src/HOL/Limits.thy
author paulson <lp15@cam.ac.uk>
Tue, 14 Jun 2016 15:34:21 +0100
changeset 63301 d3c87eb0bad2
parent 63263 c6c95d64607a
child 63546 5f097087fa1e
permissions -rw-r--r--
new results about topology
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
51524
7cb5ac44ca9e rename RealVector.thy to Real_Vector_Spaces.thy
hoelzl
parents: 51478
diff changeset
    11
imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter" where
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    17
  "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    25
   "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    26
apply (simp add: eventually_at_infinity, auto)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    27
apply (case_tac "b \<le> 0")
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    28
using norm_ge_zero order_trans zero_less_one apply blast
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    29
apply (force simp:)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    30
done
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    31
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    32
lemma at_infinity_eq_at_top_bot:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
    33
  "(at_infinity :: real filter) = sup at_top at_bot"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    34
  apply (simp add: filter_eq_iff eventually_sup eventually_at_infinity
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    35
                   eventually_at_top_linorder eventually_at_bot_linorder)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    36
  apply safe
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    37
  apply (rule_tac x="b" in exI, simp)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    38
  apply (rule_tac x="- b" in exI, simp)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    39
  apply (rule_tac x="max (- Na) N" in exI, auto simp: abs_real_def)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    40
  done
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    41
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    42
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    43
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    45
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    46
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    48
lemma filterlim_at_top_imp_at_infinity:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    49
  fixes f :: "_ \<Rightarrow> real"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    50
  shows "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    51
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    52
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    53
lemma lim_infinity_imp_sequentially:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    54
  "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    55
by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    56
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    57
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    58
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    59
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    60
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    61
  Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    62
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    63
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    64
  "Bseq X \<equiv> Bfun X sequentially"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    65
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    66
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    67
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    68
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    73
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    74
lemma Bfun_def:
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    75
  "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    76
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    77
proof safe
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    78
  fix y K assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    79
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    80
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    81
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    82
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    83
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    85
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    86
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    87
lemma BfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    88
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F" shows "Bfun f F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    89
unfolding Bfun_def
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    90
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    91
  show "0 < max K 1" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    92
next
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    93
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
    94
    using K by (rule eventually_mono, simp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    95
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    96
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    97
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    98
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    99
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   100
using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   101
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   102
lemma Cauchy_Bseq: "Cauchy X \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   103
  unfolding Cauchy_def Bfun_metric_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   104
  apply (erule_tac x=1 in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   105
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   106
  apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   107
  apply (rule_tac x="X M" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   108
  apply (rule_tac x=1 in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   109
  apply (erule_tac x=M in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   110
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   111
  apply (rule_tac x=M in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   112
  apply (auto simp: dist_commute)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   114
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   116
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   120
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   125
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   126
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
  fix N K assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   128
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   129
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   131
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   132
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   133
lemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   134
unfolding Bseq_def by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   135
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   136
lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   137
by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   138
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   139
lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   140
by (auto simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   141
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   142
lemma Bseq_bdd_above: "Bseq (X::nat \<Rightarrow> real) \<Longrightarrow> bdd_above (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   143
proof (elim BseqE, intro bdd_aboveI2)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   144
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "X n \<le> K"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   145
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   146
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   147
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   148
lemma Bseq_bdd_above':
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   149
  "Bseq (X::nat \<Rightarrow> 'a :: real_normed_vector) \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   150
proof (elim BseqE, intro bdd_aboveI2)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   151
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "norm (X n) \<le> K"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   152
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   153
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   154
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   155
lemma Bseq_bdd_below: "Bseq (X::nat \<Rightarrow> real) \<Longrightarrow> bdd_below (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   156
proof (elim BseqE, intro bdd_belowI2)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   157
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "- K \<le> X n"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   158
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   159
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   160
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   161
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   162
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   163
  shows   "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   164
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   165
  from assms(1) obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> norm (f n) \<le> norm (g n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   166
    by (auto simp: eventually_at_top_linorder)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   167
  moreover from assms(2) obtain K where K: "\<And>n. norm (g n) \<le> K" by (blast elim!: BseqE)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   168
  ultimately have "norm (f n) \<le> max K (Max {norm (f n) |n. n < N})" for n
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   169
    apply (cases "n < N")
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   170
    apply (rule max.coboundedI2, rule Max.coboundedI, auto) []
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   171
    apply (rule max.coboundedI1, force intro: order.trans[OF N K])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   172
    done
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   173
  thus ?thesis by (blast intro: BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   174
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   175
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   176
lemma lemma_NBseq_def:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   177
  "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   178
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   179
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   180
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   181
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   182
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   183
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   184
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   185
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   186
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   187
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   188
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   189
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   190
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   191
text\<open>alternative definition for Bseq\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   192
lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   194
apply (simp (no_asm) add: lemma_NBseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   195
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   196
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   197
lemma lemma_NBseq_def2:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   198
     "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   199
apply (subst lemma_NBseq_def, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   200
apply (rule_tac x = "Suc N" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   201
apply (rule_tac [2] x = N in exI)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   202
apply (auto simp add: of_nat_Suc)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   203
 prefer 2 apply (blast intro: order_less_imp_le)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   204
apply (drule_tac x = n in spec, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   205
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   206
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   207
(* yet another definition for Bseq *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   208
lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   209
by (simp add: Bseq_def lemma_NBseq_def2)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   210
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   211
subsubsection\<open>A Few More Equivalence Theorems for Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   212
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   213
text\<open>alternative formulation for boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   214
lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   215
apply (unfold Bseq_def, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   216
apply (rule_tac [2] x = "k + norm x" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   217
apply (rule_tac x = K in exI, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   218
apply (rule exI [where x = 0], auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   219
apply (erule order_less_le_trans, simp)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   220
apply (drule_tac x=n in spec)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   221
apply (drule order_trans [OF norm_triangle_ineq2])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   222
apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   223
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   224
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   225
text\<open>alternative formulation for boundedness\<close>
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   226
lemma Bseq_iff3:
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   227
  "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)" (is "?P \<longleftrightarrow> ?Q")
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   228
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   229
  assume ?P
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   230
  then obtain K
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   231
    where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K" by (auto simp add: Bseq_def)
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   232
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   233
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   234
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   235
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   236
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   237
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   238
next
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   239
  assume ?Q then show ?P by (auto simp add: Bseq_iff2)
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   240
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   241
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   242
lemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   243
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   244
apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   245
apply (drule_tac x = n in spec, arith)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   246
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   247
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   248
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   249
subsubsection\<open>Upper Bounds and Lubs of Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   250
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   251
lemma Bseq_minus_iff: "Bseq (%n. -(X n) :: 'a :: real_normed_vector) = Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   252
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   253
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   254
lemma Bseq_add:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   255
  assumes "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   256
  shows   "Bseq (\<lambda>x. f x + c)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   257
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   258
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K" unfolding Bseq_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   259
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   260
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   261
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   262
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   263
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   264
  }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   265
  thus ?thesis by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   266
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   267
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   268
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   269
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   270
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   271
lemma Bseq_mult:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   272
  assumes "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_field)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   273
  assumes "Bseq (g :: nat \<Rightarrow> 'a :: real_normed_field)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   274
  shows   "Bseq (\<lambda>x. f x * g x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   275
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   276
  from assms obtain K1 K2 where K: "\<And>x. norm (f x) \<le> K1" "K1 > 0" "\<And>x. norm (g x) \<le> K2" "K2 > 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   277
    unfolding Bseq_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
  hence "\<And>x. norm (f x * g x) \<le> K1 * K2" by (auto simp: norm_mult intro!: mult_mono)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   279
  thus ?thesis by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   280
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   281
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   282
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   283
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   284
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   285
lemma Bseq_cmult_iff: "(c :: 'a :: real_normed_field) \<noteq> 0 \<Longrightarrow> Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   286
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   287
  assume "c \<noteq> 0" "Bseq (\<lambda>x. c * f x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   288
  find_theorems "Bfun (\<lambda>_. ?c) _"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
  from Bfun_const this(2) have "Bseq (\<lambda>x. inverse c * (c * f x))" by (rule Bseq_mult)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
   290
  with \<open>c \<noteq> 0\<close> show "Bseq f" by (simp add: divide_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   291
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   292
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   293
lemma Bseq_subseq: "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector) \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   294
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   295
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   296
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   297
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   298
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   299
lemma increasing_Bseq_subseq_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   300
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a :: real_normed_vector) \<le> norm (f y)" "subseq g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   301
  shows   "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   302
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   303
  assume "Bseq (\<lambda>x. f (g x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   304
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K" unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   305
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   306
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   307
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   308
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   309
    hence "norm (f x) \<le> norm (f (g y))" using assms(1) by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   310
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   311
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   312
  }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   313
  thus "Bseq f" by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   314
qed (insert Bseq_subseq[of f g], simp_all)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   315
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   316
lemma nonneg_incseq_Bseq_subseq_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   317
  assumes "\<And>x. f x \<ge> 0" "incseq (f :: nat \<Rightarrow> real)" "subseq g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   318
  shows   "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   319
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   320
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   321
lemma Bseq_eq_bounded: "range f \<subseteq> {a .. b::real} \<Longrightarrow> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   322
  apply (simp add: subset_eq)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   323
  apply (rule BseqI'[where K="max (norm a) (norm b)"])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   324
  apply (erule_tac x=n in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   325
  apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   326
