| author | lcp | 
| Thu, 03 Feb 1994 17:16:40 +0100 | |
| changeset 263 | d45f0af592f0 | 
| parent 12 | f17d542276b6 | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: FOL/ifol.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1992 University of Cambridge | |
| 5 | ||
| 6 | Tactics and lemmas for ifol.thy (intuitionistic first-order logic) | |
| 7 | *) | |
| 8 | ||
| 9 | open IFOL; | |
| 10 | ||
| 11 | signature IFOL_LEMMAS = | |
| 12 | sig | |
| 13 | val allE: thm | |
| 14 | val all_cong: thm | |
| 15 | val all_dupE: thm | |
| 16 | val all_impE: thm | |
| 17 | val box_equals: thm | |
| 18 | val conjE: thm | |
| 19 | val conj_cong: thm | |
| 20 | val conj_impE: thm | |
| 21 | val contrapos: thm | |
| 22 | val disj_cong: thm | |
| 23 | val disj_impE: thm | |
| 24 | val eq_cong: thm | |
| 25 | val eq_mp_tac: int -> tactic | |
| 26 | val ex1I: thm | |
| 12 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 27 | val ex_ex1I: thm | 
| 0 | 28 | val ex1E: thm | 
| 29 | val ex1_equalsE: thm | |
| 30 | val ex1_cong: thm | |
| 31 | val ex_cong: thm | |
| 32 | val ex_impE: thm | |
| 33 | val iffD1: thm | |
| 34 | val iffD2: thm | |
| 35 | val iffE: thm | |
| 36 | val iffI: thm | |
| 37 | val iff_cong: thm | |
| 38 | val iff_impE: thm | |
| 39 | val iff_refl: thm | |
| 40 | val iff_sym: thm | |
| 41 | val iff_trans: thm | |
| 42 | val impE: thm | |
| 43 | val imp_cong: thm | |
| 44 | val imp_impE: thm | |
| 45 | val mp_tac: int -> tactic | |
| 46 | val notE: thm | |
| 47 | val notI: thm | |
| 48 | val not_cong: thm | |
| 49 | val not_impE: thm | |
| 50 | val not_sym: thm | |
| 51 | val not_to_imp: thm | |
| 52 | val pred1_cong: thm | |
| 53 | val pred2_cong: thm | |
| 54 | val pred3_cong: thm | |
| 55 | val pred_congs: thm list | |
| 56 | val rev_mp: thm | |
| 57 | val simp_equals: thm | |
| 58 | val ssubst: thm | |
| 59 | val subst_context: thm | |
| 60 | val subst_context2: thm | |
| 61 | val subst_context3: thm | |
| 62 | val sym: thm | |
| 63 | val trans: thm | |
| 64 | val TrueI: thm | |
| 65 | end; | |
| 66 | ||
| 67 | ||
| 68 | structure IFOL_Lemmas : IFOL_LEMMAS = | |
| 69 | struct | |
| 70 | ||
| 71 | val TrueI = prove_goalw IFOL.thy [True_def] "True" | |
| 72 | (fn _ => [ (REPEAT (ares_tac [impI] 1)) ]); | |
| 73 | ||
| 74 | (*** Sequent-style elimination rules for & --> and ALL ***) | |
| 75 | ||
| 76 | val conjE = prove_goal IFOL.thy | |
| 77 | "[| P&Q; [| P; Q |] ==> R |] ==> R" | |
| 78 | (fn prems=> | |
| 79 | [ (REPEAT (resolve_tac prems 1 | |
| 80 | ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN | |
| 81 | resolve_tac prems 1))) ]); | |
| 82 | ||
| 83 | val impE = prove_goal IFOL.thy | |
| 84 | "[| P-->Q; P; Q ==> R |] ==> R" | |
| 85 | (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); | |
| 86 | ||
| 87 | val allE = prove_goal IFOL.thy | |
| 88 | "[| ALL x.P(x); P(x) ==> R |] ==> R" | |
| 89 | (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); | |
| 90 | ||
| 91 | (*Duplicates the quantifier; for use with eresolve_tac*) | |
| 92 | val all_dupE = prove_goal IFOL.thy | |
| 93 | "[| ALL x.P(x); [| P(x); ALL x.P(x) |] ==> R \ | |
| 94 | \ |] ==> R" | |
| 95 | (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); | |
| 96 | ||
| 97 | ||
| 98 | (*** Negation rules, which translate between ~P and P-->False ***) | |
| 99 | ||
| 100 | val notI = prove_goalw IFOL.thy [not_def] "(P ==> False) ==> ~P" | |
