr2,qpr2))
|
|
413 |
in
|
|
414 |
|
|
415 |
case fm of
|
|
416 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
417 |
if (x=y) andalso (c1= zero) andalso (c2= one) then (HOLogic.true_const ,(mk_atomar_plusinf_proof x fm))
|
|
418 |
else (fm ,(mk_atomar_plusinf_proof x fm))
|
|
419 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
420 |
if (is_arith_rel fm) andalso (x=y) andalso (c1= zero) andalso (c2= one)
|
|
421 |
then (HOLogic.false_const ,(mk_atomar_plusinf_proof x fm))
|
|
422 |
else (fm,(mk_atomar_plusinf_proof x fm))
|
|
423 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y ) $ z )) =>
|
|
424 |
if (y=x) andalso (c1 = zero) then
|
|
425 |
if c2 = one then (HOLogic.true_const,(mk_atomar_plusinf_proof x fm)) else
|
|
426 |
(HOLogic.false_const,(mk_atomar_plusinf_proof x fm))
|
|
427 |
else (fm,(mk_atomar_plusinf_proof x fm))
|
|
428 |
|
|
429 |
|(Const("Not",_)$(Const ("Divides.op dvd",_) $_ )) => (fm,mk_atomar_plusinf_proof x fm)
|
|
430 |
|
|
431 |
|(Const ("Divides.op dvd",_) $_ ) => (fm,mk_atomar_plusinf_proof x fm)
|
|
432 |
|
|
433 |
|(Const ("op &",_) $ p $ q) => let val (pfm,ppr) = plusinf_wph x p
|
|
434 |
val (qfm,qpr) = plusinf_wph x q
|
|
435 |
val pr = (combine_plusinf_proofs "CJ" ppr qpr)
|
|
436 |
in
|
|
437 |
(HOLogic.conj $ pfm $qfm , pr)
|
|
438 |
end
|
|
439 |
|(Const ("op |",_) $ p $ q) => let val (pfm,ppr) = plusinf_wph x p
|
|
440 |
val (qfm,qpr) = plusinf_wph x q
|
|
441 |
val pr = (combine_plusinf_proofs "DJ" ppr qpr)
|
|
442 |
in
|
|
443 |
(HOLogic.disj $ pfm $qfm , pr)
|
|
444 |
end
|
|
445 |
|
|
446 |
|_ => (fm,(mk_atomar_plusinf_proof x fm))
|
|
447 |
|
|
448 |
end;
|
|
449 |
(* ------------------------------------------------------------------------- *) (* Protokol for the Proof of the property of the minusinfinity formula*)
|
|
450 |
(* Just combines the to protokols *)
|
|
451 |
(* ------------------------------------------------------------------------- *)
|
|
452 |
fun plusinf_wp x fm = let val (fm2,pr) = (plusinf_wph x fm)
|
|
453 |
in (fm2,Minusinf(pr))
|
|
454 |
end;
|
|
455 |
|
|
456 |
|
|
457 |
(* ------------------------------------------------------------------------- *)
|
|
458 |
(*Protocol that we here uses Bset.*)
|
|
459 |
(* ------------------------------------------------------------------------- *)
|
|
460 |
fun bset_wp x fm = let val bs = bset x fm in
|
|
461 |
(bs,Bset(x,fm,bs,mk_numeral (divlcm x fm)))
|
|
462 |
end;
|
|
463 |
|
|
464 |
(* ------------------------------------------------------------------------- *)
|
|
465 |
(*Protocol that we here uses Aset.*)
|
|
466 |
(* ------------------------------------------------------------------------- *)
|
|
467 |
fun aset_wp x fm = let val ast = aset x fm in
|
|
468 |
(ast,Aset(x,fm,ast,mk_numeral (divlcm x fm)))
|
|
469 |
end;
|
|
470 |
|
|
471 |
|
|
472 |
|
|
473 |
(* ------------------------------------------------------------------------- *)
|
|
474 |
(*function list to Set, constructs a set containing all elements of a given list.*)
|
|
475 |
(* ------------------------------------------------------------------------- *)
|
|
476 |
fun list_to_set T1 l = let val T = (HOLogic.mk_setT T1) in
|
|
477 |
case l of
|
|
478 |
[] => Const ("{}",T)
|
|
479 |
|(h::t) => Const("insert", T1 --> (T --> T)) $ h $(list_to_set T1 t)
|
|
480 |
end;
|
|
481 |
|
|
482 |
|
|
483 |
(*====================================================================*)
|
|
484 |
(* ------------------------------------------------------------------------- *)
|
|
485 |
(* ------------------------------------------------------------------------- *)
|
|
486 |
(*Protocol for the proof of the backward direction of the cooper theorem.*)
|
|
487 |
(* Helpfunction - Protokols evereything about the proof reconstruction*)
|
|
488 |
(* ------------------------------------------------------------------------- *)
|
|
489 |
fun not_bst_p_wph fm = case fm of
|
|
490 |
Const("Not",_) $ R => if (is_arith_rel R) then (Not_bst_p_atomic (fm)) else CpLogError
|
|
491 |
|Const("op &",_) $ ls $ rs => Not_bst_p_conjI((not_bst_p_wph ls),(not_bst_p_wph rs))
|
|
492 |
|Const("op |",_) $ ls $ rs => Not_bst_p_disjI((not_bst_p_wph ls),(not_bst_p_wph rs))
|
|
493 |
|_ => Not_bst_p_atomic (fm);
|
|
494 |
(* ------------------------------------------------------------------------- *)
|
|
495 |
(* Main protocoling function for the backward direction gives the Bset and the divlcm and the Formula herself. Needed as inherited attributes for the proof reconstruction*)
|
|
496 |
(* ------------------------------------------------------------------------- *)
|
|
497 |
fun not_bst_p_wp x fm = let val prt = not_bst_p_wph fm
|
|
498 |
val D = mk_numeral (divlcm x fm)
|
|
499 |
val B = map norm_zero_one (bset x fm)
|
|
500 |
in (Not_bst_p (x,fm,D,(list_to_set HOLogic.intT B) , prt))
|
|
501 |
end;
|
|
502 |
(*====================================================================*)
|
|
503 |
(* ------------------------------------------------------------------------- *)
|
|
504 |
(* ------------------------------------------------------------------------- *)
|
|
505 |
(*Protocol for the proof of the backward direction of the cooper theorem.*)
|
|
506 |
(* Helpfunction - Protokols evereything about the proof reconstruction*)
|
|
507 |
(* ------------------------------------------------------------------------- *)
|
|
508 |
fun not_ast_p_wph fm = case fm of
|
|
509 |
Const("Not",_) $ R => if (is_arith_rel R) then (Not_ast_p_atomic (fm)) else CpLogError
|
|
510 |
|Const("op &",_) $ ls $ rs => Not_ast_p_conjI((not_ast_p_wph ls),(not_ast_p_wph rs))
|
|
511 |
|Const("op |",_) $ ls $ rs => Not_ast_p_disjI((not_ast_p_wph ls),(not_ast_p_wph rs))
|
|
512 |
|_ => Not_ast_p_atomic (fm);
|
|
513 |
(* ------------------------------------------------------------------------- *)
|
|
514 |
(* Main protocoling function for the backward direction gives the Bset and the divlcm and the Formula herself. Needed as inherited attributes for the proof reconstruction*)
|
|
515 |
(* ------------------------------------------------------------------------- *)
|
|
516 |
fun not_ast_p_wp x fm = let val prt = not_ast_p_wph fm
|
|
517 |
val D = mk_numeral (divlcm x fm)
|
|
518 |
val B = map norm_zero_one (aset x fm)
|
|
519 |
in (Not_ast_p (x,fm,D,(list_to_set HOLogic.intT B) , prt))
|
|
520 |
end;
|
|
521 |
|
|
522 |
(*======================================================*)
|
|
523 |
(* Protokolgeneration for the formula evaluation process*)
|
|
524 |
(*======================================================*)
|
|
525 |
|
|
526 |
fun evalc_wp fm =
|
|
527 |
let fun evalc_atom_wp at =case at of
|
|
528 |
(Const (p,_) $ s $ t) =>(
|
|
529 |
case assoc (operations,p) of
|
|
530 |
Some f => ((if (f ((dest_numeral s),(dest_numeral t))) then EvalAt(HOLogic.mk_eq(at,HOLogic.true_const)) else EvalAt(HOLogic.mk_eq(at, HOLogic.false_const)))
|
|
531 |