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   327
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   328
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> (B::real) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   329
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   330
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   331
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. (B::real) \<le> X i \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   332
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   333
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   334
subsection \<open>Bounded Monotonic Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   335
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   336
subsubsection\<open>A Bounded and Monotonic Sequence Converges\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   337
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   338
(* TODO: delete *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   339
(* FIXME: one use in NSA/HSEQ.thy *)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
   340
lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X \<longlonglongrightarrow> L)"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   341
  apply (rule_tac x="X m" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   342
  apply (rule filterlim_cong[THEN iffD2, OF refl refl _ tendsto_const])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   343
  unfolding eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   344
  apply blast
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   345
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   346
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   347
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   348
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   349
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   350
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   351
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   352
lemma ZfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   353
  "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   354
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   355
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   356
lemma ZfunD:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   357
  "\<lbrakk>Zfun f F; 0 < r\<rbrakk> \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   358
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   359
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   360
lemma Zfun_ssubst:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   361
  "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   362
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   363
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   364
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   365
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   366
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   367
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   368
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   369
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   370
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   371
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   372
  assumes g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   373
  shows "Zfun (\<lambda>x. g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   374
proof (cases)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   375
  assume K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   376
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   377
  proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   378
    fix r::real assume "0 < r"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
   379
    hence "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   380
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   381
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   382
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   383
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   384
      case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   385
      hence "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   386
        by (simp add: pos_less_divide_eq K)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   387
      thus ?case
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   388
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   389
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   390
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   391
next
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   392
  assume "\<not> 0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   393
  hence K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   394
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   395
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   396
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   397
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   398
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   399
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   400
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   401
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   402
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   403
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   404
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   405
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   406
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   407
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   408
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   409
lemma Zfun_le: "\<lbrakk>Zfun g F; \<forall>x. norm (f x) \<le> norm (g x)\<rbrakk> \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   410
  by (erule_tac K="1" in Zfun_imp_Zfun, simp)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   411
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   412
lemma Zfun_add:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   413
  assumes f: "Zfun f F" and g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   414
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   415
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   416
  fix r::real assume "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   417
  hence r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   418
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   419
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   420
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   421
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   422
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   423
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   424
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   425
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   426
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   427
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   428
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   429
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   430
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   431
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   432
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   433
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   434
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   435
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   436
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   437
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   438
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   439
lemma Zfun_diff: "\<lbrakk>Zfun f F; Zfun g F\<rbrakk> \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   440
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   441
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   442
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   443
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   444
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   445
proof -
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   446
  obtain K where "\<And>x. norm (f x) \<le> norm x * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   447
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   448
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   449
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   450
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   451
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   452
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   453
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   454
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   455
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   456
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   457
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   458
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   459
  fix r::real assume r: "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   460
  obtain K where K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   461
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   462
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   463
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   464
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   465
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   466
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   467
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   468
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   469
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   470
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   471
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   472
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   473
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   474
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   475
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   476
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   477
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   478
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   479
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   480
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   481
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   482
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   483
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   484
lemma (in bounded_bilinear) Zfun_left:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   485
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   486
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   487
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   488
lemma (in bounded_bilinear) Zfun_right:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   489
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   490
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   491
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   492
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   493
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   494
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   495
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   496
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   497
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   498
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   499
lemma tendsto_0_le: "\<lbrakk>(f \<longlongrightarrow> 0) F; eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F\<rbrakk>
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   500
                     \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   501
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   502
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   503
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   504
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   505
lemma tendsto_dist [tendsto_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   506
  fixes l m :: "'a :: metric_space"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   507
  assumes f: "(f \<longlongrightarrow> l) F" and g: "(g \<longlongrightarrow> m) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   508
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   509
proof (rule tendstoI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   510
  fix e :: real assume "0 < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   511
  hence e2: "0 < e/2" by simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   512
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   513
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   514
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   515
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   516
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   517
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   518
      using dist_triangle2 [of "f x" "g x" "l"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   519
      using dist_triangle2 [of "g x" "l" "m"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   520
      using dist_triangle3 [of "l" "m" "f x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   521
      using dist_triangle [of "f x" "m" "g x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   522
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   523
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   524
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   525
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   526
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   527
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   528
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   529
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   530
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   531
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   532
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   533
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   534
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   535
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   536
lemma tendsto_norm [tendsto_intros]:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   537
  "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   538
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   539
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   540
lemma continuous_norm [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   541
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   542
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   543
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   544
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   545
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   546
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   547
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   548
lemma tendsto_norm_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   549
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   550
  by (drule tendsto_norm, simp)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   551
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   552
lemma tendsto_norm_zero_cancel:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   553
  "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   554
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   555
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   556
lemma tendsto_norm_zero_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   557
  "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   558
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   559
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   560
lemma tendsto_rabs [tendsto_intros]:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   561
  "(f \<longlongrightarrow> (l::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   562
  by (fold real_norm_def, rule tendsto_norm)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   563
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   564
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   565
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   566
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   567
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   568
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   569
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   570
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   571
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   572
lemma tendsto_rabs_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   573
  "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   574
  by (fold real_norm_def, rule tendsto_norm_zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   575
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   576
lemma tendsto_rabs_zero_cancel:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   577
  "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   578
  by (fold real_norm_def, rule tendsto_norm_zero_cancel)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   579
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   580
lemma tendsto_rabs_zero_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   581
  "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   582
  by (fold real_norm_def, rule tendsto_norm_zero_iff)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   583
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   584
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   585
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   586
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   587
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   588
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   589
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   590
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   591
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   592
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   593
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   594
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   595
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   596
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   597
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   598
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   599
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   600
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   601
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   602
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   603
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   604
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   605
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   606
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   607
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   608
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   609
  shows "\<lbrakk>(f \<longlongrightarrow> 0) F; (g \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   610
  by (drule (1) tendsto_add, simp)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   611
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   612
lemma tendsto_setsum [tendsto_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   613
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   614
  assumes "\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F"
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   615
  shows "((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F"
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   616
proof (cases "finite I")
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   617
  assume "finite I" thus ?thesis using assms
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   618
    by (induct, simp, simp add: tendsto_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   619
qed simp
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   620
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   621
lemma continuous_setsum [continuous_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   622
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   623
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   624
  unfolding continuous_def by (rule tendsto_setsum)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   625
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   626
lemma continuous_on_setsum [continuous_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   627
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   628
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   629
  unfolding continuous_on_def by (auto intro: tendsto_setsum)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   630
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   631
instance nat :: topological_comm_monoid_add
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   632
  proof qed (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   633
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   634
instance int :: topological_comm_monoid_add
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   635
  proof qed (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   636
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   637
subsubsection \<open>Topological group\<close>
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   638
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   639
class topological_group_add = topological_monoid_add + group_add +
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   640
  assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   641
begin
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   642
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   643
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> -a) F"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   644
  by (rule filterlim_compose[OF tendsto_uminus_nhds])
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   645
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   646
end
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   647
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   648
class topological_ab_group_add = topological_group_add + ab_group_add
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   649
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   650
instance topological_ab_group_add < topological_comm_monoid_add ..