| 101 | (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]); | |
| 102 | ||
| 103 | val notE = prove_goalw IFOL.thy [not_def] "[| ~P; P |] ==> R" | |
| 104 | (fn prems=> | |
| 105 | [ (resolve_tac [mp RS FalseE] 1), | |
| 106 | (REPEAT (resolve_tac prems 1)) ]); | |
| 107 | ||
| 108 | (*This is useful with the special implication rules for each kind of P. *) | |
| 109 | val not_to_imp = prove_goal IFOL.thy | |
| 110 | "[| ~P; (P-->False) ==> Q |] ==> Q" | |
| 111 | (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]); | |
| 112 | ||
| 113 | ||
| 114 | (* For substitution int an assumption P, reduce Q to P-->Q, substitute into | |
| 115 | this implication, then apply impI to move P back into the assumptions. | |
| 116 | To specify P use something like | |
| 117 |       eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
 | |
| 118 | val rev_mp = prove_goal IFOL.thy "[| P; P --> Q |] ==> Q" | |
| 119 | (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); | |
| 120 | ||
| 121 | ||
| 122 | (*Contrapositive of an inference rule*) | |
| 123 | val contrapos = prove_goal IFOL.thy "[| ~Q; P==>Q |] ==> ~P" | |
| 124 | (fn [major,minor]=> | |
| 125 | [ (rtac (major RS notE RS notI) 1), | |
| 126 | (etac minor 1) ]); | |
| 127 | ||
| 128 | ||
| 129 | (*** Modus Ponens Tactics ***) | |
| 130 | ||
| 131 | (*Finds P-->Q and P in the assumptions, replaces implication by Q *) | |
| 132 | fun mp_tac i = eresolve_tac [notE,impE] i THEN assume_tac i; | |
| 133 | ||
| 134 | (*Like mp_tac but instantiates no variables*) | |
| 135 | fun eq_mp_tac i = eresolve_tac [notE,impE] i THEN eq_assume_tac i; | |
| 136 | ||
| 137 | ||
| 138 | (*** If-and-only-if ***) | |
| 139 | ||
| 140 | val iffI = prove_goalw IFOL.thy [iff_def] | |
| 141 | "[| P ==> Q; Q ==> P |] ==> P<->Q" | |
| 142 | (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]); | |
| 143 | ||
| 144 | ||
| 145 | (*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *) | |
| 146 | val iffE = prove_goalw IFOL.thy [iff_def] | |
| 147 | "[| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R" | |
| 148 | (fn prems => [ (resolve_tac [conjE] 1), (REPEAT (ares_tac prems 1)) ]); | |
| 149 | ||
| 150 | (* Destruct rules for <-> similar to Modus Ponens *) | |
| 151 | ||
| 152 | val iffD1 = prove_goalw IFOL.thy [iff_def] "[| P <-> Q; P |] ==> Q" | |
| 153 | (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); | |
| 154 | ||
| 155 | val iffD2 = prove_goalw IFOL.thy [iff_def] "[| P <-> Q; Q |] ==> P" | |
| 156 | (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); | |
| 157 | ||
| 158 | val iff_refl = prove_goal IFOL.thy "P <-> P" | |
| 159 | (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]); | |
| 160 | ||
| 161 | val iff_sym = prove_goal IFOL.thy "Q <-> P ==> P <-> Q" | |
| 162 | (fn [major] => | |
| 163 | [ (rtac (major RS iffE) 1), | |
| 164 | (rtac iffI 1), | |
| 165 | (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]); | |
| 166 | ||
| 167 | val iff_trans = prove_goal IFOL.thy | |
| 168 | "!!P Q R. [| P <-> Q; Q<-> R |] ==> P <-> R" | |
| 169 | (fn _ => | |
| 170 | [ (rtac iffI 1), | |
| 171 | (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]); | |
| 172 | ||
| 173 | ||
| 174 | (*** Unique existence. NOTE THAT the following 2 quantifications | |
| 175 | EX!x such that [EX!y such that P(x,y)] (sequential) | |
| 176 | EX!x,y such that P(x,y) (simultaneous) | |
| 177 | do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. | |