handle _ => Evalfm(at))
|
|
532 |
| _ => Evalfm(at))
|
|
533 |
|Const("Not",_)$(Const (p,_) $ s $ t) =>(
|
|
534 |
case assoc (operations,p) of
|
|
535 |
Some f => ((if (f ((dest_numeral s),(dest_numeral t))) then
|
|
536 |
EvalAt(HOLogic.mk_eq(at, HOLogic.false_const)) else EvalAt(HOLogic.mk_eq(at,HOLogic.true_const)))
|
|
537 |
handle _ => Evalfm(at))
|
|
538 |
| _ => Evalfm(at))
|
|
539 |
| _ => Evalfm(at)
|
|
540 |
|
|
541 |
in
|
|
542 |
case fm of
|
|
543 |
(Const("op &",_)$A$B) => EvalConst("CJ",evalc_wp A,evalc_wp B)
|
|
544 |
|(Const("op |",_)$A$B) => EvalConst("DJ",evalc_wp A,evalc_wp B)
|
|
545 |
|(Const("op -->",_)$A$B) => EvalConst("IM",evalc_wp A,evalc_wp B)
|
|
546 |
|(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => EvalConst("EQ",evalc_wp A,evalc_wp B)
|
|
547 |
|_ => evalc_atom_wp fm
|
|
548 |
end;
|
|
549 |
|
|
550 |
|
|
551 |
|
|
552 |
(*======================================================*)
|
|
553 |
(* Protokolgeneration for the NNF Transformation *)
|
|
554 |
(*======================================================*)
|
|
555 |
|
|
556 |
fun cnnf_wp f =
|
|
557 |
let fun hcnnf_wp fm =
|
|
558 |
case fm of
|
|
559 |
(Const ("op &",_) $ p $ q) => NNFConst("CJ",hcnnf_wp p,hcnnf_wp q)
|
|
560 |
| (Const ("op |",_) $ p $ q) => NNFConst("DJ",hcnnf_wp p,hcnnf_wp q)
|
|
561 |
| (Const ("op -->",_) $ p $q) => NNFConst("IM",hcnnf_wp (HOLogic.Not $ p),hcnnf_wp q)
|
|
562 |
| (Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q) => NNFConst("EQ",hcnnf_wp (HOLogic.mk_conj(p,q)),hcnnf_wp (HOLogic.mk_conj((HOLogic.Not $ p), (HOLogic.Not $ q))))
|
|
563 |
|
|
564 |
| (Const ("Not",_) $ (Const("Not",_) $ p)) => NNFNN(hcnnf_wp p)
|
|
565 |
| (Const ("Not",_) $ (Const ("op &",_) $ p $ q)) => NNFConst ("NCJ",(hcnnf_wp(HOLogic.Not $ p)),(hcnnf_wp(HOLogic.Not $ q)))
|
|
566 |
| (Const ("Not",_) $(Const ("op |",_) $ (A as (Const ("op &",_) $ p $ q)) $
|
|
567 |
(B as (Const ("op &",_) $ p1 $ r)))) => if p1 = negate p then
|
|
568 |
NNFConst("SDJ",
|
|
569 |
NNFConst("CJ",hcnnf_wp p,hcnnf_wp(HOLogic.Not $ q)),
|
|
570 |
NNFConst("CJ",hcnnf_wp p1,hcnnf_wp(HOLogic.Not $ r)))
|
|
571 |
else NNFConst ("NDJ",(hcnnf_wp(HOLogic.Not $ A)),(hcnnf_wp(HOLogic.Not $ B)))
|
|
572 |
|
|
573 |
| (Const ("Not",_) $ (Const ("op |",_) $ p $ q)) => NNFConst ("NDJ",(hcnnf_wp(HOLogic.Not $ p)),(hcnnf_wp(HOLogic.Not $ q)))
|
|
574 |
| (Const ("Not",_) $ (Const ("op -->",_) $ p $q)) => NNFConst ("NIM",(hcnnf_wp(p)),(hcnnf_wp(HOLogic.Not $ q)))
|
|
575 |
| (Const ("Not",_) $ (Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q)) =>NNFConst ("NEQ",(NNFConst("CJ",hcnnf_wp p,hcnnf_wp(HOLogic.Not $ q))),(NNFConst("CJ",hcnnf_wp(HOLogic.Not $ p),hcnnf_wp q)))
|
|
576 |
| _ => NNFAt(fm)
|
|
577 |
in NNFSimp(hcnnf_wp f)
|
|
578 |
end;
|
|
579 |
|
|
580 |
|
|
581 |
|
|
582 |
|
|
583 |
|
|
584 |
|
|
585 |
(* ------------------------------------------------------------------------- *)
|
|
586 |
(*Cooper decision Procedure with proof protocoling*)
|
|
587 |
(* ------------------------------------------------------------------------- *)
|
|
588 |
|
|
589 |
fun coopermi_wp vars fm =
|
|
590 |
case fm of
|
|
591 |
Const ("Ex",_) $ Abs(xo,T,po) => let
|
|
592 |
val (xn,np) = variant_abs(xo,T,po)
|
|
593 |
val x = (Free(xn , T))
|
|
594 |
val p = np (* Is this a legal proof for the P=NP Problem??*)
|
|
595 |
val (p_inf,miprt) = simpl_wp (minusinf_wp x p)
|
|
596 |
val (bset,bsprt) = bset_wp x p
|
|
597 |
val nbst_p_prt = not_bst_p_wp x p
|
|
598 |
val dlcm = divlcm x p
|
|
599 |
val js = 1 upto dlcm
|
|
600 |
fun p_element j b = linrep vars x (linear_add vars b (mk_numeral j)) p
|
|
601 |
fun stage j = list_disj (linrep vars x (mk_numeral j) p_inf :: map (p_element j) bset)
|
|
602 |
in (list_disj (map stage js),Cooper(mk_numeral dlcm,miprt,bsprt,nbst_p_prt))
|
|
603 |
end
|
|
604 |
|
|
605 |
| _ => (error "cooper: not an existential formula",No);
|
|
606 |
|
|
607 |
fun cooperpi_wp vars fm =
|
|
608 |
case fm of
|
|
609 |
Const ("Ex",_) $ Abs(xo,T,po) => let
|
|
610 |
val (xn,np) = variant_abs(xo,T,po)
|
|
611 |
val x = (Free(xn , T))
|
|
612 |
val p = np (* Is this a legal proof for the P=NP Problem??*)
|
|
613 |
val (p_inf,piprt) = simpl_wp (plusinf_wp x p)
|
|
614 |
val (aset,asprt) = aset_wp x p
|
|
615 |
val nast_p_prt = not_ast_p_wp x p
|
|
616 |
val dlcm = divlcm x p
|
|
617 |
val js = 1 upto dlcm
|
|
618 |
fun p_element j a = linrep vars x (linear_sub vars a (mk_numeral j)) p
|
|
619 |
fun stage j = list_disj (linrep vars x (mk_numeral j) p_inf :: map (p_element j) aset)
|
|
620 |
in (list_disj (map stage js),Cooper(mk_numeral dlcm,piprt,asprt,nast_p_prt))
|
|
621 |
end
|
|
622 |
| _ => (error "cooper: not an existential formula",No);
|
|
623 |
|
|
624 |
|
|
625 |
|
|
626 |
|
|
627 |
|
|
628 |
(*-----------------------------------------------------------------*)
|
|
629 |
(*-----------------------------------------------------------------*)
|
|
630 |
(*-----------------------------------------------------------------*)
|
|
631 |
(*--- ---*)
|
|
632 |
(*--- ---*)
|
|
633 |
(*--- Interpretation and Proofgeneration Part ---*)
|
|
634 |
(*--- ---*)
|
|
635 |
(*--- Protocole interpretation functions ---*)
|
|
636 |
(*--- ---*)
|
|
637 |
(*--- and proofgeneration functions ---*)
|
|
638 |
(*--- ---*)
|
|
639 |
(*--- ---*)
|
|
640 |
(*--- ---*)
|
|
641 |
(*--- ---*)
|
|
642 |
(*-----------------------------------------------------------------*)
|
|
643 |
(*-----------------------------------------------------------------*)
|
|
644 |
(*-----------------------------------------------------------------*)
|
|
645 |
|
|
646 |
(* ------------------------------------------------------------------------- *)
|
|
647 |
(* Returns both sides of an equvalence in the theorem*)
|
|
648 |
(* ------------------------------------------------------------------------- *)
|
|
649 |
fun qe_get_terms th = let val (_$(Const("op =",Type ("fun",[Type ("bool", []),_])) $ A $ B )) = prop_of th in (A,B) end;
|
|
650 |
|
|
651 |
|
|
652 |
(*-------------------------------------------------------------*)
|
|
653 |
(*-------------------------------------------------------------*)
|
|
654 |
(*-------------------------------------------------------------*)
|
|
655 |
(*-------------------------------------------------------------*)
|
|
656 |
|
|
657 |
(* ------------------------------------------------------------------------- *)
|
|
658 |
(* Modified version of the simple version with minimal amount of checking and postprocessing*)
|
|
659 |
(* ------------------------------------------------------------------------- *)
|
|
660 |
|
|
661 |
fun simple_prove_goal_cterm2 G tacs =
|
|
662 |
let
|
|
663 |
fun check None = error "prove_goal: tactic failed"
|
|
664 |
| check (Some (thm, _)) = (case nprems_of thm of
|
|
665 |
0 => thm
|
|
666 |
| i => !result_error_fn thm (string_of_int i ^ " unsolved goals!"))