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   651
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   652
lemma continuous_minus [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   653
  fixes f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   654
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   655
  unfolding continuous_def by (rule tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   656
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   657
lemma continuous_on_minus [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   658
  fixes f :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   659
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   660
  unfolding continuous_on_def by (auto intro: tendsto_minus)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   661
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   662
lemma tendsto_minus_cancel:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   663
  fixes a :: "'a::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   664
  shows "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   665
  by (drule tendsto_minus, simp)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   666
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   667
lemma tendsto_minus_cancel_left:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   668
    "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   669
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   670
  by auto
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   671
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   672
lemma tendsto_diff [tendsto_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   673
  fixes a b :: "'a::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   674
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   675
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   676
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   677
lemma continuous_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   678
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   679
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   680
  unfolding continuous_def by (rule tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   681
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   682
lemma continuous_on_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   683
  fixes f g :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   684
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   685
  unfolding continuous_on_def by (auto intro: tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   686
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   687
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) (op - x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   688
  by (rule continuous_intros | simp)+
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   689
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   690
instance real_normed_vector < topological_ab_group_add
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   691
proof
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   692
  fix a b :: 'a show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   693
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   694
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   695
    by (intro Zfun_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   696
       (auto simp add: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   697
  show "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   698
    unfolding tendsto_Zfun_iff minus_diff_minus
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   699
    using filterlim_ident[of "nhds a"]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   700
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   701
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   702
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   703
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'b=real]
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   704
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   705
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   706
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   707
lemma linear_times:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   708
  fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   709
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   710
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   711
lemma (in bounded_linear) tendsto:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   712
  "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   713
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   714
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   715
lemma (in bounded_linear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   716
  "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   717
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   718
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   719
lemma (in bounded_linear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   720
  "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   721
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   722
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   723
lemma (in bounded_linear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   724
  "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   725
  by (drule tendsto, simp only: zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   726
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   727
lemma (in bounded_bilinear) tendsto:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   728
  "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   729
  by (simp only: tendsto_Zfun_iff prod_diff_prod
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   730
                 Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   731
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   732
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   733
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   734
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   735
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   736
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   737
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   738
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   739
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   740
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   741
  assumes f: "(f \<longlongrightarrow> 0) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   742
  assumes g: "(g \<longlongrightarrow> 0) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   743
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   744
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   745
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   746
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   747
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   748
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   749
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   750
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   751
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   752
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   753
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   754
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   755
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   756
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   757
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   758
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   759
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   760
lemmas tendsto_mult [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   761
  bounded_bilinear.tendsto [OF bounded_bilinear_mult]
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   762
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   763
lemma tendsto_mult_left:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   764
  fixes c::"'a::real_normed_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   765
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   766
by (rule tendsto_mult [OF tendsto_const])
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   767
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   768
lemma tendsto_mult_right:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   769
  fixes c::"'a::real_normed_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   770
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   771
by (rule tendsto_mult [OF _ tendsto_const])
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   772
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   773
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   774
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   775
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   776
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   777
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   778
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   779
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   780
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   781
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   782
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   783
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   784
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   785
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   786
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   787
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   788
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   789
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   790
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   791
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   792
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   793
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   794
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   795
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   796
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   797
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   798
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   799
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   800
lemma tendsto_power [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   801
  fixes f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   802
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   803
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   804
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   805
lemma continuous_power [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   806
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   807
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   808
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   809
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   810
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   811
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   812
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   813
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   814
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   815
lemma tendsto_setprod [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   816
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   817
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   818
  shows "((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   819
proof (cases "finite S")
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   820
  assume "finite S" thus ?thesis using assms
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   821
    by (induct, simp, simp add: tendsto_mult)
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   822
qed simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   823
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   824
lemma continuous_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   825
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   826
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   827
  unfolding continuous_def by (rule tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   828
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   829
lemma continuous_on_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   830
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   831
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   832
  unfolding continuous_on_def by (auto intro: tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   833
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   834
lemma tendsto_of_real_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   835
  "((\<lambda>x. of_real (f x) :: 'a :: real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   836
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   837
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   838
lemma tendsto_add_const_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   839
  "((\<lambda>x. c + f x :: 'a :: real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   840
  using tendsto_add[OF tendsto_const[of c], of f d]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   841
        tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   842
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   843
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   844
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   845
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   846
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   847
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   848
  assumes g: "Bfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   849
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   850
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   851
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   852
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   853
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   854
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   855
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   856
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   857
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   858
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   859
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   860
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   861
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   862
    also have "\<dots> \<le> norm (f x) * B * K"
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   863
      by (intro mult_mono' order_refl norm_g norm_ge_zero
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   864
                mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   865
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
   866
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   867
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   868
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   869
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   870
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   871
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   872
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   873
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   874
  assumes f: "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   875
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   876
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   877
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   878
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   879
lemma Bfun_inverse_lemma:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   880
  fixes x :: "'a::real_normed_div_algebra"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   881
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   882
  apply (subst nonzero_norm_inverse, clarsimp)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   883
  apply (erule (1) le_imp_inverse_le)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   884
  done
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   885
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   886
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   887
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   888
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   889
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   890
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   891
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   892
  from a have "0 < norm a" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   893
  hence "\<exists>r>0. r < norm a" by (rule dense)
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   894
  then obtain r where r1: "0 < r" and r2: "r < norm a" by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   895
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   896
    using tendstoD [OF f r1] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   897
  hence "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   898
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   899
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   900
    hence 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   901
      by (simp add: dist_norm)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   902
    hence 2: "f x \<noteq> 0" using r2 by auto
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   903
    hence "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   904
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   905
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   906
    proof (rule le_imp_inverse_le)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   907
      show "0 < norm a - r" using r2 by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   908
    next
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   909
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   910
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   911
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   912
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   913
      also have "\<dots> < r" using 1 .
