| author | paulson | 
| Tue, 22 Jul 1997 11:15:14 +0200 | |
| changeset 3539 | d4443afc8d28 | 
| parent 6 | 8ce8c4d13d4d | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/pair  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1992 University of Cambridge  | 
|
5  | 
||
6  | 
Ordered pairs in Zermelo-Fraenkel Set Theory  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
(** Lemmas for showing that <a,b> uniquely determines a and b **)  | 
|
10  | 
||
11  | 
val doubleton_iff = prove_goal ZF.thy  | 
|
12  | 
    "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
 | 
|
13  | 
(fn _=> [ (resolve_tac [extension RS iff_trans] 1),  | 
|
14  | 
(fast_tac upair_cs 1) ]);  | 
|
15  | 
||
16  | 
val Pair_iff = prove_goalw ZF.thy [Pair_def]  | 
|
17  | 
"<a,b> = <c,d> <-> a=c & b=d"  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
18  | 
(fn _=> [ (simp_tac (FOL_ss addsimps [doubleton_iff]) 1),  | 
| 0 | 19  | 
(fast_tac FOL_cs 1) ]);  | 
20  | 
||
21  | 
val Pair_inject = standard (Pair_iff RS iffD1 RS conjE);  | 
|
22  | 
||
23  | 
val Pair_inject1 = prove_goal ZF.thy "<a,b> = <c,d> ==> a=c"  | 
|
24  | 
(fn [major]=>  | 
|
25  | 
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);  | 
|
26  | 
||
27  | 
val Pair_inject2 = prove_goal ZF.thy "<a,b> = <c,d> ==> b=d"  | 
|
28  | 
(fn [major]=>  | 
|
29  | 
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);  | 
|
30  | 
||
31  | 
val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "<a,b>=0 ==> P"  | 
|
32  | 
(fn [major]=>  | 
|
33  | 
[ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1),  | 
|
34  | 
(rtac consI1 1) ]);  | 
|
35  | 
||
36  | 
val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "<a,b>=a ==> P"  | 
|
37  | 
(fn [major]=>  | 
|
38  | 
[ (rtac (consI1 RS mem_anti_sym RS FalseE) 1),  | 
|
39  | 
(rtac (major RS subst) 1),  | 
|
40  | 
(rtac consI1 1) ]);  | 
|
41  | 
||
42  | 
val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "<a,b>=b ==> P"  | 
|
43  | 
(fn [major]=>  | 
|
44  | 
[ (rtac (consI1 RS consI2 RS mem_anti_sym RS FalseE) 1),  | 
|
45  | 
(rtac (major RS subst) 1),  | 
|
46  | 
(rtac (consI1 RS consI2) 1) ]);  | 
|
47  | 
||
48  | 
||
49  | 
(*** Sigma: Disjoint union of a family of sets  | 
|
50  | 
Generalizes Cartesian product ***)  | 
|
51  | 
||
52  | 
val SigmaI = prove_goalw ZF.thy [Sigma_def]  | 
|
53  | 
"[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"  | 
|
54  | 
(fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]);  | 
|
55  | 
||
56  | 
(*The general elimination rule*)  | 
|
57  | 
val SigmaE = prove_goalw ZF.thy [Sigma_def]  | 
|
58  | 
"[| c: Sigma(A,B); \  | 
|
59  | 
\ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P \  | 
|
60  | 
\ |] ==> P"  | 
|
61  | 
(fn major::prems=>  | 
|
62  | 
[ (cut_facts_tac [major] 1),  | 
|
63  | 
(REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);  | 
|
64  | 
||
65  | 
(** Elimination of <a,b>:A*B -- introduces no eigenvariables **)  | 
|
66  | 
val SigmaD1 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> a : A"  | 
|
67  | 
(fn [major]=>  | 
|
68  | 
[ (rtac (major RS SigmaE) 1),  | 
|
69  | 
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);  | 
|
70  | 
||
71  | 
val SigmaD2 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> b : B(a)"  | 