|
|
667 |
in check (Seq.pull (EVERY tacs (trivial G))) end;
|
|
668 |
|
|
669 |
(*-------------------------------------------------------------*)
|
|
670 |
(*-------------------------------------------------------------*)
|
|
671 |
(*-------------------------------------------------------------*)
|
|
672 |
(*-------------------------------------------------------------*)
|
|
673 |
(*-------------------------------------------------------------*)
|
|
674 |
|
|
675 |
fun cert_Trueprop sg t = cterm_of sg (HOLogic.mk_Trueprop t);
|
|
676 |
|
|
677 |
(* ------------------------------------------------------------------------- *)
|
|
678 |
(*This function proove elementar will be used to generate proofs at runtime*)
|
|
679 |
(*It is is based on the isabelle function proove_goalw_cterm and is thought to *)
|
|
680 |
(*prove properties such as a dvd b (essentially) that are only to make at
|
|
681 |
runtime.*)
|
|
682 |
(* ------------------------------------------------------------------------- *)
|
|
683 |
fun prove_elementar sg s fm2 = case s of
|
|
684 |
(*"ss" like simplification with simpset*)
|
|
685 |
"ss" =>
|
|
686 |
let
|
|
687 |
val ss = presburger_ss addsimps
|
|
688 |
[zdvd_iff_zmod_eq_0,unity_coeff_ex]
|
|
689 |
val ct = cert_Trueprop sg fm2
|
|
690 |
in
|
|
691 |
simple_prove_goal_cterm2 ct [simp_tac ss 1, TRY (simple_arith_tac 1)]
|
|
692 |
end
|
|
693 |
|
|
694 |
(*"bl" like blast tactic*)
|
|
695 |
(* Is only used in the harrisons like proof procedure *)
|
|
696 |
| "bl" =>
|
|
697 |
let val ct = cert_Trueprop sg fm2
|
|
698 |
in
|
|
699 |
simple_prove_goal_cterm2 ct [blast_tac HOL_cs 1]
|
|
700 |
end
|
|
701 |
|
|
702 |
(*"ed" like Existence disjunctions ...*)
|
|
703 |
(* Is only used in the harrisons like proof procedure *)
|
|
704 |
| "ed" =>
|
|
705 |
let
|
|
706 |
val ex_disj_tacs =
|
|
707 |
let
|
|
708 |
val tac1 = EVERY[REPEAT(resolve_tac [disjI1,disjI2] 1), etac exI 1]
|
|
709 |
val tac2 = EVERY[etac exE 1, rtac exI 1,
|
|
710 |
REPEAT(resolve_tac [disjI1,disjI2] 1), assumption 1]
|
|
711 |
in [rtac iffI 1,
|
|
712 |
etac exE 1, REPEAT(EVERY[etac disjE 1, tac1]), tac1,
|
|
713 |
REPEAT(EVERY[etac disjE 1, tac2]), tac2]
|
|
714 |
end
|
|
715 |
|
|
716 |
val ct = cert_Trueprop sg fm2
|
|
717 |
in
|
|
718 |
simple_prove_goal_cterm2 ct ex_disj_tacs
|
|
719 |
end
|
|
720 |
|
|
721 |
| "fa" =>
|
|
722 |
let val ct = cert_Trueprop sg fm2
|
|
723 |
in simple_prove_goal_cterm2 ct [simple_arith_tac 1]
|
|
724 |
end
|
|
725 |
|
|
726 |
| "sa" =>
|
|
727 |
let
|
|
728 |
val ss = presburger_ss addsimps zadd_ac
|
|
729 |
val ct = cert_Trueprop sg fm2
|
|
730 |
in
|
|
731 |
simple_prove_goal_cterm2 ct [simp_tac ss 1, TRY (simple_arith_tac 1)]
|
|
732 |
end
|
|
733 |
|
|
734 |
| "ac" =>
|
|
735 |
let
|
|
736 |
val ss = HOL_basic_ss addsimps zadd_ac
|
|
737 |
val ct = cert_Trueprop sg fm2
|
|
738 |
in
|
|
739 |
simple_prove_goal_cterm2 ct [simp_tac ss 1]
|
|
740 |
end
|
|
741 |
|
|
742 |
| "lf" =>
|
|
743 |
let
|
|
744 |
val ss = presburger_ss addsimps zadd_ac
|
|
745 |
val ct = cert_Trueprop sg fm2
|
|
746 |
in
|
|
747 |
simple_prove_goal_cterm2 ct [simp_tac ss 1, TRY (simple_arith_tac 1)]
|
|
748 |
end;
|
|
749 |
|
|
750 |
|
|
751 |
|
|
752 |
(* ------------------------------------------------------------------------- *)
|
|
753 |
(* This function return an Isabelle proof, of the adjustcoffeq result.*)
|
|
754 |
(* The proofs are in Presburger.thy and are generally based on the arithmetic *)
|
|
755 |
(* ------------------------------------------------------------------------- *)
|
|
756 |
fun proof_of_adjustcoeffeq sg (prt,rs) = case prt of
|
|
757 |
ACfm fm => instantiate' [Some cboolT]
|
|
758 |
[Some (cterm_of sg fm)] refl
|
|
759 |
| ACAt (k,at as (Const(p,_) $a $( Const ("op +", _)$(Const ("op *",_) $
|
|
760 |
c $ x ) $t ))) =>
|
|
761 |
let
|
|
762 |
val ck = cterm_of sg (mk_numeral k)
|
|
763 |
val cc = cterm_of sg c
|
|
764 |
val ct = cterm_of sg t
|
|
765 |
val cx = cterm_of sg x
|
|
766 |
val ca = cterm_of sg a
|
|
767 |
in case p of
|
13905
|
768 |
"op <" => let val pre = prove_elementar sg "lf"
|
13876
|
769 |
(HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),(mk_numeral k)))
|
|
770 |
val th1 = (pre RS (instantiate' [] [Some ck,Some ca,Some cc, Some cx, Some ct] (ac_lt_eq)))
|
13905
|
771 |
in [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans
|
13876
|
772 |
end
|
13905
|
773 |
|"op =" =>let val pre = prove_elementar sg "lf"
|
13876
|
774 |
(HOLogic.Not $ (HOLogic.mk_binrel "op =" (Const("0",HOLogic.intT),(mk_numeral k))))
|
|
775 |
in let val th1 = (pre RS(instantiate' [] [Some ck,Some ca,Some cc, Some cx, Some ct] (ac_eq_eq)))
|
13905
|
776 |
in [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans
|
13876
|
777 |
end
|
|
778 |
end
|
13905
|
779 |
|"Divides.op dvd" =>let val pre = prove_elementar sg "lf"
|
13876
|
780 |
(HOLogic.Not $ (HOLogic.mk_binrel "op =" (Const("0",HOLogic.intT),(mk_numeral k))))
|
|
781 |
val th1 = (pre RS (instantiate' [] [Some ck,Some ca,Some cc, Some cx, Some ct]) (ac_dvd_eq))
|
13905
|
782 |
in [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans
|
13876
|
783 |
|
|
784 |
end
|
|
785 |
end
|
|
786 |
|ACPI(k,at as (Const("Not",_)$(Const("op <",_) $a $( Const ("op +", _)$(Const ("op *",_) $ c $ x ) $t )))) =>
|
|
787 |
let
|
|
788 |
val ck = cterm_of sg (mk_numeral k)
|
|
789 |
val cc = cterm_of sg c
|
|
790 |
val ct = cterm_of sg t
|
|
791 |
val cx = cterm_of sg x
|
13905
|
792 |
val pre = prove_elementar sg "lf"
|
13876
|
793 |
(HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),(mk_numeral k)))
|
|
794 |
val th1 = (pre RS (instantiate' [] [Some ck,Some cc, Some cx, Some ct] (ac_pi_eq)))
|
|
795 |
|
|
796 |
in [th1,(prove_elementar sg "sa" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans
|
|
797 |
end
|
|
798 |
|ACNeg(pr) => let val (Const("Not",_)$nrs) = rs
|
|
799 |
in (proof_of_adjustcoeffeq sg (pr,nrs)) RS (qe_Not)
|
|
800 |
end
|
|
801 |
|ACConst(s,pr1,pr2) =>
|
|
802 |
let val (Const(_,_)$rs1$rs2) = rs
|
|
803 |
val th1 = proof_of_adjustcoeffeq sg (pr1,rs1)
|
|
804 |
val th2 = proof_of_adjustcoeffeq sg (pr2,rs2)
|
|
805 |
in case s of
|
|
806 |
"CJ" => [th1,th2] MRS (qe_conjI)
|
|
807 |
|"DJ" => [th1,th2] MRS (qe_disjI)
|
|
808 |
|"IM" => [th1,th2] MRS (qe_impI)
|
|
809 |
|"EQ" => [th1,th2] MRS (qe_eqI)
|
|
810 |
end;
|
|
811 |
|
|
812 |
|
|
813 |
|
|
814 |
|
|
815 |
|
|
816 |
|
|
817 |
(* ------------------------------------------------------------------------- *)
|
|
818 |
(* This function return an Isabelle proof, of some properties on the atoms*)
|
|
819 |
(* The proofs are in Presburger.thy and are generally based on the arithmetic *)
|
|
820 |
(* This function doese only instantiate the the theorems in the theory *)
|
|
821 |
(* ------------------------------------------------------------------------- *)
|
|
822 |
fun atomar_minf_proof_of sg dlcm (Modd_minf (x,fm1)) =