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   914
      finally show "norm a - r \<le> norm (f x)" by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   915
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   916
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   917
  qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   918
  thus ?thesis by (rule BfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   919
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   920
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   921
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   922
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   923
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   924
  assumes a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   925
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   926
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   927
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   928
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   929
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   930
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   931
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   932
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   933
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   934
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   935
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   936
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   937
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   938
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   939
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   940
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   941
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   942
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   943
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   944
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   945
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   946
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   947
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   948
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   949
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   950
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   951
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   952
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   953
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   954
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   955
lemma isCont_inverse[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   956
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   957
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   958
  shows "isCont (\<lambda>x. inverse (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   959
  using assms unfolding continuous_at by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   960
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   961
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   962
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   963
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   964
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   965
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   966
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   967
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   968
  fixes a b :: "'a::real_normed_field"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   969
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F; b \<noteq> 0\<rbrakk>
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   970
    \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   971
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   972
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   973
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   974
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   975
  assumes "continuous F f" and "continuous F g" and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   976
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   977
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   978
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   979
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   980
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   981
  assumes "continuous (at a within s) f" "continuous (at a within s) g" and "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   982
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   983
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   984
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   985
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   986
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   987
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   988
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   989
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   990
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   991
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   992
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   993
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. g x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   994
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   995
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   996
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   997
lemma tendsto_sgn [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   998
  fixes l :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   999
  shows "\<lbrakk>(f \<longlongrightarrow> l) F; l \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1000
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1001
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1002
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1003
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1004
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1005
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1006
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1007
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1008
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1009
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1010
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1011
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1012
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1013
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1014
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1015
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1016
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1017
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1018
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1019
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1020
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1021
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1022
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1023
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1024
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1025
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1026
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1027
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1028
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1029
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1030
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1031
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1032
  fix P :: "'a \<Rightarrow> bool" and b
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1033
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1034
    and P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1035
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1036
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1037
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1038
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1039
  proof eventually_elim
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1040
    fix x assume "max b (c + 1) \<le> norm (f x)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1041
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1042
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1043
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1044
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1045
lemma not_tendsto_and_filterlim_at_infinity:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1046
  assumes "F \<noteq> bot"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1047
  assumes "(f \<longlongrightarrow> (c :: 'a :: real_normed_vector)) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1048
  assumes "filterlim f at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1049
  shows   False
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1050
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1051
  from tendstoD[OF assms(2), of "1/2"]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1052
    have "eventually (\<lambda>x. dist (f x) c < 1/2) F" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1053
  moreover from filterlim_at_infinity[of "norm c" f F] assms(3)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1054
    have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1055
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1056
  proof eventually_elim
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1057
    fix x assume A: "dist (f x) c < 1/2" and B: "norm (f x) \<ge> norm c + 1"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1058
    note B
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1059
    also have "norm (f x) = dist (f x) 0" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1060
    also have "... \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1061
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1062
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1063
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1064
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1065
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1066
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1067
  assumes "filterlim f at_infinity sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1068
  shows   "\<not>convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1069
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1070
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1071
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1072
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1073
  assumes "filterlim f at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1074
  shows   "eventually (\<lambda>z. f z \<noteq> c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1075
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1076
  have "norm c + 1 > 0" by (intro add_nonneg_pos) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1077
  with filterlim_at_infinity[OF order.refl, of f F] assms
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1078
    have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F" by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1079
  thus ?thesis by eventually_elim auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1080
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1081
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1082
lemma tendsto_of_nat [tendsto_intros]:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1083
  "filterlim (of_nat :: nat \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1084
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1085
  fix r :: real
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1086
  assume r: "r > 0"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1087
  define n where "n = nat \<lceil>r\<rceil>"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1088
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r" unfolding n_def by linarith
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1089
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1090
    by eventually_elim (insert n, simp_all)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1091
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1092
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1093
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1094
subsection \<open>Relate @{const at}, @{const at_left} and @{const at_right}\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1095
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1096
text \<open>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1097
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1098
This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1099
@{term "at_right x"} and also @{term "at_right 0"}.
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1100
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1101
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1102
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1103
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1104
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1105
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d::'a::real_normed_vector)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1106
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1107
     (auto intro!: tendsto_eq_intros filterlim_ident)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1108
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1109
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a::'a::real_normed_vector)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1110
  by (rule filtermap_fun_inverse[where g=uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1111
     (auto intro!: tendsto_eq_intros filterlim_ident)
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1112
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1113
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1114
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1115
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1116
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d::real)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1117
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1118
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1119
lemma at_right_to_0: "at_right (a::real) = filtermap (\<lambda>x. x + a) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1120
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1121
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1122
lemma filterlim_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1123
  "filterlim f F (at_right (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1124
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1125
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1126
lemma eventually_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1127
  "eventually P (at_right (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1128
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1129
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1130
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1131
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1132
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1133
lemma at_left_minus: "at_left (a::real) = filtermap (\<lambda>x. - x) (at_right (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1134
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1135
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1136
lemma at_right_minus: "at_right (a::real) = filtermap (\<lambda>x. - x) (at_left (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1137
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1138
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1139
lemma filterlim_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1140
  "filterlim f F (at_left (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1141
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1142
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1143
lemma eventually_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1144
  "eventually P (at_left (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1145
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1146
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1147
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1148
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1149
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1150
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1151
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1152
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1153
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1154
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1155
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1156
  by (rule filtermap_fun_inverse[symmetric, of uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1157
     (auto intro: filterlim_uminus_at_bot_at_top filterlim_uminus_at_top_at_bot)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1158
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1159
lemma at_bot_mirror: "at_bot = filtermap uminus (at_top :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1160
  unfolding at_top_mirror filtermap_filtermap by (simp add: filtermap_ident)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1161
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1162
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1163
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1164
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1165
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1166
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1167
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1168
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1169
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1170
  using filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1171
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1172
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1173
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1174
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1175
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1176
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1177
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1178
proof safe
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1179
  fix Z :: real assume [arith]: "0 < Z"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1180
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1181
    by (auto simp add: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1182
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1183
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1184
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1185
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1186
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1187
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1188
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1189
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1190
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1191
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1192
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1193
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1194
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1195
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1196
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1197
    finally show "norm (inverse x) < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1198
      using * \<open>0 < r\<close> by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1199
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1200
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1201
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1202
lemma tendsto_add_filterlim_at_infinity:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1203
  assumes "(f \<longlongrightarrow> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1204
  assumes "filterlim g at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1205
  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1206
proof (subst filterlim_at_infinity[OF order_refl], safe)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1207
  fix r :: real assume r: "r > 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1208
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F" by (rule tendsto_norm)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1209
  hence "eventually (\<lambda>x. norm (f x) < norm c + 1) F" by (rule order_tendstoD) simp_all
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1210
  moreover from r have "r + norm c + 1 > 0" by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1211
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1212
    unfolding filterlim_at_infinity[OF order_refl] by (elim allE[of _ "r + norm c + 1"]) simp_all
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1213
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1214
  proof eventually_elim
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1215
    fix x :: 'a assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1216
    from A B have "r \<le> norm (g x) - norm (f x)" by simp
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1217
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)" by (rule norm_diff_ineq)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1218
    finally show "r \<le> norm (f x + g x)" by (simp add: add_ac)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1219
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1220
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1221
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1222
lemma tendsto_add_filterlim_at_infinity':
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1223
  assumes "filterlim f at_infinity F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1224
  assumes "(g \<longlongrightarrow> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1225
  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1226
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1227
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1228
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1229
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1230
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1231
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1232
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1233
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1234
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1235
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1236
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1237
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1238
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1239
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1240
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1241
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1242
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1243
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1244
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1245
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1246
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1247
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1248
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1249
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1250
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1251
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1252
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1253
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1254
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1255
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1256
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1257
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1258
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1259
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1260
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1261
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1262
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1263
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1264
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1265
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1266
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1267
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1268
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1269
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1270
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1271
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1272
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1273
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1274
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1275
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1276
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1277
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1278
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1279
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1280
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1281
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1282
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1283
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1284
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1285
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1286
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1287
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1288
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1289
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1290
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1291
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1292
    by (auto intro!: exI[of _ 1]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1293
             simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1294
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1295
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1296
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1297
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1298
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1299
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1300
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1301
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1302
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1303
lemma tendsto_mult_filterlim_at_infinity:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1304
  assumes "F \<noteq> bot" "(f \<longlongrightarrow> (c :: 'a :: real_normed_field)) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1305
  assumes "filterlim g at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1306
  shows   "filterlim (\<lambda>x. f x * g x) at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1307
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1308
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1309
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1310
  hence "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1311
    unfolding filterlim_at using assms
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1312
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1313
  thus ?thesis by (subst filterlim_inverse_at_iff[symmetric]) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1314
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1315
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1316
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1317
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1318
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1319
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x :: nat) at_top sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1320
  by (rule filterlim_subseq) (auto simp: subseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1321
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1322
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c :: nat) at_top sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1323
  by (rule filterlim_subseq) (auto simp: subseq_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1324
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1325
lemma at_to_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1326
  fixes x :: "'a :: {real_normed_field,field}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1327
  shows "(at (0::'a)) = filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1328
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1329
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1330
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1331
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1332
    apply (simp add: le_principal eventually_filtermap eventually_at_infinity filterlim_def at_within_def)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1333
    apply (rule_tac x="1" in exI, auto)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1334
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1335
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1336
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1337
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1338
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1339
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1340
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1341
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1342
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1343
lemma lim_at_infinity_0:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59613
diff changeset
  1344
  fixes l :: "'a :: {real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1345
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f o inverse) \<longlongrightarrow> l) (at (0::'a))"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1346
by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1347
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1348
lemma lim_zero_infinity:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59613
diff changeset
  1349
  fixes l :: "'a :: {real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1350
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1351
by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1352
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1353
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1354
text \<open>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1355
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1356
We only show rules for multiplication and addition when the functions are either against a real
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1357
value or against infinity. Further rules are easy to derive by using @{thm filterlim_uminus_at_top}.