|
72  | 
(fn [major]=>  | 
|
73  | 
[ (rtac (major RS SigmaE) 1),  | 
|
74  | 
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);  | 
|
75  | 
||
76  | 
(*Also provable via  | 
|
77  | 
rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)  | 
|
78  | 
THEN prune_params_tac)  | 
|
79  | 
      (read_instantiate [("c","<a,b>")] SigmaE);  *)
 | 
|
80  | 
val SigmaE2 = prove_goal ZF.thy  | 
|
81  | 
"[| <a,b> : Sigma(A,B); \  | 
|
82  | 
\ [| a:A; b:B(a) |] ==> P \  | 
|
83  | 
\ |] ==> P"  | 
|
84  | 
(fn [major,minor]=>  | 
|
85  | 
[ (rtac minor 1),  | 
|
86  | 
(rtac (major RS SigmaD1) 1),  | 
|
87  | 
(rtac (major RS SigmaD2) 1) ]);  | 
|
88  | 
||
89  | 
val Sigma_cong = prove_goalw ZF.thy [Sigma_def]  | 
|
90  | 
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \  | 
|
91  | 
\ Sigma(A,B) = Sigma(A',B')"  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
92  | 
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [RepFun_cong]) 1) ]);  | 
| 0 | 93  | 
|
94  | 
val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0"  | 
|
95  | 
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);  | 
|
96  | 
||
97  | 
val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0"  | 
|
98  | 
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);  | 
|
99  | 
||
100  | 
||
101  | 
(*** Eliminator - split ***)  | 
|
102  | 
||
103  | 
val split = prove_goalw ZF.thy [split_def]  | 
|
104  | 
"split(%x y.c(x,y), <a,b>) = c(a,b)"  | 
|
105  | 
(fn _ =>  | 
|
106  | 
[ (fast_tac (upair_cs addIs [the_equality] addEs [Pair_inject]) 1) ]);  | 
|
107  | 
||
108  | 
val split_type = prove_goal ZF.thy  | 
|
109  | 
"[| p:Sigma(A,B); \  | 
|
110  | 
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \  | 
|
111  | 
\ |] ==> split(%x y.c(x,y), p) : C(p)"  | 
|
112  | 
(fn major::prems=>  | 
|
113  | 
[ (rtac (major RS SigmaE) 1),  | 
|
114  | 
(etac ssubst 1),  | 
|
115  | 
(REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]);  | 
|
116  | 
||
117  | 
(*** conversions for fst and snd ***)  | 
|
118  | 
||
119  | 
val fst_conv = prove_goalw ZF.thy [fst_def] "fst(<a,b>) = a"  | 
|
120  | 
(fn _=> [ (rtac split 1) ]);  | 
|
121  | 
||
122  | 
val snd_conv = prove_goalw ZF.thy [snd_def] "snd(<a,b>) = b"  | 
|
123  | 
(fn _=> [ (rtac split 1) ]);  | 
|
124  | 
||
125  | 
||
126  | 
(*** split for predicates: result type o ***)  | 
|
127  | 
||
128  | 
goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, <a,b>)";  | 
|
129  | 
by (REPEAT (ares_tac [refl,exI,conjI] 1));  | 
|
130  | 
val fsplitI = result();  | 
|
131  | 
||
132  | 
val major::prems = goalw ZF.thy [fsplit_def]  | 
|
133  | 
"[| fsplit(R,z); !!x y. [| z = <x,y>; R(x,y) |] ==> P |] ==> P";  | 
|
134  | 
by (cut_facts_tac [major] 1);  | 
|
135  | 
by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1));  | 
|
136  | 
val fsplitE = result();  | 
|
137  | 
||
138  | 
goal ZF.thy "!!R a b. fsplit(R,<a,b>) ==> R(a,b)";  | 
|
139  | 
by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1));  | 
|
140  | 
val fsplitD = result();  | 
|
141  | 
||
142  | 
val pair_cs = upair_cs  | 
|
143  | 
addSIs [SigmaI]  | 
|
144  | 
addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject,  | 
|
145  | 
Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0];  | 
|
146  |