| 178 | ***) | |
| 179 | ||
| 180 | val ex1I = prove_goalw IFOL.thy [ex1_def] | |
| 181 | "[| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)" | |
| 182 | (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); | |
| 183 | ||
| 12 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 184 | (*Sometimes easier to use: the premises have no shared variables*) | 
| 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 185 | val ex_ex1I = prove_goal IFOL.thy | 
| 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 186 | "[| EX x.P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> EX! x. P(x)" | 
| 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 187 | (fn [ex,eq] => [ (rtac (ex RS exE) 1), | 
| 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 188 | (REPEAT (ares_tac [ex1I,eq] 1)) ]); | 
| 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 189 | |
| 0 | 190 | val ex1E = prove_goalw IFOL.thy [ex1_def] | 
| 191 | "[| EX! x.P(x); !!x. [| P(x); ALL y. P(y) --> y=x |] ==> R |] ==> R" | |
| 192 | (fn prems => | |
| 193 | [ (cut_facts_tac prems 1), | |
| 194 | (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]); | |
| 195 | ||
| 196 | ||
| 197 | (*** <-> congruence rules for simplification ***) | |
| 198 | ||
| 199 | (*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) | |
| 200 | fun iff_tac prems i = | |
| 201 | resolve_tac (prems RL [iffE]) i THEN | |
| 202 | REPEAT1 (eresolve_tac [asm_rl,mp] i); | |
| 203 | ||
| 204 | val conj_cong = prove_goal IFOL.thy | |
| 205 | "[| P <-> P'; P' ==> Q <-> Q' |] ==> (P&Q) <-> (P'&Q')" | |
| 206 | (fn prems => | |
| 207 | [ (cut_facts_tac prems 1), | |
| 208 | (REPEAT (ares_tac [iffI,conjI] 1 | |
| 209 | ORELSE eresolve_tac [iffE,conjE,mp] 1 | |
| 210 | ORELSE iff_tac prems 1)) ]); | |
| 211 | ||
| 212 | val disj_cong = prove_goal IFOL.thy | |
| 213 | "[| P <-> P'; Q <-> Q' |] ==> (P|Q) <-> (P'|Q')" | |
| 214 | (fn prems => | |
| 215 | [ (cut_facts_tac prems 1), | |
| 216 | (REPEAT (eresolve_tac [iffE,disjE,disjI1,disjI2] 1 | |
| 217 | ORELSE ares_tac [iffI] 1 | |
| 218 | ORELSE mp_tac 1)) ]); | |
| 219 | ||
| 220 | val imp_cong = prove_goal IFOL.thy | |
| 221 | "[| P <-> P'; P' ==> Q <-> Q' |] ==> (P-->Q) <-> (P'-->Q')" | |
| 222 | (fn prems => | |
| 223 | [ (cut_facts_tac prems 1), | |
| 224 | (REPEAT (ares_tac [iffI,impI] 1 | |
| 225 | ORELSE eresolve_tac [iffE] 1 | |
| 226 | ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ]); | |
| 227 | ||
| 228 | val iff_cong = prove_goal IFOL.thy | |
| 229 | "[| P <-> P'; Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')" | |
| 230 | (fn prems => | |
| 231 | [ (cut_facts_tac prems 1), | |
| 232 | (REPEAT (eresolve_tac [iffE] 1 | |
| 233 | ORELSE ares_tac [iffI] 1 | |
| 234 | ORELSE mp_tac 1)) ]); | |
| 235 | ||
| 236 | val not_cong = prove_goal IFOL.thy | |
| 237 | "P <-> P' ==> ~P <-> ~P'" | |
| 238 | (fn prems => | |
| 239 | [ (cut_facts_tac prems 1), | |
| 240 | (REPEAT (ares_tac [iffI,notI] 1 | |
| 241 | ORELSE mp_tac 1 | |
| 242 | ORELSE eresolve_tac [iffE,notE] 1)) ]); | |
| 243 | ||
| 244 | val all_cong = prove_goal IFOL.thy | |
| 245 | "(!!x.P(x) <-> Q(x)) ==> (ALL x.P(x)) <-> (ALL x.Q(x))" | |
| 246 | (fn prems => | |
| 247 | [ (REPEAT (ares_tac [iffI,allI] 1 | |
| 248 | ORELSE mp_tac 1 | |
| 249 | ORELSE eresolve_tac [allE] 1 ORELSE iff_tac prems 1)) ]); | |
| 250 | ||
| 251 | val ex_cong = prove_goal IFOL.thy | |