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1358
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1359
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1360
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1361
lemma filterlim_tendsto_pos_mult_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1362
  assumes f: "(f \<longlongrightarrow> c) F" and c: "0 < c"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1363
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1364
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1365
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1366
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1367
  fix Z :: real assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1368
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1369
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  1370
             simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1371
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1372
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1373
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1374
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1375
    fix x assume "c / 2 < f x" "Z / c * 2 \<le> g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1376
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1377
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1378
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1379
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1380
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1381
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1382
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1383
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1384
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1385
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1386
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1387
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1388
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1389
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1390
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1391
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1392
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1393
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1394
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1395
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1396
    fix x assume "1 \<le> f x" "Z \<le> g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1397
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1398
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1399
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1400
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1401
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1402
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1403
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1404
lemma filterlim_tendsto_pos_mult_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1405
  assumes "(f \<longlongrightarrow> c) F" "0 < (c::real)" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1406
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1407
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1408
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1409
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1410
lemma filterlim_tendsto_neg_mult_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1411
  assumes c: "(f \<longlongrightarrow> c) F" "(c::real) < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1412
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1413
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1414
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1415
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1416
lemma filterlim_pow_at_top:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1417
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1418
  assumes "0 < n" and f: "LIM x F. f x :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1419
  shows "LIM x F. (f x)^n :: real :> at_top"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1420
using \<open>0 < n\<close> proof (induct n)
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1421
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1422
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1423
qed simp
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1424
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1425
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1426
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1427
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1428
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1429
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1430
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1431
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1432
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1433
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1434
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1435
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1436
  assumes f: "(f \<longlongrightarrow> c) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1437
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1438
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1439
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1440
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1441
  fix Z :: real assume "0 < Z"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1442
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1443
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1444
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1445
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1446
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1447
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1448
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1449
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1450
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1451
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1452
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1453
  assumes g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1454
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1455
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1456
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1457
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1458
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1459
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1460
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1461
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1462
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1463
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1464
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1465
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1466
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1467
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1468
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1469
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1470
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1471
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1472
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1473
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1474
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1475
  assumes f: "(f \<longlongrightarrow> c) F"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1476
  assumes g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1477
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1478
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]] by (simp add: divide_inverse)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1479
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1480
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1481
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1482
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1483
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1484
proof (induct n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1485
  case (Suc n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1486
  have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1487
    by (simp add: field_simps of_nat_Suc x)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1488
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1489
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1490
  finally show ?case .
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1491
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1492
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1493
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1494
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1495
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1496
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1497
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1498
  fix y :: real assume "0 < y"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1499
  have "0 < norm x - 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1500
  then obtain N::nat where "y < real N * (norm x - 1)" by (blast dest: reals_Archimedean3)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1501
  also have "\<dots> \<le> real N * (norm x - 1) + 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1502
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N" by (rule linear_plus_1_le_power) simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1503
  also have "\<dots> = norm x ^ N" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1504
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1505
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1506
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1507
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1508
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1509
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1510
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1511
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1512
subsection \<open>Floor and Ceiling\<close>
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1513
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1514
lemma eventually_floor_less:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1515
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1516
  assumes f: "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1517
  assumes l: "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1518
  shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1519
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1520
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1521
lemma eventually_less_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1522
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1523
  assumes f: "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1524
  assumes l: "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1525
  shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1526
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1527
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1528
lemma eventually_floor_eq:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1529
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1530
  assumes f: "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1531
  assumes l: "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1532
  shows "\<forall>\<^sub>F x in F. floor (f x) = floor l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1533
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1534
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1535
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1536
lemma eventually_ceiling_eq:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1537
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1538
  assumes f: "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1539
  assumes l: "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1540
  shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1541
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1542
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1543
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1544
lemma tendsto_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1545
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1546
  assumes "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1547
  assumes "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1548
  shows "((\<lambda>x. of_int (floor (f x))::'c::{ring_1, topological_space}) \<longlongrightarrow> of_int (floor l)) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1549
  using eventually_floor_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1550
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1551
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1552
lemma tendsto_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1553
  fixes f::"'a \<Rightarrow> 'b::{order_topology, floor_ceiling}"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1554
  assumes "(f \<longlongrightarrow> l) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1555
  assumes "l \<notin> \<int>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1556
  shows "((\<lambda>x. of_int (ceiling (f x))::'c::{ring_1, topological_space}) \<longlongrightarrow> of_int (ceiling l)) F"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1557
  using eventually_ceiling_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1558
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1559
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1560
lemma continuous_on_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1561
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1562
    (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1563
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1564
  by (auto intro!: tendsto_of_int_floor)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1565
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1566
lemma continuous_on_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1567
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1568
    (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1569
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1570
  by (auto intro!: tendsto_of_int_ceiling)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1571
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1572
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1573
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1574
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  1575
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1576
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1577
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1578
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1579
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1580
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  1581
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1582
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1583
lemma LIMSEQ_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1584
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1585
  shows "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1586
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1587
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1588
lemma LIMSEQ_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1589
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1590
  shows "\<lbrakk>X \<longlonglongrightarrow> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1591
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1592
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1593
lemma LIMSEQ_linear: "\<lbrakk> X \<longlonglongrightarrow> x ; l > 0 \<rbrakk> \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1594
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1595
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1596
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1597
lemma Bseq_inverse_lemma:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1598
  fixes x :: "'a::real_normed_div_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1599
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1600
apply (subst nonzero_norm_inverse, clarsimp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1601
apply (erule (1) le_imp_inverse_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1602
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1603
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1604
lemma Bseq_inverse:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1605
  fixes a :: "'a::real_normed_div_algebra"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1606
  shows "\<lbrakk>X \<longlonglongrightarrow> a; a \<noteq> 0\<rbrakk> \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1607
  by (rule Bfun_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1608
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1609
text\<open>Transformation of limit.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1610
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1611
lemma Lim_transform:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1612
  fixes a b :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1613
  shows "\<lbrakk>(g \<longlongrightarrow> a) F; ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> (f \<longlongrightarrow> a) F"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1614
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1615
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1616
lemma Lim_transform2:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1617
  fixes a b :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1618
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> (g \<longlongrightarrow> a) F"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1619
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1620
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1621
proposition Lim_transform_eq:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1622
  fixes a :: "'a::real_normed_vector"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1623
  shows "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1624
using Lim_transform Lim_transform2 by blast
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1625
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1626
lemma Lim_transform_eventually:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1627
  "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f \<longlongrightarrow> l) net \<Longrightarrow> (g \<longlongrightarrow> l) net"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1628
  apply (rule topological_tendstoI)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1629
  apply (drule (2) topological_tendstoD)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1630
  apply (erule (1) eventually_elim2, simp)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1631
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1632
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1633
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1634
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1635
    and "0 < d"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1636
    and "\<And>x'. \<lbrakk>x'\<in>S; 0 < dist x' x; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1637
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1638
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1639
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1640
    using assms by (auto simp: eventually_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1641
  show "(f \<longlongrightarrow> l) (at x within S)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1642
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1643
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1644
text\<open>Common case assuming being away from some crucial point like 0.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1645
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1646
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1647
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1648
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1649
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1650
