12776
|
1 |
(* Title: ZF/AC/WO1_AC.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Krzysztof Grabczewski
|
|
4 |
|
|
5 |
The proofs of WO1 ==> AC1 and WO1 ==> AC10(n) for n >= 1
|
|
6 |
|
|
7 |
The latter proof is referred to as clear by the Rubins.
|
|
8 |
However it seems to be quite complicated.
|
|
9 |
The formal proof presented below is a mechanisation of the proof
|
|
10 |
by Lawrence C. Paulson which is the following:
|
|
11 |
|
|
12 |
Assume WO1. Let s be a set of infinite sets.
|
|
13 |
|
|
14 |
Suppose x \<in> s. Then x is equipollent to |x| (by WO1), an infinite cardinal
|
|
15 |
call it K. Since K = K |+| K = |K+K| (by InfCard_cdouble_eq) there is an
|
|
16 |
isomorphism h \<in> bij(K+K, x). (Here + means disjoint sum.)
|
|
17 |
|
|
18 |
So there is a partition of x into 2-element sets, namely
|
|
19 |
|
|
20 |
{{h(Inl(i)), h(Inr(i))} . i \<in> K}
|
|
21 |
|
|
22 |
So for all x \<in> s the desired partition exists. By AC1 (which follows from WO1)
|
|
23 |
there exists a function f that chooses a partition for each x \<in> s. Therefore we
|
|
24 |
have AC10(2).
|
|
25 |
|
|
26 |
*)
|
|
27 |
|
|
28 |
theory WO1_AC = AC_Equiv:
|
|
29 |
|
|
30 |
(* ********************************************************************** *)
|
|
31 |
(* WO1 ==> AC1 *)
|
|
32 |
(* ********************************************************************** *)
|
|
33 |
|
|
34 |
theorem WO1_AC1: "WO1 ==> AC1"
|
|
35 |
by (unfold AC1_def WO1_def, fast elim!: ex_choice_fun)
|
|
36 |
|
|
37 |
(* ********************************************************************** *)
|
|
38 |
(* WO1 ==> AC10(n) (n >= 1) *)
|
|
39 |
(* ********************************************************************** *)
|
|
40 |
|
|
41 |
lemma lemma1: "[| WO1; \<forall>B \<in> A. \<exists>C \<in> D(B). P(C,B) |] ==> \<exists>f. \<forall>B \<in> A. P(f`B,B)"
|
|
42 |
apply (unfold WO1_def)
|
|
43 |
apply (erule_tac x = "Union ({{C \<in> D (B) . P (C,B) }. B \<in> A}) " in allE)
|
|
44 |
apply (erule exE, drule ex_choice_fun, fast)
|
|
45 |
apply (erule exE)
|
|
46 |
apply (rule_tac x = "\<lambda>x \<in> A. f`{C \<in> D (x) . P (C,x) }" in exI)
|
|
47 |
apply (simp, blast dest!: apply_type [OF _ RepFunI])
|
|
48 |
done
|
1196
|
49 |
|
12776
|
50 |
lemma lemma2_1: "[| ~Finite(B); WO1 |] ==> |B| + |B| \<approx> B"
|
|
51 |
apply (unfold WO1_def)
|
|
52 |
apply (rule eqpoll_trans)
|
|
53 |
prefer 2 apply (fast elim!: well_ord_cardinal_eqpoll)
|
|
54 |
apply (rule eqpoll_sym [THEN eqpoll_trans])
|
|
55 |
apply (fast elim!: well_ord_cardinal_eqpoll)
|
|
56 |
apply (drule spec [of _ B])
|
|
57 |
apply (clarify dest!: eqpoll_imp_Finite_iff [OF well_ord_cardinal_eqpoll])
|
|
58 |
apply (simp add: cadd_def [symmetric]
|
|
59 |
eqpoll_refl InfCard_cdouble_eq Card_cardinal Inf_Card_is_InfCard)
|
|
60 |
done
|
|
61 |
|
|
62 |
lemma lemma2_2:
|
|
63 |
"f \<in> bij(D+D, B) ==> {{f`Inl(i), f`Inr(i)}. i \<in> D} \<in> Pow(Pow(B))"
|
|
64 |
by (fast elim!: bij_is_fun [THEN apply_type])
|
|
65 |
|
|
66 |
|
|
67 |
lemma lemma2_3:
|
|
68 |
"f \<in> bij(D+D, B) ==> pairwise_disjoint({{f`Inl(i), f`Inr(i)}. i \<in> D})"
|
|
69 |
apply (unfold pairwise_disjoint_def)
|
|
70 |
apply (blast dest: bij_is_inj [THEN inj_apply_equality])
|
|
71 |
done
|
|
72 |
|
|
73 |
lemma lemma2_4:
|
|
74 |
"[| f \<in> bij(D+D, B); 1\<le>n |]
|
|
75 |
==> sets_of_size_between({{f`Inl(i), f`Inr(i)}. i \<in> D}, 2, succ(n))"
|
|
76 |
apply (simp (no_asm_simp) add: sets_of_size_between_def succ_def)
|
|
77 |
apply (blast intro!: cons_lepoll_cong
|
|
78 |
intro: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll]
|
|
79 |
le_imp_subset [THEN subset_imp_lepoll] lepoll_trans
|
|
80 |
dest: bij_is_inj [THEN inj_apply_equality] elim!: mem_irrefl)
|
|
81 |
done
|
|
82 |
|
|
83 |
lemma lemma2_5:
|
|
84 |
"f \<in> bij(D+D, B) ==> Union({{f`Inl(i), f`Inr(i)}. i \<in> D})=B"
|
|
85 |
apply (unfold bij_def surj_def)
|
|
86 |
apply (fast elim!: inj_is_fun [THEN apply_type])
|
|
87 |
done
|
|
88 |
|
|
89 |
lemma lemma2:
|
|
90 |
"[| WO1; ~Finite(B); 1\<le>n |]
|
|
91 |
==> \<exists>C \<in> Pow(Pow(B)). pairwise_disjoint(C) &
|
|
92 |
sets_of_size_between(C, 2, succ(n)) &
|
|
93 |
Union(C)=B"
|
|
94 |
apply (drule lemma2_1 [THEN eqpoll_def [THEN def_imp_iff, THEN iffD1]],
|
|
95 |
assumption)
|
|
96 |
apply (blast intro!: lemma2_2 lemma2_3 lemma2_4 lemma2_5)
|
|
97 |
done
|
|
98 |
|
|
99 |
theorem WO1_AC10: "[| WO1; 1\<le>n |] ==> AC10(n)"
|
|
100 |
apply (unfold AC10_def)
|
|
101 |
apply (fast intro!: lemma1 elim!: lemma2)
|
|
102 |
done
|
|
103 |
|
|
104 |
end
|
|
105 |
|