|
|
823 |
let
|
|
824 |
(*Some certified Terms*)
|
|
825 |
|
|
826 |
val ctrue = cterm_of sg HOLogic.true_const
|
|
827 |
val cfalse = cterm_of sg HOLogic.false_const
|
|
828 |
val fm = norm_zero_one fm1
|
|
829 |
in case fm1 of
|
|
830 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
831 |
if (x=y) andalso (c1= zero) andalso (c2= one) then (instantiate' [Some cboolT] [Some ctrue] (fm_modd_minf))
|
|
832 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf))
|
|
833 |
|
|
834 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
835 |
if (is_arith_rel fm) andalso (x=y) andalso (c1= zero) andalso (c2= one)
|
|
836 |
then (instantiate' [Some cboolT] [Some cfalse] (fm_modd_minf))
|
|
837 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf))
|
|
838 |
|
|
839 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
840 |
if (y=x) andalso (c1 = zero) then
|
|
841 |
if (pm1 = one) then (instantiate' [Some cboolT] [Some cfalse] (fm_modd_minf)) else
|
|
842 |
(instantiate' [Some cboolT] [Some ctrue] (fm_modd_minf))
|
|
843 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf))
|
|
844 |
|
|
845 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
846 |
if y=x then let val cz = cterm_of sg (norm_zero_one z)
|
|
847 |
val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero)
|
|
848 |
in(instantiate' [] [Some cz ] ((((prove_elementar sg "ss" fm2)) RS(((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (not_dvd_modd_minf)))
|
|
849 |
end
|
|
850 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf))
|
|
851 |
|(Const("Divides.op dvd",_)$ d $ (db as (Const ("op +",_) $ (Const ("op *",_) $
|
|
852 |
c $ y ) $ z))) =>
|
|
853 |
if y=x then let val cz = cterm_of sg (norm_zero_one z)
|
|
854 |
val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero)
|
|
855 |
in(instantiate' [] [Some cz ] ((((prove_elementar sg "ss" fm2)) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (dvd_modd_minf)))
|
|
856 |
end
|
|
857 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf))
|
|
858 |
|
|
859 |
|
|
860 |
|_ => instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_minf)
|
|
861 |
end
|
|
862 |
|
|
863 |
|atomar_minf_proof_of sg dlcm (Eq_minf (x,fm1)) = let
|
|
864 |
(*Some certified types*)
|
|
865 |
val fm = norm_zero_one fm1
|
|
866 |
in case fm1 of
|
|
867 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
868 |
if (x=y) andalso (c1=zero) andalso (c2=one)
|
|
869 |
then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (neq_eq_minf))
|
|
870 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
871 |
|
|
872 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
873 |
if (is_arith_rel fm) andalso (x=y) andalso ((c1=zero) orelse (c1 = norm_zero_one zero)) andalso ((c2=one) orelse (c1 = norm_zero_one one))
|
|
874 |
then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (eq_eq_minf))
|
|
875 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
876 |
|
|
877 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
878 |
if (y=x) andalso (c1 =zero) then
|
|
879 |
if pm1 = one then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (le_eq_minf)) else
|
|
880 |
(instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (len_eq_minf))
|
|
881 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
882 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
883 |
if y=x then let val cd = cterm_of sg (norm_zero_one d)
|
|
884 |
val cz = cterm_of sg (norm_zero_one z)
|
|
885 |
in(instantiate' [] [Some cd, Some cz] (not_dvd_eq_minf))
|
|
886 |
end
|
|
887 |
|
|
888 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
889 |
|
|
890 |
|(Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
891 |
if y=x then let val cd = cterm_of sg (norm_zero_one d)
|
|
892 |
val cz = cterm_of sg (norm_zero_one z)
|
|
893 |
in(instantiate' [] [Some cd, Some cz ] (dvd_eq_minf))
|
|
894 |
end
|
|
895 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
896 |
|
|
897 |
|
|
898 |
|_ => (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_minf))
|
|
899 |
end;
|
|
900 |
|
|
901 |
|
|
902 |
(* ------------------------------------------------------------------------- *)
|
|
903 |
(* This function combines proofs of some special form already synthetised from the subtrees to make*)
|
|
904 |
(* a new proof of the same form. The combination occures whith isabelle theorems which have been already prooved *)
|
|
905 |
(*these Theorems are in Presburger.thy and mostly do not relay on the arithmetic.*)
|
|
906 |
(* These are Theorems for the Property of P_{-infty}*)
|
|
907 |
(* ------------------------------------------------------------------------- *)
|
|
908 |
fun combine_minf_proof s pr1 pr2 = case s of
|
|
909 |
"ECJ" => [pr1 , pr2] MRS (eq_minf_conjI)
|
|
910 |
|
|
911 |
|"EDJ" => [pr1 , pr2] MRS (eq_minf_disjI)
|
|
912 |
|
|
913 |
|"MCJ" => [pr1 , pr2] MRS (modd_minf_conjI)
|
|
914 |
|
|
915 |
|"MDJ" => [pr1 , pr2] MRS (modd_minf_disjI);
|
|
916 |
|
|
917 |
(* ------------------------------------------------------------------------- *)
|
|
918 |
(*This function return an isabelle Proof for the minusinfinity theorem*)
|
|
919 |
(* It interpretates the protool and gives the protokoles property of P_{...} as a theorem*)
|
|
920 |
(* ------------------------------------------------------------------------- *)
|
|
921 |
fun minf_proof_ofh sg dlcm prl = case prl of
|
|
922 |
|
|
923 |
Eq_minf (_) => atomar_minf_proof_of sg dlcm prl
|
|
924 |
|
|
925 |
|Modd_minf (_) => atomar_minf_proof_of sg dlcm prl
|
|
926 |
|
|
927 |
|Eq_minf_conjI (prl1,prl2) => let val pr1 = minf_proof_ofh sg dlcm prl1
|
|
928 |
val pr2 = minf_proof_ofh sg dlcm prl2
|
|
929 |
in (combine_minf_proof "ECJ" pr1 pr2)
|
|
930 |
end
|
|
931 |
|
|
932 |
|Eq_minf_disjI (prl1,prl2) => let val pr1 = minf_proof_ofh sg dlcm prl1
|
|
933 |
val pr2 = minf_proof_ofh sg dlcm prl2
|
|
934 |
in (combine_minf_proof "EDJ" pr1 pr2)
|
|
935 |
end
|
|
936 |
|
|
937 |
|Modd_minf_conjI (prl1,prl2) => let val pr1 = minf_proof_ofh sg dlcm prl1
|
|
938 |
val pr2 = minf_proof_ofh sg dlcm prl2
|
|
939 |
in (combine_minf_proof "MCJ" pr1 pr2)
|
|
940 |
end
|
|
941 |
|
|
942 |
|Modd_minf_disjI (prl1,prl2) => let val pr1 = minf_proof_ofh sg dlcm prl1
|
|
943 |
val pr2 = minf_proof_ofh sg dlcm prl2
|
|
944 |
in (combine_minf_proof "MDJ" pr1 pr2)
|
|
945 |
end;
|
|
946 |
(* ------------------------------------------------------------------------- *)
|
|
947 |
(* Main function For the rest both properies of P_{..} are needed and here both theorems are returned.*)
|
|
948 |
(* ------------------------------------------------------------------------- *)
|
|
949 |
fun minf_proof_of sg dlcm (Minusinf (prl1,prl2)) =
|
|
950 |
let val pr1 = minf_proof_ofh sg dlcm prl1
|
|
951 |
val pr2 = minf_proof_ofh sg dlcm prl2
|
|
952 |
in (pr1, pr2)
|
|
953 |
end;
|
|
954 |
|
|
955 |
|
|
956 |
|
|
957 |
|
|
958 |