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1651
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1652
proof (rule Lim_transform_eventually)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1653
  show "(f \<longlongrightarrow> l) (at a within S)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1654
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1655
    unfolding eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1656
    by (rule exI [where x="- {b}"], simp add: open_Compl assms)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1657
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1658
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1659
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1660
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1661
  assumes ab: "a\<noteq>b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1662
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1663
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1664
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1665
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1666
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1667
text\<open>Alternatively, within an open set.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1668
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1669
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1670
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1671
    and "open s" and "a \<in> s"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1672
    and "\<And>x. \<lbrakk>x\<in>s; x \<noteq> a\<rbrakk> \<Longrightarrow> f x = g x"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1673
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1674
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1675
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1676
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1677
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1678
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1679
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1680
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1681
text\<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1682
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1683
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1684
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1685
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1686
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1687
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1688
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1689
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1690
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1691
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1692
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1693
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1694
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1695
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1696
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1697
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1698
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1699
  using assms by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1700
text\<open>An unbounded sequence's inverse tends to 0\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1701
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1702
lemma LIMSEQ_inverse_zero:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1703
  "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1704
  apply (rule filterlim_compose[OF tendsto_inverse_0])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1705
  apply (simp add: filterlim_at_infinity[OF order_refl] eventually_sequentially)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1706
  apply (metis abs_le_D1 linorder_le_cases linorder_not_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1707
  done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1708
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1709
text\<open>The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1710
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1711
lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1712
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1713
            filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1714
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1715
text\<open>The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1716
infinity is now easily proved\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1717
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1718
lemma LIMSEQ_inverse_real_of_nat_add:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1719
     "(%n. r + inverse(real(Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1720
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1721
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1722
lemma LIMSEQ_inverse_real_of_nat_add_minus:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1723
     "(%n. r + -inverse(real(Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1724
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1725
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1726
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1727
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1728
     "(%n. r*( 1 + -inverse(real(Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1729
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1730
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1731
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1732
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1733
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1734
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1735
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1736
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1737
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1738
    using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1739
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1740
    by (intro tendsto_add tendsto_const lim_inverse_n)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1741
  thus "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1" by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1742
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1743
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1744
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1745
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1746
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1747
                        of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1748
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1749
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1750
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1751
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1752
  thus "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1" by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1753
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1754
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1755
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1756
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1757
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1758
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1759
  shows   "convergent f \<longleftrightarrow> convergent g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1760
  unfolding convergent_def by (subst filterlim_cong[OF refl refl assms]) (rule refl)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1761
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1762
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1763
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1764
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1765
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1766
proof (induction m arbitrary: f)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1767
  case (Suc m)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1768
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1769
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))" by (rule convergent_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1770
  also have "\<dots> \<longleftrightarrow> convergent f" by (rule Suc)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1771
  finally show ?case .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1772
qed simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1773
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1774
lemma convergent_add:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1775
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1776
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1777
  assumes "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1778
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1779
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1780
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1781
lemma convergent_setsum:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1782
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1783
  assumes "\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1784
  shows "convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1785
proof (cases "finite A")
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1786
  case True from this and assms show ?thesis
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1787
    by (induct A set: finite) (simp_all add: convergent_const convergent_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1788
qed (simp add: convergent_const)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1789
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1790
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1791
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1792
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1793
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1794
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1795
lemma (in bounded_bilinear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1796
  assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1797
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1798
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1799
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1800
lemma convergent_minus_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1801
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1802
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1803
apply (simp add: convergent_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1804
apply (auto dest: tendsto_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1805
apply (drule tendsto_minus, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1806
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1807
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1808
lemma convergent_diff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1809
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1810
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1811
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1812
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1813
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1814
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1815
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1816
  assumes "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1817
  shows   "convergent (\<lambda>n. norm (f n))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1818
proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1819
  from assms have "f \<longlonglongrightarrow> lim f" by (simp add: convergent_LIMSEQ_iff)
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1820
  hence "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)" by (rule tendsto_norm)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1821
  thus ?thesis by (auto simp: convergent_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1822
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1823
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1824
lemma convergent_of_real:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1825
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a :: real_normed_algebra_1)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1826
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1827
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1828
lemma convergent_add_const_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1829
  "convergent (\<lambda>n. c + f n :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1830
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1831
  assume "convergent (\<lambda>n. c + f n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1832
  from convergent_diff[OF this convergent_const[of c]] show "convergent f" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1833
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1834
  assume "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1835
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1836
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1837
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1838
lemma convergent_add_const_right_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1839
  "convergent (\<lambda>n. f n + c :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1840
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1841
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1842
lemma convergent_diff_const_right_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1843
  "convergent (\<lambda>n. f n - c :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1844
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1845
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1846
lemma convergent_mult:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1847
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1848
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1849
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1850
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1851
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1852
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1853
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1854
  assumes "c \<noteq> 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1855
  shows   "convergent (\<lambda>n. c * f n :: 'a :: real_normed_field) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1856
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1857
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1858
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1859
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1860
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1861
  assume "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1862
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1863
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1864
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1865
lemma convergent_mult_const_right_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1866
  assumes "c \<noteq> 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1867
  shows   "convergent (\<lambda>n. (f n :: 'a :: real_normed_field) * c) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1868
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1869
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1870
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1871
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1872
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1873
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1874
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1875
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1876
lemma LIMSEQ_incseq_SUP:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1877
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1878
  assumes u: "bdd_above (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1879
  assumes X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1880
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1881
  by (rule order_tendstoI)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1882
     (auto simp: eventually_sequentially u less_cSUP_iff intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1883
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1884
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1885
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1886
  assumes u: "bdd_below (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1887
  assumes X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1888
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1889
  by (rule order_tendstoI)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1890
     (auto simp: eventually_sequentially u cINF_less_iff intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1891
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1892
text\<open>Main monotonicity theorem\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1893
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1894
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent (X::nat\<Rightarrow>real)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1895
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP dest: Bseq_bdd_above Bseq_bdd_below)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1896
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1897
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent (X::nat\<Rightarrow>real)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1898
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1899
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1900
lemma monoseq_imp_convergent_iff_Bseq: "monoseq (f :: nat \<Rightarrow> real) \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1901
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1902
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1903
lemma Bseq_monoseq_convergent'_inc:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1904
  "Bseq (\<lambda>n. f (n + M) :: real) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1905
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1906
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1907
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1908
lemma Bseq_monoseq_convergent'_dec:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1909
  "Bseq (\<lambda>n. f (n + M) :: real) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1910
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1911
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1912
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1913
lemma Cauchy_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1914
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1915
  shows "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1916
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1917
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1918
lemma CauchyI:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1919
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1920
  shows "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1921
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1922
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1923
lemma CauchyD:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1924
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1925
  shows "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1926
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1927
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1928
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1929
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1930
  assumes "incseq X" and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1931
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1932
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1933
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1934
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1935
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1936
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1937
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1938
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1939
