15737
|
1 |
(* Title: HOL/Library/List_lexord.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Norbert Voelker
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* Instantiation of order classes for lexord on lists *}
|
|
7 |
|
|
8 |
theory List_lexord
|
|
9 |
imports Main
|
|
10 |
begin
|
|
11 |
|
|
12 |
instance list :: (ord) ord ..
|
|
13 |
defs(overloaded)
|
|
14 |
list_le_def: "(xs::('a::ord) list) \<le> ys \<equiv> (xs < ys \<or> xs = ys)"
|
|
15 |
list_less_def: "(xs::('a::ord) list) < ys \<equiv> (xs,ys) \<in> lexord {(u,v). u < v}"
|
|
16 |
|
|
17 |
lemmas list_ord_defs = list_less_def list_le_def
|
|
18 |
|
|
19 |
instance list::(order)order
|
|
20 |
apply (intro_classes, unfold list_ord_defs)
|
|
21 |
apply (rule disjI2, safe)
|
|
22 |
apply (blast intro: lexord_trans transI order_less_trans)
|
|
23 |
apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
|
|
24 |
apply simp
|
|
25 |
apply (blast intro: lexord_trans transI order_less_trans)
|
|
26 |
apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
|
|
27 |
apply simp
|
|
28 |
by assumption
|
|
29 |
|
|
30 |
instance list::(linorder)linorder
|
|
31 |
apply (intro_classes, unfold list_le_def list_less_def, safe)
|
|
32 |
apply (cut_tac x="x" and y="y" and r = "{(a,b). a < b}" in lexord_linear)
|
|
33 |
by (force, simp)
|
|
34 |
|
|
35 |
lemma not_less_Nil[simp]: "~(x < [])";
|
|
36 |
by (unfold list_less_def, simp);
|
|
37 |
|
|
38 |
lemma Nil_less_Cons[simp]: "[] < a # x";
|
|
39 |
by (unfold list_less_def, simp);
|
|
40 |
|
|
41 |
lemma Cons_less_Cons[simp]: "(a # x < b # y) = (a < b | a = b & x < y)";
|
|
42 |
by (unfold list_less_def, simp);
|
|
43 |
|
|
44 |
lemma le_Nil[simp]: "(x <= []) = (x = [])";
|
|
45 |
by (unfold list_ord_defs, case_tac x, auto);
|
|
46 |
|
|
47 |
lemma Nil_le_Cons[simp]: "([] <= x)";
|
|
48 |
by (unfold list_ord_defs, case_tac x, auto);
|
|
49 |
|
|
50 |
lemma Cons_le_Cons[simp]: "(a # x <= b # y) = (a < b | a = b & x <= y)";
|
|
51 |
by (unfold list_ord_defs, auto);
|
|
52 |
|
|
53 |
end |