| 252 | "(!!x.P(x) <-> Q(x)) ==> (EX x.P(x)) <-> (EX x.Q(x))" | |
| 253 | (fn prems => | |
| 254 | [ (REPEAT (eresolve_tac [exE] 1 ORELSE ares_tac [iffI,exI] 1 | |
| 255 | ORELSE mp_tac 1 | |
| 256 | ORELSE iff_tac prems 1)) ]); | |
| 257 | ||
| 258 | val ex1_cong = prove_goal IFOL.thy | |
| 259 | "(!!x.P(x) <-> Q(x)) ==> (EX! x.P(x)) <-> (EX! x.Q(x))" | |
| 260 | (fn prems => | |
| 261 | [ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 | |
| 262 | ORELSE mp_tac 1 | |
| 263 | ORELSE iff_tac prems 1)) ]); | |
| 264 | ||
| 265 | (*** Equality rules ***) | |
| 266 | ||
| 267 | val sym = prove_goal IFOL.thy "a=b ==> b=a" | |
| 268 | (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]); | |
| 269 | ||
| 270 | val trans = prove_goal IFOL.thy "[| a=b; b=c |] ==> a=c" | |
| 271 | (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]); | |
| 272 | ||
| 273 | (** ~ b=a ==> ~ a=b **) | |
| 274 | val [not_sym] = compose(sym,2,contrapos); | |
| 275 | ||
| 276 | (*calling "standard" reduces maxidx to 0*) | |
| 277 | val ssubst = standard (sym RS subst); | |
| 278 | ||
| 279 | (*A special case of ex1E that would otherwise need quantifier expansion*) | |
| 280 | val ex1_equalsE = prove_goal IFOL.thy | |
| 281 | "[| EX! x.P(x); P(a); P(b) |] ==> a=b" | |
| 282 | (fn prems => | |
| 283 | [ (cut_facts_tac prems 1), | |
| 284 | (etac ex1E 1), | |
| 285 | (rtac trans 1), | |
| 286 | (rtac sym 2), | |
| 287 | (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]); | |
| 288 | ||
| 289 | (** Polymorphic congruence rules **) | |
| 290 | ||
| 291 | val subst_context = prove_goal IFOL.thy | |
| 292 | "[| a=b |] ==> t(a)=t(b)" | |
| 293 | (fn prems=> | |
| 294 | [ (resolve_tac (prems RL [ssubst]) 1), | |
| 295 | (resolve_tac [refl] 1) ]); | |
| 296 | ||
| 297 | val subst_context2 = prove_goal IFOL.thy | |
| 298 | "[| a=b; c=d |] ==> t(a,c)=t(b,d)" | |
| 299 | (fn prems=> | |
| 300 | [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); | |
| 301 | ||
| 302 | val subst_context3 = prove_goal IFOL.thy | |
| 303 | "[| a=b; c=d; e=f |] ==> t(a,c,e)=t(b,d,f)" | |
| 304 | (fn prems=> | |
| 305 | [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); | |
| 306 | ||
| 307 | (*Useful with eresolve_tac for proving equalties from known equalities. | |
| 308 | a = b | |
| 309 | | | | |
| 310 | c = d *) | |
| 311 | val box_equals = prove_goal IFOL.thy | |
| 312 | "[| a=b; a=c; b=d |] ==> c=d" | |
| 313 | (fn prems=> | |
| 314 | [ (resolve_tac [trans] 1), | |
| 315 | (resolve_tac [trans] 1), | |
| 316 | (resolve_tac [sym] 1), | |
| 317 | (REPEAT (resolve_tac prems 1)) ]); | |
| 318 | ||
| 319 | (*Dual of box_equals: for proving equalities backwards*) | |
| 320 | val simp_equals = prove_goal IFOL.thy | |
| 321 | "[| a=c; b=d; c=d |] ==> a=b" | |
| 322 | (fn prems=> | |
| 323 | [ (resolve_tac [trans] 1), | |
| 324 | (resolve_tac [trans] 1), | |
| 325 | (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]); | |
| 326 | ||
| 327 | (** Congruence rules for predicate letters **) | |
| 328 | ||
| 329 | val pred1_cong = prove_goal IFOL.thy | |
| 330 | "a=a' ==> P(a) <-> P(a')" | |
| 331 | (fn prems => | |
| 332 | [ (cut_facts_tac prems 1), | |
| 333 | (rtac iffI 1), | |
| 334 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 335 | ||
| 336 | val pred2_cong = prove_goal IFOL.thy | |
| 337 | "[| a=a'; b=b' |] ==> P(a,b) <-> P(a',b')" | |
| 338 | (fn prems => | |