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1940
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1941
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1942
  assumes "decseq X" and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1943
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1944
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1945
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1946
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1947
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1948
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1949
    by (auto intro!: exI[of _ L] decseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1950
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1951
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1952
subsubsection \<open>Cauchy Sequences are Bounded\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1953
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1954
text\<open>A Cauchy sequence is bounded -- this is the standard
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1955
  proof mechanization rather than the nonstandard proof\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1956
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1957
lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1958
          ==>  \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1959
apply (clarify, drule spec, drule (1) mp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1960
apply (simp only: norm_minus_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1961
apply (drule order_le_less_trans [OF norm_triangle_ineq2])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1962
apply simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1963
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1964
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1965
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1966
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1967
text\<open>The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1968
"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1969
  also fact that bounded and monotonic sequence converges.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1970
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1971
lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1972
apply (simp add: Bseq_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1973
apply (rule_tac x = 1 in exI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1974
apply (simp add: power_abs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1975
apply (auto dest: power_mono)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1976
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1977
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1978
lemma monoseq_realpow: fixes x :: real shows "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1979
apply (clarify intro!: mono_SucI2)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1980
apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1981
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1982
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1983
lemma convergent_realpow:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1984
  "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1985
by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1986
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1987
lemma LIMSEQ_inverse_realpow_zero: "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1988
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1989
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1990
lemma LIMSEQ_realpow_zero:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1991
  "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1992
proof cases
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1993
  assume "0 \<le> x" and "x \<noteq> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1994
  hence x0: "0 < x" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1995
  assume x1: "x < 1"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1996
  from x0 x1 have "1 < inverse x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1997
    by (rule one_less_inverse)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1998
  hence "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1999
    by (rule LIMSEQ_inverse_realpow_zero)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2000
  thus ?thesis by (simp add: power_inverse)
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
  2001
qed (rule LIMSEQ_imp_Suc, simp)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2002
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2003
lemma LIMSEQ_power_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2004
  fixes x :: "'a::{real_normed_algebra_1}"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2005
  shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2006
apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2007
apply (simp only: tendsto_Zfun_iff, erule Zfun_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2008
apply (simp add: power_abs norm_power_ineq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2009
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2010
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2011
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2012
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2013
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2014
text\<open>Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2015
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2016
lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2017
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2018
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2019
lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2020
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2021
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2022
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2023
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2024
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2025
lemma LIM_eq:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2026
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2027
  shows "f \<midarrow>a\<rightarrow> L =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2028
     (\<forall>r>0.\<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2029
by (simp add: LIM_def dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2030
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2031
lemma LIM_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2032
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2033
  shows "(!!r. 0<r ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2034
      ==> f \<midarrow>a\<rightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2035
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2036
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2037
lemma LIM_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2038
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2039
  shows "[| f \<midarrow>a\<rightarrow> L; 0<r |]
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2040
      ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2041
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2042
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2043
lemma LIM_offset:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2044
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2045
  shows "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2046
  unfolding filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2047
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2048
lemma LIM_offset_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2049
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2050
  shows "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  2051
by (drule_tac k="a" in LIM_offset, simp add: add.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2052
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2053
lemma LIM_offset_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2054
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2055
  shows "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2056
by (drule_tac k="- a" in LIM_offset, simp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2057
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2058
lemma LIM_offset_zero_iff:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2059
  fixes f :: "'a :: real_normed_vector \<Rightarrow> _"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2060
  shows  "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2061
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2062
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2063
lemma LIM_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2064
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2065
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2066
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2067
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2068
lemma LIM_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2069
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2070
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2071
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2072
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2073
lemma LIM_zero_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2074
  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2075
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2076
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2077
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2078
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2079
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2080
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2081
  assumes f: "f \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2082
  assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2083
  shows "g \<midarrow>a\<rightarrow> m"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2084
  by (rule metric_LIM_imp_LIM [OF f],
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2085
    simp add: dist_norm le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2086
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2087
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2088
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2089
  assumes 1: "0 < R"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2090
  assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < R\<rbrakk> \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2091
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2092
by (rule metric_LIM_equal2 [OF 1 2], simp_all add: dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2093
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2094
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2095
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2096
  assumes f: "f \<midarrow>a\<rightarrow> b"
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2097
  assumes g: "g \<midarrow>b\<rightarrow> c"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2098
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2099
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2100
by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2101
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2102
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2103
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2104
  assumes f: "f \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2105
  assumes 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2106
  assumes 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2107
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2108
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2109
  fix x assume x: "x \<noteq> a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2110
  have "norm (g x - 0) = g x" by (simp add: 1 x)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2111
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2112
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2113
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2114
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2115
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2116
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2117
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2118
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2119
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2120
lemma LIM_isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2121
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2122
  shows "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2123
by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2124
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2125
lemma isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2126
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2127
  shows "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2128
by (simp add: isCont_def LIM_isCont_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2129
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2130
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2131
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2132
  assumes f [unfolded isCont_def]: "isCont f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2133
  assumes g: "g \<midarrow>f a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2134
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2135
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2136
by (rule LIM_compose2 [OF f g inj])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2137
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2138
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2139
lemma isCont_norm [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2140
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2141
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2142
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2143
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2144
lemma isCont_rabs [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2145
  fixes f :: "'a::t2_space \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2146
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2147
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2148
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2149
lemma isCont_add [simp]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  2150
  fixes f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2151
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2152
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2153
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2154
lemma isCont_minus [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2155
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2156
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2157
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2158
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2159
lemma isCont_diff [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2160
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2161
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2162
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2163
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2164
lemma isCont_mult [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2165
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2166
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2167
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2168
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2169
lemma (in bounded_linear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2170
  "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2171
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2172
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2173
lemma (in bounded_bilinear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2174
  "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2175
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2176
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2177
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2178
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2179
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2180
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2181
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2182
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2183
lemma isCont_power [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2184
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2185
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2186
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2187
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2188
lemma isCont_setsum [simp]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  2189
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2190
  shows "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2191
  by (auto intro: continuous_setsum)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2192
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2193
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2194
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2195
lemma uniformly_continuous_on_def:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2196
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2197
  shows "uniformly_continuous_on s f \<longleftrightarrow>
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2198
    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2199
  unfolding uniformly_continuous_on_uniformity
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2200
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2201
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2202
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2203
abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool" where
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2204
  "isUCont f \<equiv> uniformly_continuous_on UNIV f"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2205
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2206
lemma isUCont_def: "isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2207
  by (auto simp: uniformly_continuous_on_def dist_commute)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2208
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2209
lemma isUCont_isCont: "isUCont f ==> isCont f x"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2210
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2211
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2212
lemma uniformly_continuous_on_Cauchy:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2213
  fixes f::"'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2214
  assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2215
  shows "Cauchy (\<lambda>n. f (X n))"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2216
  using assms
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2217
  unfolding uniformly_continuous_on_def
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2218
  apply -
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2219
  apply (rule metric_CauchyI)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2220
  apply (drule_tac x=e in spec, safe)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2221
  apply (drule_tac e=d in metric_CauchyD, safe)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2222
  apply (rule_tac x=M in exI, simp)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2223
  done
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2224
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2225
lemma isUCont_Cauchy:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2226
  "\<lbrakk>isUCont f; Cauchy X\<rbrakk> \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2227
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2228
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2229
lemma (in bounded_linear) isUCont: "isUCont f"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2230
unfolding isUCont_def dist_norm
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2231
proof (intro allI impI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2232