(* ------------------------------------------------------------------------- *)
|
|
959 |
(* This function return an Isabelle proof, of some properties on the atoms*)
|
|
960 |
(* The proofs are in Presburger.thy and are generally based on the arithmetic *)
|
|
961 |
(* This function doese only instantiate the the theorems in the theory *)
|
|
962 |
(* ------------------------------------------------------------------------- *)
|
|
963 |
fun atomar_pinf_proof_of sg dlcm (Modd_minf (x,fm1)) =
|
|
964 |
let
|
|
965 |
(*Some certified Terms*)
|
|
966 |
|
|
967 |
val ctrue = cterm_of sg HOLogic.true_const
|
|
968 |
val cfalse = cterm_of sg HOLogic.false_const
|
|
969 |
val fm = norm_zero_one fm1
|
|
970 |
in case fm1 of
|
|
971 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
972 |
if ((x=y) andalso (c1= zero) andalso (c2= one))
|
|
973 |
then (instantiate' [Some cboolT] [Some ctrue] (fm_modd_pinf))
|
|
974 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf))
|
|
975 |
|
|
976 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
977 |
if ((is_arith_rel fm) andalso (x = y) andalso (c1 = zero) andalso (c2 = one))
|
|
978 |
then (instantiate' [Some cboolT] [Some cfalse] (fm_modd_pinf))
|
|
979 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf))
|
|
980 |
|
|
981 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
982 |
if ((y=x) andalso (c1 = zero)) then
|
|
983 |
if (pm1 = one)
|
|
984 |
then (instantiate' [Some cboolT] [Some ctrue] (fm_modd_pinf))
|
|
985 |
else (instantiate' [Some cboolT] [Some cfalse] (fm_modd_pinf))
|
|
986 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf))
|
|
987 |
|
|
988 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
989 |
if y=x then let val cz = cterm_of sg (norm_zero_one z)
|
|
990 |
val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero)
|
|
991 |
in(instantiate' [] [Some cz ] ((((prove_elementar sg "ss" fm2)) RS(((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (not_dvd_modd_pinf)))
|
|
992 |
end
|
|
993 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf))
|
|
994 |
|(Const("Divides.op dvd",_)$ d $ (db as (Const ("op +",_) $ (Const ("op *",_) $
|
|
995 |
c $ y ) $ z))) =>
|
|
996 |
if y=x then let val cz = cterm_of sg (norm_zero_one z)
|
|
997 |
val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero)
|
|
998 |
in(instantiate' [] [Some cz ] ((((prove_elementar sg "ss" fm2)) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (dvd_modd_pinf)))
|
|
999 |
end
|
|
1000 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf))
|
|
1001 |
|
|
1002 |
|
|
1003 |
|_ => instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_modd_pinf)
|
|
1004 |
end
|
|
1005 |
|
|
1006 |
|atomar_pinf_proof_of sg dlcm (Eq_minf (x,fm1)) = let
|
|
1007 |
val fm = norm_zero_one fm1
|
|
1008 |
in case fm1 of
|
|
1009 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
1010 |
if (x=y) andalso (c1=zero) andalso (c2=one)
|
|
1011 |
then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (neq_eq_pinf))
|
|
1012 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1013 |
|
|
1014 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
1015 |
if (is_arith_rel fm) andalso (x=y) andalso ((c1=zero) orelse (c1 = norm_zero_one zero)) andalso ((c2=one) orelse (c1 = norm_zero_one one))
|
|
1016 |
then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (eq_eq_pinf))
|
|
1017 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1018 |
|
|
1019 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
1020 |
if (y=x) andalso (c1 =zero) then
|
|
1021 |
if pm1 = one then (instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (le_eq_pinf)) else
|
|
1022 |
(instantiate' [] [Some (cterm_of sg (norm_zero_one z))] (len_eq_pinf))
|
|
1023 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1024 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1025 |
if y=x then let val cd = cterm_of sg (norm_zero_one d)
|
|
1026 |
val cz = cterm_of sg (norm_zero_one z)
|
|
1027 |
in(instantiate' [] [Some cd, Some cz] (not_dvd_eq_pinf))
|
|
1028 |
end
|
|
1029 |
|
|
1030 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1031 |
|
|
1032 |
|(Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1033 |
if y=x then let val cd = cterm_of sg (norm_zero_one d)
|
|
1034 |
val cz = cterm_of sg (norm_zero_one z)
|
|
1035 |
in(instantiate' [] [Some cd, Some cz ] (dvd_eq_pinf))
|
|
1036 |
end
|
|
1037 |
else (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1038 |
|
|
1039 |
|
|
1040 |
|_ => (instantiate' [Some cboolT] [Some (cterm_of sg fm)] (fm_eq_pinf))
|
|
1041 |
end;
|
|
1042 |
|
|
1043 |
|
|
1044 |
(* ------------------------------------------------------------------------- *)
|
|
1045 |
(* This function combines proofs of some special form already synthetised from the subtrees to make*)
|
|
1046 |
(* a new proof of the same form. The combination occures whith isabelle theorems which have been already prooved *)
|
|
1047 |
(*these Theorems are in Presburger.thy and mostly do not relay on the arithmetic.*)
|
|
1048 |
(* These are Theorems for the Property of P_{+infty}*)
|
|
1049 |
(* ------------------------------------------------------------------------- *)
|
|
1050 |
fun combine_pinf_proof s pr1 pr2 = case s of
|
|
1051 |
"ECJ" => [pr1 , pr2] MRS (eq_pinf_conjI)
|
|
1052 |
|
|
1053 |
|"EDJ" => [pr1 , pr2] MRS (eq_pinf_disjI)
|
|
1054 |
|
|
1055 |
|"MCJ" => [pr1 , pr2] MRS (modd_pinf_conjI)
|
|
1056 |
|
|
1057 |
|"MDJ" => [pr1 , pr2] MRS (modd_pinf_disjI);
|
|
1058 |
|
|
1059 |
(* ------------------------------------------------------------------------- *)
|
|
1060 |
(*This function return an isabelle Proof for the minusinfinity theorem*)
|
|
1061 |
(* It interpretates the protool and gives the protokoles property of P_{...} as a theorem*)
|
|
1062 |
(* ------------------------------------------------------------------------- *)
|
|
1063 |
fun pinf_proof_ofh sg dlcm prl = case prl of
|
|
1064 |
|
|
1065 |
Eq_minf (_) => atomar_pinf_proof_of sg dlcm prl
|
|
1066 |
|
|
1067 |
|Modd_minf (_) => atomar_pinf_proof_of sg dlcm prl
|
|
1068 |
|
|
1069 |
|Eq_minf_conjI (prl1,prl2) => let val pr1 = pinf_proof_ofh sg dlcm prl1
|
|
1070 |
val pr2 = pinf_proof_ofh sg dlcm prl2
|
|
1071 |
in (combine_pinf_proof "ECJ" pr1 pr2)
|
|
1072 |
end
|
|
1073 |
|
|
1074 |
|Eq_minf_disjI (prl1,prl2) => let val pr1 = pinf_proof_ofh sg dlcm prl1
|
|
1075 |
val pr2 = pinf_proof_ofh sg dlcm prl2
|
|
1076 |
in (combine_pinf_proof "EDJ" pr1 pr2)
|
|
1077 |
end
|
|
1078 |
|
|
1079 |
|Modd_minf_conjI (prl1,prl2) => let val pr1 = pinf_proof_ofh sg dlcm prl1
|
|
1080 |
val pr2 = pinf_proof_ofh sg dlcm prl2
|
|
1081 |
in (combine_pinf_proof "MCJ" pr1 pr2)
|
|
1082 |
end
|
|
1083 |
|
|
1084 |
|Modd_minf_disjI (prl1,prl2) => let val pr1 = pinf_proof_ofh sg dlcm prl1
|
|
1085 |
val pr2 = pinf_proof_ofh sg dlcm prl2
|
|
1086 |
in (combine_pinf_proof "MDJ" pr1 pr2)
|
|
1087 |
end;
|
|
1088 |
