| author | streckem | 
| Fri, 08 Aug 2003 14:54:37 +0200 | |
| changeset 14141 | d3916d9183d2 | 
| parent 5203 | eb5a1511a07d | 
| child 15570 | 8d8c70b41bab | 
| permissions | -rw-r--r-- | 
| 1459 | 1 | (* Title: FOL/int-prover | 
| 0 | 2 | ID: $Id$ | 
| 1459 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1992 University of Cambridge | 
| 5 | ||
| 6 | A naive prover for intuitionistic logic | |
| 7 | ||
| 2601 
b301958c465d
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
 paulson parents: 
2572diff
changeset | 8 | BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ... | 
| 0 | 9 | |
| 10 | Completeness (for propositional logic) is proved in | |
| 11 | ||
| 12 | Roy Dyckhoff. | |
| 13 | Contraction-Free Sequent Calculi for Intuitionistic Logic. | |
| 1005 | 14 | J. Symbolic Logic 57(3), 1992, pages 795-807. | 
| 15 | ||
| 16 | The approach was developed independently by Roy Dyckhoff and L C Paulson. | |
| 0 | 17 | *) | 
| 18 | ||
| 19 | signature INT_PROVER = | |
| 20 | sig | |
| 21 | val best_tac: int -> tactic | |
| 5203 | 22 | val best_dup_tac: int -> tactic | 
| 0 | 23 | val fast_tac: int -> tactic | 
| 24 | val inst_step_tac: int -> tactic | |
| 25 | val safe_step_tac: int -> tactic | |
| 26 | val safe_brls: (bool * thm) list | |
| 27 | val safe_tac: tactic | |
| 28 | val step_tac: int -> tactic | |
| 5203 | 29 | val step_dup_tac: int -> tactic | 
| 0 | 30 | val haz_brls: (bool * thm) list | 
| 5203 | 31 | val haz_dup_brls: (bool * thm) list | 
| 0 | 32 | end; | 
| 33 | ||
| 34 | ||
| 2601 
b301958c465d
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
 paulson parents: 
2572diff
changeset | 35 | structure IntPr : INT_PROVER = | 
| 0 | 36 | struct | 
| 37 | ||
| 38 | (*Negation is treated as a primitive symbol, with rules notI (introduction), | |
| 39 | not_to_imp (converts the assumption ~P to P-->False), and not_impE | |
| 40 | (handles double negations). Could instead rewrite by not_def as the first | |
| 41 | step of an intuitionistic proof. | |
| 42 | *) | |
| 4440 | 43 | val safe_brls = sort (make_ord lessb) | 
| 0 | 44 | [ (true,FalseE), (false,TrueI), (false,refl), | 
| 45 | (false,impI), (false,notI), (false,allI), | |
| 46 | (true,conjE), (true,exE), | |
| 47 | (false,conjI), (true,conj_impE), | |
| 2572 | 48 | (true,disj_impE), (true,disjE), | 
| 49 | (false,iffI), (true,iffE), (true,not_to_imp) ]; | |
| 0 | 50 | |
| 51 | val haz_brls = | |
| 52 | [ (false,disjI1), (false,disjI2), (false,exI), | |
| 53 | (true,allE), (true,not_impE), (true,imp_impE), (true,iff_impE), | |
| 2572 | 54 | (true,all_impE), (true,ex_impE), (true,impE) ]; | 
| 0 | 55 | |
| 5203 | 56 | val haz_dup_brls = | 
| 57 | [ (false,disjI1), (false,disjI2), (false,exI), | |
| 58 | (true,all_dupE), (true,not_impE), (true,imp_impE), (true,iff_impE), | |
| 59 | (true,all_impE), (true,ex_impE), (true,impE) ]; | |
| 60 | ||
| 0 | 61 | (*0 subgoals vs 1 or more: the p in safep is for positive*) | 
| 62 | val (safe0_brls, safep_brls) = | |
| 63 | partition (apl(0,op=) o subgoals_of_brl) safe_brls; | |
| 64 | ||
| 65 | (*Attack subgoals using safe inferences -- matching, not resolution*) | |
| 66 | val safe_step_tac = FIRST' [eq_assume_tac, | |
| 1459 | 67 | eq_mp_tac, | 
| 68 | bimatch_tac safe0_brls, | |
| 69 | hyp_subst_tac, | |
| 70 | bimatch_tac safep_brls] ; | |
| 0 | 71 | |
| 72 | (*Repeatedly attack subgoals using safe inferences -- it's deterministic!*) | |
| 702 
98fc1a8e832a
FOL/intprover/safe_tac: now uses REPEAT_DETERM_FIRST instead of REPEAT_DETERM
 lcp parents: 
0diff
changeset | 73 | val safe_tac = REPEAT_DETERM_FIRST safe_step_tac; | 
| 0 | 74 | |
| 75 | (*These steps could instantiate variables and are therefore unsafe.*) | |
| 76 | val inst_step_tac = | |
| 77 | assume_tac APPEND' mp_tac APPEND' | |
| 78 | biresolve_tac (safe0_brls @ safep_brls); | |
| 79 | ||
| 80 | (*One safe or unsafe step. *) | |
| 81 | fun step_tac i = FIRST [safe_tac, inst_step_tac i, biresolve_tac haz_brls i]; | |
| 82 | ||
| 5203 | 83 | fun step_dup_tac i = FIRST [safe_tac, inst_step_tac i, | 
| 84 | biresolve_tac haz_dup_brls i]; | |
| 85 | ||
| 0 | 86 | (*Dumb but fast*) | 
| 87 | val fast_tac = SELECT_GOAL (DEPTH_SOLVE (step_tac 1)); | |
| 88 | ||
| 89 | (*Slower but smarter than fast_tac*) | |
| 90 | val best_tac = | |
| 91 | SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac 1)); | |
| 92 | ||
| 5203 | 93 | (*Uses all_dupE: allows multiple use of universal assumptions. VERY slow.*) | 
| 94 | val best_dup_tac = | |
| 95 | SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_dup_tac 1)); | |
| 96 | ||
| 97 | ||
| 0 | 98 | end; | 
| 99 |