  fix r::real assume r: "0 < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2233
  obtain K where K: "0 < K" and norm_le: "\<And>x. norm (f x) \<le> norm x * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2234
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2235
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2236
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2237
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2238
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2239
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2240
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2241
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2242
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2243
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2244
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2245
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2246
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2247
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2248
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2249
by (rule isUCont [THEN isUCont_Cauchy])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2250
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2251
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2252
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2253
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2254
  shows "0 \<le> f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2255
proof (rule tendsto_le_const)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2256
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2257
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2258
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2259
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2260
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2261
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2262
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2263
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2264
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2265
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2266
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2267
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2268
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2269
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2270
  have "decseq g" unfolding decseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2271
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2272
  { fix n
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2273
    from \<open>decseq g\<close> have "g n \<le> g 0" by (rule decseqD) simp
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2274
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] have "f n \<le> g 0" by auto }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2275
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2276
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2277
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2278
  { fix n
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2279
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2280
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] have "f 0 \<le> g n" by simp }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2281
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2282
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2283
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2284
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2285
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2286
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2287
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2288
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2289
  assumes [arith]: "a \<le> b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2290
  assumes trans: "\<And>a b c. \<lbrakk>P a b; P b c; a \<le> b; b \<le> c\<rbrakk> \<Longrightarrow> P a c"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2291
  assumes local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2292
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2293
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2294
  define bisect where "bisect =
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2295
    rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2296
  define l u where "l n = fst (bisect n)" and "u n = snd (bisect n)" for n
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2297
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2298
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2299
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2300
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2301
  { fix n have "l n \<le> u n" by (induct n) auto } note this[simp]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2302
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2303
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2304
  proof (safe intro!: nested_sequence_unique)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2305
    fix n show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" by (induct n) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2306
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2307
    { fix n have "l n - u n = (a - b) / 2^n" by (induct n) (auto simp: field_simps) }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2308
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0" by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2309
  qed fact
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2310
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x" by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2311
  obtain d where "0 < d" and d: "\<And>a b. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2312
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2313
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2314
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2315
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2316
    assume "\<not> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2317
    { fix n have "\<not> P (l n) (u n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2318
      proof (induct n)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2319
        case (Suc n) with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2320
      qed (simp add: \<open>\<not> P a b\<close>) }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2321
    moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2322
    { have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2323
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2324
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2325
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2326
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2327
      proof eventually_elim
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2328
        fix n assume "x - d / 2 < l n" "u n < x + d / 2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2329
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2330
        with x show "P (l n) (u n)" by (rule d)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2331
      qed }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2332
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2333
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2334
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2335
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2336
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2337
proof (cases "a \<le> b", rule compactI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2338
  fix C assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2339
  define T where "T = {a .. b}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2340
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2341
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2342
    case (trans a b c)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2343
    then have *: "{a .. c} = {a .. b} \<union> {b .. c}" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2344
    from trans obtain C1 C2 where "C1\<subseteq>C \<and> finite C1 \<and> {a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C \<and> finite C2 \<and> {b..c} \<subseteq> \<Union>C2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2345
      by (auto simp: *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2346
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2347
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2348
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2349
    case (local x)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2350
    then have "x \<in> \<Union>C" using C by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2351
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2352
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2353
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2354
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2355
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2356
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2357
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2358
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2359
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2360
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2361
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2362
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2363
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2364
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2365
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2366
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2367
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2368
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2369
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2370
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2371
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2372
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2373
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2374
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2375
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2376
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2377
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2378
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2379
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2380
lemma open_Collect_positive:
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2381
 fixes f :: "'a::t2_space \<Rightarrow> real"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2382
 assumes f: "continuous_on s f"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2383
 shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2384
 using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2385
 by (auto simp: Int_def field_simps)
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2386
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2387
lemma open_Collect_less_Int:
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2388
 fixes f g :: "'a::t2_space \<Rightarrow> real"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2389
 assumes f: "continuous_on s f" and g: "continuous_on s g"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2390
 shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2391
 using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2392
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2393
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2394
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2395
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2396
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2397
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2398
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2399
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2400
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2401
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2402
  using continuous_attains_sup[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2403
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2404
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2405
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2406
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2407
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2408
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2409
  using continuous_attains_inf[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2410
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2411
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2412
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2413
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2414
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2415
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2416
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2417
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2418
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2419
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2420
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2421
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2422
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2423
(*HOL style here: object-level formulations*)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2424
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2425
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2426
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2427
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2428
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2429
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2430
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2431
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2432
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2433
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2434
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2435
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2436
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2437
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2438
               (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2439
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2440
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2441
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2442
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2443
    using isCont_eq_Lb[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2444
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2445
    using IVT[of f L _ M] IVT2[of f L _ M] M L assms
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2446
    apply (rule_tac x="f L" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2447
    apply (rule_tac x="f M" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2448
    apply (cases "L \<le> M")
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2449
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2450
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2451
    done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2452
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2453
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2454
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2455
text\<open>Continuity of inverse function\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2456
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2457
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2458
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2459
  assumes d: "0 < d"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2460
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> g (f z) = z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2461
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> isCont f z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2462
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2463
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2464
  let ?A = "f (x - d)" and ?B = "f (x + d)" and ?D = "{x - d..x + d}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2465
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2466
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2467
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2468
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2469
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2470
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2471
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2472
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2473
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2474
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2475
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2476
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2477
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2478
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2479
    by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2480
  ultimately
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2481
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2482
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2483
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2484
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2485
lemma isCont_inverse_function2:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2486
  fixes f g :: "real \<Rightarrow> real" shows
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2487
  "\<lbrakk>a < x; x < b;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2488
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2489
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2490
   \<Longrightarrow> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2491
apply (rule isCont_inverse_function
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2492
       [where f=f and d="min (x - a) (b - x)"])
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2493
apply (simp_all add: abs_le_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2494
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2495
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2496
(* need to rename second isCont_inverse *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2497
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2498
lemma isCont_inv_fun:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2499
  fixes f g :: "real \<Rightarrow> real"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2500
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2501
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2502
      ==> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2503
by (rule isCont_inverse_function)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2504
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2505
text\<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2506
lemma LIM_fun_gt_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2507
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2508
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2509
apply (drule (1) LIM_D, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2510
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2511
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2512
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2513
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2514
lemma LIM_fun_less_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2515
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2516
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2517
apply (drule LIM_D [where r="-l"], simp, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2518
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2519
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2520
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2521
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2522
lemma LIM_fun_not_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2523
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2524
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2525
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp add: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2526
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  2527
end