(* ------------------------------------------------------------------------- *)
|
|
1089 |
(* Main function For the rest both properies of P_{..} are needed and here both theorems are returned.*)
|
|
1090 |
(* ------------------------------------------------------------------------- *)
|
|
1091 |
fun pinf_proof_of sg dlcm (Minusinf (prl1,prl2)) =
|
|
1092 |
let val pr1 = pinf_proof_ofh sg dlcm prl1
|
|
1093 |
val pr2 = pinf_proof_ofh sg dlcm prl2
|
|
1094 |
in (pr1, pr2)
|
|
1095 |
end;
|
|
1096 |
|
|
1097 |
|
|
1098 |
|
|
1099 |
|
|
1100 |
(* ------------------------------------------------------------------------- *)
|
|
1101 |
(* Here we generate the theorem for the Bset Property in the simple direction*)
|
|
1102 |
(* It is just an instantiation*)
|
|
1103 |
(* ------------------------------------------------------------------------- *)
|
|
1104 |
fun bsetproof_of sg (Bset(x as Free(xn,xT),fm,bs,dlcm)) =
|
|
1105 |
let
|
|
1106 |
val cp = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
|
|
1107 |
val cdlcm = cterm_of sg dlcm
|
|
1108 |
val cB = cterm_of sg (list_to_set HOLogic.intT (map norm_zero_one bs))
|
|
1109 |
in instantiate' [] [Some cdlcm,Some cB, Some cp] (bst_thm)
|
|
1110 |
end;
|
|
1111 |
|
|
1112 |
|
|
1113 |
|
|
1114 |
|
|
1115 |
(* ------------------------------------------------------------------------- *)
|
|
1116 |
(* Here we generate the theorem for the Bset Property in the simple direction*)
|
|
1117 |
(* It is just an instantiation*)
|
|
1118 |
(* ------------------------------------------------------------------------- *)
|
|
1119 |
fun asetproof_of sg (Aset(x as Free(xn,xT),fm,ast,dlcm)) =
|
|
1120 |
let
|
|
1121 |
val cp = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
|
|
1122 |
val cdlcm = cterm_of sg dlcm
|
|
1123 |
val cA = cterm_of sg (list_to_set HOLogic.intT (map norm_zero_one ast))
|
|
1124 |
in instantiate' [] [Some cdlcm,Some cA, Some cp] (ast_thm)
|
|
1125 |
end;
|
|
1126 |
|
|
1127 |
|
|
1128 |
|
|
1129 |
|
|
1130 |
(* ------------------------------------------------------------------------- *)
|
|
1131 |
(* Protokol interpretation function for the backwards direction for cooper's Theorem*)
|
|
1132 |
|
|
1133 |
(* For the generation of atomic Theorems*)
|
|
1134 |
(* Prove the premisses on runtime and then make RS*)
|
|
1135 |
(* ------------------------------------------------------------------------- *)
|
|
1136 |
fun generate_atomic_not_bst_p sg (x as Free(xn,xT)) fm dlcm B at =
|
|
1137 |
let
|
|
1138 |
val cdlcm = cterm_of sg dlcm
|
|
1139 |
val cB = cterm_of sg B
|
|
1140 |
val cfma = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
|
|
1141 |
val cat = cterm_of sg (norm_zero_one at)
|
|
1142 |
in
|
|
1143 |
case at of
|
|
1144 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
1145 |
if (x=y) andalso (c1=zero) andalso (c2=one)
|
|
1146 |
then let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ B)
|
|
1147 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const("uminus",HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)))
|
|
1148 |
val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1149 |
in (instantiate' [] [Some cfma]([th3,th1,th2] MRS (not_bst_p_ne)))
|
|
1150 |
end
|
|
1151 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1152 |
|
|
1153 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", T) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
1154 |
if (is_arith_rel at) andalso (x=y)
|
|
1155 |
then let val bst_z = norm_zero_one (linear_neg (linear_add [] z (mk_numeral 1)))
|
|
1156 |
in let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ bst_z $ B)
|
|
1157 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_eq (bst_z,Const("op -",T) $ (Const("uminus",HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)) $ (Const("1",HOLogic.intT))))
|
|
1158 |
val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1159 |
in (instantiate' [] [Some cfma] ([th3,th1,th2] MRS (not_bst_p_eq)))
|
|
1160 |
end
|
|
1161 |
end
|
|
1162 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1163 |
|
|
1164 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
1165 |
if (y=x) andalso (c1 =zero) then
|
|
1166 |
if pm1 = one then
|
|
1167 |
let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ B)
|
|
1168 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const("uminus",HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)))
|
|
1169 |
in (instantiate' [] [Some cfma, Some cdlcm]([th1,th2] MRS (not_bst_p_gt)))
|
|
1170 |
end
|
|
1171 |
else let val th1 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1172 |
in (instantiate' [] [Some cfma, Some cB,Some (cterm_of sg (norm_zero_one z))] (th1 RS (not_bst_p_lt)))
|
|
1173 |
end
|
|
1174 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1175 |
|
|
1176 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1177 |
if y=x then
|
|
1178 |
let val cz = cterm_of sg (norm_zero_one z)
|
|
1179 |
val th1 = (prove_elementar sg "ss" (HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
|
|
1180 |
in (instantiate' [] [Some cfma, Some cB,Some cz] (th1 RS (not_bst_p_ndvd)))
|
|
1181 |
end
|
|
1182 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1183 |
|
|
1184 |
|(Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1185 |
if y=x then
|
|
1186 |
let val cz = cterm_of sg (norm_zero_one z)
|
|
1187 |
val th1 = (prove_elementar sg "ss" (HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
|
|
1188 |
in (instantiate' [] [Some cfma,Some cB,Some cz] (th1 RS (not_bst_p_dvd)))
|
|
1189 |
end
|
|
1190 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1191 |
|
|
1192 |
|_ => (instantiate' [] [Some cfma, Some cdlcm, Some cB,Some cat] (not_bst_p_fm))
|
|
1193 |
|
|
1194 |
end;
|
|
1195 |
|
|
1196 |
(* ------------------------------------------------------------------------- *)
|
|
1197 |
(* Main interpretation function for this backwards dirction*)
|
|
1198 |
(* if atomic do generate atomis formulae else Construct theorems and then make RS with the construction theorems*)
|
|
1199 |
(*Help Function*)
|
|
1200 |
(* ------------------------------------------------------------------------- *)
|
|
1201 |
fun not_bst_p_proof_of_h sg x fm dlcm B prt = case prt of
|
|
1202 |
(Not_bst_p_atomic(fm2)) => (generate_atomic_not_bst_p sg x fm dlcm B fm2)
|
|
1203 |
|
|
1204 |
|(Not_bst_p_conjI(pr1,pr2)) =>
|
|
1205 |
let val th1 = (not_bst_p_proof_of_h sg x fm dlcm B pr1)
|
|
1206 |
val th2 = (not_bst_p_proof_of_h sg x fm dlcm B pr2)
|
|
1207 |
in ([th1,th2] MRS (not_bst_p_conjI))
|
|
1208 |
end
|
|
1209 |
|
|
1210 |
|(Not_bst_p_disjI(pr1,pr2)) =>
|
|
1211 |
let val th1 = (not_bst_p_proof_of_h sg x fm dlcm B pr1)
|
|
1212 |
val th2 = (not_bst_p_proof_of_h sg x fm dlcm B pr2)
|
|
1213 |
in ([th1,th2] MRS not_bst_p_disjI)
|
|
1214 |
end;
|
|
1215 |
(* Main function*)
|
|
1216 |
fun not_bst_p_proof_of sg (Not_bst_p(x as Free(xn,xT),fm,dlcm,B,prl)) =
|