| 339 | [ (cut_facts_tac prems 1), | |
| 340 | (rtac iffI 1), | |
| 341 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 342 | ||
| 343 | val pred3_cong = prove_goal IFOL.thy | |
| 344 | "[| a=a'; b=b'; c=c' |] ==> P(a,b,c) <-> P(a',b',c')" | |
| 345 | (fn prems => | |
| 346 | [ (cut_facts_tac prems 1), | |
| 347 | (rtac iffI 1), | |
| 348 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 349 | ||
| 350 | (*special cases for free variables P, Q, R, S -- up to 3 arguments*) | |
| 351 | ||
| 352 | val pred_congs = | |
| 353 | flat (map (fn c => | |
| 354 | 	       map (fn th => read_instantiate [("P",c)] th)
 | |
| 355 | [pred1_cong,pred2_cong,pred3_cong]) | |
| 356 | (explode"PQRS")); | |
| 357 | ||
| 358 | (*special case for the equality predicate!*) | |
| 359 | val eq_cong = read_instantiate [("P","op =")] pred2_cong;
 | |
| 360 | ||
| 361 | ||
| 362 | (*** Simplifications of assumed implications. | |
| 363 | Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE | |
| 364 | used with mp_tac (restricted to atomic formulae) is COMPLETE for | |
| 365 | intuitionistic propositional logic. See | |
| 366 | R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic | |
| 367 | (preprint, University of St Andrews, 1991) ***) | |
| 368 | ||
| 369 | val conj_impE = prove_goal IFOL.thy | |
| 370 | "[| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R" | |
| 371 | (fn major::prems=> | |
| 372 | [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]); | |
| 373 | ||
| 374 | val disj_impE = prove_goal IFOL.thy | |
| 375 | "[| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R" | |
| 376 | (fn major::prems=> | |
| 377 | [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]); | |
| 378 | ||
| 379 | (*Simplifies the implication. Classical version is stronger. | |
| 380 | Still UNSAFE since Q must be provable -- backtracking needed. *) | |
| 381 | val imp_impE = prove_goal IFOL.thy | |
| 382 | "[| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R" | |
| 383 | (fn major::prems=> | |
| 384 | [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]); | |
| 385 | ||
| 386 | (*Simplifies the implication. Classical version is stronger. | |
| 387 | Still UNSAFE since ~P must be provable -- backtracking needed. *) | |
| 388 | val not_impE = prove_goal IFOL.thy | |
| 389 | "[| ~P --> S; P ==> False; S ==> R |] ==> R" | |
| 390 | (fn major::prems=> | |
| 391 | [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]); | |
| 392 | ||
| 393 | (*Simplifies the implication. UNSAFE. *) | |
| 394 | val iff_impE = prove_goal IFOL.thy | |
| 395 | "[| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P; \ | |
| 396 | \ S ==> R |] ==> R" | |
| 397 | (fn major::prems=> | |
| 398 | [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]); | |
| 399 | ||
| 400 | (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) | |
| 401 | val all_impE = prove_goal IFOL.thy | |
| 402 | "[| (ALL x.P(x))-->S; !!x.P(x); S ==> R |] ==> R" | |
| 403 | (fn major::prems=> | |
| 404 | [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]); | |
| 405 | ||
| 406 | (*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) | |
| 407 | val ex_impE = prove_goal IFOL.thy | |
| 408 | "[| (EX x.P(x))-->S; P(x)-->S ==> R |] ==> R" | |
| 409 | (fn major::prems=> | |
| 410 | [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]); | |
| 411 | ||
| 412 | end; | |
| 413 | ||
| 414 | open IFOL_Lemmas; | |
| 415 |