4832
|
1 |
(* Title: HOL/Lex/NA.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1998 TUM
|
|
5 |
|
|
6 |
Nondeterministic automata
|
|
7 |
*)
|
|
8 |
|
8732
|
9 |
NA = AutoProj +
|
4832
|
10 |
|
|
11 |
types ('a,'s)na = "'s * ('a => 's => 's set) * ('s => bool)"
|
|
12 |
|
|
13 |
consts delta :: "('a,'s)na => 'a list => 's => 's set"
|
5184
|
14 |
primrec
|
4832
|
15 |
"delta A [] p = {p}"
|
10834
|
16 |
"delta A (a#w) p = Union(delta A w ` next A a p)"
|
4832
|
17 |
|
|
18 |
constdefs
|
|
19 |
accepts :: ('a,'s)na => 'a list => bool
|
|
20 |
"accepts A w == ? q : delta A w (start A). fin A q"
|
|
21 |
|
5323
|
22 |
constdefs
|
|
23 |
step :: "('a,'s)na => 'a => ('s * 's)set"
|
|
24 |
"step A a == {(p,q) . q : next A a p}"
|
|
25 |
|
|
26 |
consts steps :: "('a,'s)na => 'a list => ('s * 's)set"
|
|
27 |
primrec
|
5608
|
28 |
"steps A [] = Id"
|
5323
|
29 |
"steps A (a#w) = steps A w O step A a"
|
|
30 |
|
4832
|
31 |
end
|