|
1217 |
let val th = not_bst_p_proof_of_h sg x fm dlcm B prl
|
|
1218 |
val fma = absfree (xn,xT, norm_zero_one fm)
|
|
1219 |
in let val th1 = prove_elementar sg "ss" (HOLogic.mk_eq (fma,fma))
|
|
1220 |
in [th,th1] MRS (not_bst_p_Q_elim)
|
|
1221 |
end
|
|
1222 |
end;
|
|
1223 |
|
|
1224 |
|
|
1225 |
(* ------------------------------------------------------------------------- *)
|
|
1226 |
(* Protokol interpretation function for the backwards direction for cooper's Theorem*)
|
|
1227 |
|
|
1228 |
(* For the generation of atomic Theorems*)
|
|
1229 |
(* Prove the premisses on runtime and then make RS*)
|
|
1230 |
(* ------------------------------------------------------------------------- *)
|
|
1231 |
fun generate_atomic_not_ast_p sg (x as Free(xn,xT)) fm dlcm A at =
|
|
1232 |
let
|
|
1233 |
val cdlcm = cterm_of sg dlcm
|
|
1234 |
val cA = cterm_of sg A
|
|
1235 |
val cfma = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
|
|
1236 |
val cat = cterm_of sg (norm_zero_one at)
|
|
1237 |
in
|
|
1238 |
case at of
|
|
1239 |
(Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z))) =>
|
|
1240 |
if (x=y) andalso (c1=zero) andalso (c2=one)
|
|
1241 |
then let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ A)
|
|
1242 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const("uminus",HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)))
|
|
1243 |
val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1244 |
in (instantiate' [] [Some cfma]([th3,th1,th2] MRS (not_ast_p_ne)))
|
|
1245 |
end
|
|
1246 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1247 |
|
|
1248 |
|(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const ("op +", T) $(Const ("op *",_) $ c2 $ y) $z)) =>
|
|
1249 |
if (is_arith_rel at) andalso (x=y)
|
|
1250 |
then let val ast_z = norm_zero_one (linear_sub [] one z )
|
|
1251 |
val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ ast_z $ A)
|
|
1252 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_eq (ast_z,Const("op +",T) $ (Const("uminus",HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)) $ (Const("1",HOLogic.intT))))
|
|
1253 |
val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1254 |
in (instantiate' [] [Some cfma] ([th3,th1,th2] MRS (not_ast_p_eq)))
|
|
1255 |
end
|
|
1256 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1257 |
|
|
1258 |
|(Const("op <",_) $ c1 $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z )) =>
|
|
1259 |
if (y=x) andalso (c1 =zero) then
|
|
1260 |
if pm1 = (mk_numeral ~1) then
|
|
1261 |
let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one z) $ A)
|
|
1262 |
val th2 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (zero,dlcm))
|
|
1263 |
in (instantiate' [] [Some cfma]([th2,th1] MRS (not_ast_p_lt)))
|
|
1264 |
end
|
|
1265 |
else let val th1 = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (Const("0",HOLogic.intT),dlcm))
|
|
1266 |
in (instantiate' [] [Some cfma, Some cA,Some (cterm_of sg (norm_zero_one z))] (th1 RS (not_ast_p_gt)))
|
|
1267 |
end
|
|
1268 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1269 |
|
|
1270 |
|Const ("Not",_) $ (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1271 |
if y=x then
|
|
1272 |
let val cz = cterm_of sg (norm_zero_one z)
|
|
1273 |
val th1 = (prove_elementar sg "ss" (HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
|
|
1274 |
in (instantiate' [] [Some cfma, Some cA,Some cz] (th1 RS (not_ast_p_ndvd)))
|
|
1275 |
end
|
|
1276 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1277 |
|
|
1278 |
|(Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z)) =>
|
|
1279 |
if y=x then
|
|
1280 |
let val cz = cterm_of sg (norm_zero_one z)
|
|
1281 |
val th1 = (prove_elementar sg "ss" (HOLogic.mk_binrel "op =" (HOLogic.mk_binop "Divides.op mod" (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
|
|
1282 |
in (instantiate' [] [Some cfma,Some cA,Some cz] (th1 RS (not_ast_p_dvd)))
|
|
1283 |
end
|
|
1284 |
else (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1285 |
|
|
1286 |
|_ => (instantiate' [] [Some cfma, Some cdlcm, Some cA,Some cat] (not_ast_p_fm))
|
|
1287 |
|
|
1288 |
end;
|
|
1289 |
|
|
1290 |
(* ------------------------------------------------------------------------- *)
|
|
1291 |
(* Main interpretation function for this backwards dirction*)
|
|
1292 |
(* if atomic do generate atomis formulae else Construct theorems and then make RS with the construction theorems*)
|
|
1293 |
(*Help Function*)
|
|
1294 |
(* ------------------------------------------------------------------------- *)
|
|
1295 |
fun not_ast_p_proof_of_h sg x fm dlcm A prt = case prt of
|
|
1296 |
(Not_ast_p_atomic(fm2)) => (generate_atomic_not_ast_p sg x fm dlcm A fm2)
|
|
1297 |
|
|
1298 |
|(Not_ast_p_conjI(pr1,pr2)) =>
|
|
1299 |
let val th1 = (not_ast_p_proof_of_h sg x fm dlcm A pr1)
|
|
1300 |
val th2 = (not_ast_p_proof_of_h sg x fm dlcm A pr2)
|
|
1301 |
in ([th1,th2] MRS (not_ast_p_conjI))
|
|
1302 |
end
|
|
1303 |
|
|
1304 |
|(Not_ast_p_disjI(pr1,pr2)) =>
|
|
1305 |
let val th1 = (not_ast_p_proof_of_h sg x fm dlcm A pr1)
|
|
1306 |
val th2 = (not_ast_p_proof_of_h sg x fm dlcm A pr2)
|
|
1307 |
in ([th1,th2] MRS (not_ast_p_disjI))
|
|
1308 |
end;
|
|
1309 |
(* Main function*)
|
|
1310 |
fun not_ast_p_proof_of sg (Not_ast_p(x as Free(xn,xT),fm,dlcm,A,prl)) =
|
|
1311 |
let val th = not_ast_p_proof_of_h sg x fm dlcm A prl
|
|
1312 |
val fma = absfree (xn,xT, norm_zero_one fm)
|
|
1313 |
val th1 = prove_elementar sg "ss" (HOLogic.mk_eq (fma,fma))
|
|
1314 |
in [th,th1] MRS (not_ast_p_Q_elim)
|
|
1315 |
end;
|
|
1316 |
|
|
1317 |
|
|
1318 |
|
|
1319 |
|
|
1320 |
(* ------------------------------------------------------------------------- *)
|
|
1321 |
(* Interpretaion of Protocols of the cooper procedure : minusinfinity version*)
|
|
1322 |
(* ------------------------------------------------------------------------- *)
|
|
1323 |
|
|
1324 |
|
|
1325 |
fun coopermi_proof_of sg x (Cooper (dlcm,Simp(fm,miprt),bsprt,nbst_p_prt)) =
|
|
1326 |
(* Get the Bset thm*)
|
|
1327 |
let val bst = bsetproof_of sg bsprt
|
|
1328 |
val (mit1,mit2) = minf_proof_of sg dlcm miprt
|
|
1329 |
val fm1 = norm_zero_one (simpl fm)
|
|
1330 |
val dpos = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (zero,dlcm));
|
|
1331 |
val nbstpthm = not_bst_p_proof_of sg nbst_p_prt
|
|
1332 |
(* Return the four theorems needed to proove the whole Cooper Theorem*)
|
|
1333 |
in (dpos,mit2,bst,nbstpthm,mit1)
|
|
1334 |
end;
|
|
1335 |
|
|
1336 |
|
|
1337 |
(* ------------------------------------------------------------------------- *)
|
|
1338 |
(* Interpretaion of Protocols of the cooper procedure : plusinfinity version *)
|
|
1339 |
(* ------------------------------------------------------------------------- *)
|
|
1340 |
|
|
1341 |
|
|
1342 |
fun cooperpi_proof_of sg x (Cooper (dlcm,Simp(fm,miprt),bsprt,nast_p_prt)) =
|
|
1343 |
let val ast = asetproof_of sg bsprt
|
|
1344 |
val (mit1,mit2) = pinf_proof_of sg dlcm miprt
|
|
1345 |
val fm1 = norm_zero_one (simpl fm)
|
|
1346 |
val dpos = prove_elementar sg "ss" (HOLogic.mk_binrel "op <" (zero,dlcm));
|
|
1347 |
val nastpthm = not_ast_p_proof_of sg nast_p_prt
|
|
1348 |
in (dpos,mit2,ast,nastpthm,mit1)
|
|
1349 |
end;
|
|
1350 |
|
|
1351 |
|
|
1352 |
(* ------------------------------------------------------------------------- *)
|
|
1353 |
(* Interpretaion of Protocols of the cooper procedure : full version*)
|
|
1354 |
(* ------------------------------------------------------------------------- *)
|
|
1355 |
|
|
1356 |
|
|
1357 |
|
|
1358 |
fun cooper_thm sg s (x as Free(xn,xT)) vars cfm = case s of
|
|
1359 |
"pi" => let val (rs,prt) = cooperpi_wp (xn::vars) (HOLogic.mk_exists(xn,xT,cfm))
|
|
1360 |
val (dpsthm,th1,th2,nbpth,th3) = cooperpi_proof_of sg x prt
|
|
1361 |
in [dpsthm,th1,th2,nbpth,th3] MRS (cppi_eq)
|
|
1362 |
end
|
|
1363 |
|"mi" => let val (rs,prt) = coopermi_wp (xn::vars) (HOLogic.mk_exists(xn,xT,cfm))
|
|
1364 |
val (dpsthm,th1,th2,nbpth,th3) = coopermi_proof_of sg x prt
|
|
1365 |
in [dpsthm,th1,th2,nbpth,th3] MRS (cpmi_eq)
|
|
1366 |
end
|
|
1367 |
|_ => error "parameter error";
|
|
1368 |
|
|
1369 |
(* ------------------------------------------------------------------------- *)
|
|
1370 |
(* This function should evoluate to the end prove Procedure for one quantifier elimination for Presburger arithmetic*)
|
|
1371 |
(* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*)
|
|
1372 |
(* ------------------------------------------------------------------------- *)
|
|
1373 |
|
|
1374 |
fun cooper_prv sg (x as Free(xn,xT)) efm vars = let
|
|
1375 |
val l = formlcm x efm
|
|
1376 |
val ac_thm = proof_of_adjustcoeffeq sg (adjustcoeffeq_wp x l efm)
|
|
1377 |
val fm = snd (qe_get_terms ac_thm)
|
|
1378 |
val cfm = unitycoeff x fm
|
|
1379 |
val afm = adjustcoeff x l fm
|
|
1380 |
val P = absfree(xn,xT,afm)
|
|
1381 |
val ss = presburger_ss addsimps
|
|
1382 |
[simp_from_to] delsimps [P_eqtrue, P_eqfalse, bex_triv, insert_iff]
|
|
1383 |
val uth = instantiate' [] [Some (cterm_of sg P) , Some (cterm_of sg (mk_numeral l))] (unity_coeff_ex)
|
|
1384 |
val e_ac_thm = (forall_intr (cterm_of sg x) ac_thm) COMP (qe_exI)
|
|
1385 |
val cms = if ((length (aset x cfm)) < (length (bset x cfm))) then "pi" else "mi"
|
|
1386 |
val cp_thm = cooper_thm sg cms x vars cfm
|
|
1387 |
val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans)))
|
|
1388 |
val (lsuth,rsuth) = qe_get_terms (uth)
|
|
1389 |
val (lseacth,rseacth) = qe_get_terms(e_ac_thm)
|
|
1390 |
val (lscth,rscth) = qe_get_terms (exp_cp_thm)
|
|
1391 |
val u_c_thm = [([uth,prove_elementar sg "ss" (HOLogic.mk_eq (rsuth,lscth))] MRS trans),exp_cp_thm] MRS trans
|
|
1392 |
in ([e_ac_thm,[(prove_elementar sg "ss" (HOLogic.mk_eq (rseacth,lsuth))),u_c_thm] MRS trans] MRS trans)
|
|
1393 |
end
|
|
1394 |
|cooper_prv _ _ _ _ = error "Parameters format";
|
|
1395 |
|
|
1396 |
|
|
1397 |
(*====================================================*)
|
|
1398 |
(*Interpretation function for the evaluation protokol *)
|
|
1399 |
(*====================================================*)
|
|
1400 |
|
|
1401 |
fun proof_of_evalc sg fm =
|
|
1402 |
let
|
|
1403 |
fun proof_of_evalch prt = case prt of
|
|
1404 |
EvalAt(at) => prove_elementar sg "ss" at
|
|
1405 |
|Evalfm(fm) => instantiate' [Some cboolT] [Some (cterm_of sg fm)] refl
|
|
1406 |
|EvalConst(s,pr1,pr2) =>
|
|
1407 |
let val th1 = proof_of_evalch pr1
|
|
1408 |
val th2 = proof_of_evalch pr2
|
|
1409 |
in case s of
|
|
1410 |
"CJ" =>[th1,th2] MRS (qe_conjI)
|
|
1411 |
|"DJ" =>[th1,th2] MRS (qe_disjI)
|
|
1412 |
|"IM" =>[th1,th2] MRS (qe_impI)
|
|
1413 |
|"EQ" =>[th1,th2] MRS (qe_eqI)
|
|
1414 |
end
|
|
1415 |
in proof_of_evalch (evalc_wp fm)
|
|
1416 |
end;
|
|
1417 |
|
|
1418 |
(*============================================================*)
|
|
1419 |
(*Interpretation function for the NNF-Transformation protokol *)
|
|
1420 |
(*============================================================*)
|
|
1421 |
|
|
1422 |
fun proof_of_cnnf sg fm pf =
|
|
1423 |
let fun proof_of_cnnfh prt pat = case prt of
|
|
1424 |
NNFAt(at) => pat at
|
|
1425 |
|NNFSimp (pr) => let val th1 = proof_of_cnnfh pr pat
|
|
1426 |
in let val fm2 = snd (qe_get_terms th1)
|
|
1427 |
in [th1,prove_elementar sg "ss" (HOLogic.mk_eq(fm2 ,simpl fm2))] MRS trans
|
|
1428 |
end
|
|
1429 |
end
|
|
1430 |
|NNFNN (pr) => (proof_of_cnnfh pr pat) RS (nnf_nn)
|
|
1431 |
|NNFConst (s,pr1,pr2) =>
|
|
1432 |
let val th1 = proof_of_cnnfh pr1 pat
|
|
1433 |
val th2 = proof_of_cnnfh pr2 pat
|
|
1434 |
in case s of
|
|
1435 |
"CJ" => [th1,th2] MRS (qe_conjI)
|
|
1436 |
|"DJ" => [th1,th2] MRS (qe_disjI)
|
|
1437 |
|"IM" => [th1,th2] MRS (nnf_im)
|
|
1438 |
|"EQ" => [th1,th2] MRS (nnf_eq)
|
|
1439 |
|"SDJ" => let val (Const("op &",_)$A$_) = fst (qe_get_terms th1)
|
|
1440 |
val (Const("op &",_)$C$_) = fst (qe_get_terms th2)
|
|
1441 |
in [th1,th2,prove_elementar sg "ss" (HOLogic.mk_eq (A,HOLogic.Not $ C))] MRS (nnf_sdj)
|
|
1442 |
end
|
|
1443 |
|"NCJ" => [th1,th2] MRS (nnf_ncj)
|
|
1444 |
|"NIM" => [th1,th2] MRS (nnf_nim)
|
|
1445 |
|"NEQ" => [th1,th2] MRS (nnf_neq)
|
|
1446 |
|"NDJ" => [th1,th2] MRS (nnf_ndj)
|
|
1447 |
end
|
|
1448 |
in proof_of_cnnfh (cnnf_wp fm) pf
|
|
1449 |
end;
|
|
1450 |
|
|
1451 |
|
|
1452 |
|
|
1453 |
|
|
1454 |
(*====================================================*)
|
|
1455 |
(* Interpretation function for the linform protokol *)
|
|
1456 |
(*====================================================*)
|
|
1457 |
|
|
1458 |
|
|
1459 |
fun proof_of_linform sg vars f =
|
|
1460 |
let fun proof_of_linformh prt =
|
|
1461 |
case prt of
|
|
1462 |
(LfAt (at)) => prove_elementar sg "lf" (HOLogic.mk_eq (at, linform vars at))
|
|
1463 |
|(LfAtdvd (Const("Divides.op dvd",_)$d$t)) => (prove_elementar sg "lf" (HOLogic.mk_eq (t, lint vars t))) RS (instantiate' [] [None , None, Some (cterm_of sg d)](linearize_dvd))
|
|
1464 |
|(Lffm (fm)) => (instantiate' [Some cboolT] [Some (cterm_of sg fm)] refl)
|
|
1465 |
|(LfConst (s,pr1,pr2)) =>
|
|
1466 |
let val th1 = proof_of_linformh pr1
|
|
1467 |
val th2 = proof_of_linformh pr2
|
|
1468 |
in case s of
|
|
1469 |
"CJ" => [th1,th2] MRS (qe_conjI)
|
|
1470 |
|"DJ" =>[th1,th2] MRS (qe_disjI)
|
|
1471 |
|"IM" =>[th1,th2] MRS (qe_impI)
|
|
1472 |
|"EQ" =>[th1,th2] MRS (qe_eqI)
|
|
1473 |
end
|
|
1474 |
|(LfNot(pr)) =>
|
|
1475 |
let val th = proof_of_linformh pr
|
|
1476 |
in (th RS (qe_Not))
|
|
1477 |
end
|
|
1478 |
|(LfQ(s,xn,xT,pr)) =>
|
|
1479 |
let val th = forall_intr (cterm_of sg (Free(xn,xT)))(proof_of_linformh pr)
|
|
1480 |
in if s = "Ex"
|
|
1481 |
then (th COMP(qe_exI) )
|
|
1482 |
else (th COMP(qe_ALLI) )
|
|
1483 |
end
|
|
1484 |
in
|
|
1485 |
proof_of_linformh (linform_wp f)
|
|
1486 |
end;
|
|
1487 |
|
|
1488 |
end;
|