author | wenzelm |
Tue, 12 Dec 2006 11:57:30 +0100 | |
changeset 21788 | d460465a9f97 |
parent 21672 | 29c346b165d4 |
child 22157 | e1d68715ed09 |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Nat.thy |
2 |
ID: $Id$ |
|
21243 | 3 |
Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel |
923 | 4 |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
5 |
Type "nat" is a linear order, and a datatype; arithmetic operators + - |
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
6 |
and * (for div, mod and dvd, see theory Divides). |
923 | 7 |
*) |
8 |
||
13449 | 9 |
header {* Natural numbers *} |
10 |
||
15131 | 11 |
theory Nat |
15140 | 12 |
imports Wellfounded_Recursion Ring_and_Field |
21243 | 13 |
uses ("arith_data.ML") |
15131 | 14 |
begin |
13449 | 15 |
|
16 |
subsection {* Type @{text ind} *} |
|
17 |
||
18 |
typedecl ind |
|
19 |
||
19573 | 20 |
axiomatization |
21 |
Zero_Rep :: ind and |
|
22 |
Suc_Rep :: "ind => ind" |
|
23 |
where |
|
13449 | 24 |
-- {* the axiom of infinity in 2 parts *} |
19573 | 25 |
inj_Suc_Rep: "inj Suc_Rep" and |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
26 |
Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" |
19573 | 27 |
|
13449 | 28 |
|
29 |
subsection {* Type nat *} |
|
30 |
||
31 |
text {* Type definition *} |
|
32 |
||
33 |
consts |
|
34 |
Nat :: "ind set" |
|
35 |
||
36 |
inductive Nat |
|
37 |
intros |
|
38 |
Zero_RepI: "Zero_Rep : Nat" |
|
39 |
Suc_RepI: "i : Nat ==> Suc_Rep i : Nat" |
|
40 |
||
41 |
global |
|
42 |
||
43 |
typedef (open Nat) |
|
21243 | 44 |
nat = Nat |
45 |
proof |
|
46 |
show "Zero_Rep : Nat" by (rule Nat.Zero_RepI) |
|
47 |
qed |
|
13449 | 48 |
|
49 |
text {* Abstract constants and syntax *} |
|
50 |
||
51 |
consts |
|
52 |
Suc :: "nat => nat" |
|
53 |
pred_nat :: "(nat * nat) set" |
|
54 |
||
55 |
local |
|
56 |
||
57 |
defs |
|
18648 | 58 |
Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))" |
13449 | 59 |
pred_nat_def: "pred_nat == {(m, n). n = Suc m}" |
60 |
||
21456 | 61 |
instance nat :: "{ord, zero, one}" |
62 |
Zero_nat_def: "0 == Abs_Nat Zero_Rep" |
|
63 |
One_nat_def [simp]: "1 == Suc 0" |
|
13449 | 64 |
less_def: "m < n == (m, n) : trancl pred_nat" |
21456 | 65 |
le_def: "m \<le> (n::nat) == ~ (n < m)" .. |
13449 | 66 |
|
67 |
text {* Induction *} |
|
923 | 68 |
|
13449 | 69 |
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n" |
70 |
apply (unfold Zero_nat_def Suc_def) |
|
71 |
apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *} |
|
72 |
apply (erule Rep_Nat [THEN Nat.induct]) |
|
17589 | 73 |
apply (iprover elim: Abs_Nat_inverse [THEN subst]) |
13449 | 74 |
done |
75 |
||
76 |
text {* Distinctness of constructors *} |
|
77 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
78 |
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0" |
15413 | 79 |
by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI |
80 |
Suc_Rep_not_Zero_Rep) |
|
13449 | 81 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
82 |
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m" |
13449 | 83 |
by (rule not_sym, rule Suc_not_Zero not_sym) |
84 |
||
85 |
lemma Suc_neq_Zero: "Suc m = 0 ==> R" |
|
86 |
by (rule notE, rule Suc_not_Zero) |
|
87 |
||
88 |
lemma Zero_neq_Suc: "0 = Suc m ==> R" |
|
89 |
by (rule Suc_neq_Zero, erule sym) |
|
90 |
||
91 |
text {* Injectiveness of @{term Suc} *} |
|
92 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
93 |
lemma inj_Suc[simp]: "inj_on Suc N" |
15413 | 94 |
by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI |
95 |
inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) |
|
13449 | 96 |
|
97 |
lemma Suc_inject: "Suc x = Suc y ==> x = y" |
|
98 |
by (rule inj_Suc [THEN injD]) |
|
99 |
||
100 |
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)" |
|
15413 | 101 |
by (rule inj_Suc [THEN inj_eq]) |
13449 | 102 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
103 |
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False" |
13449 | 104 |
by auto |
105 |
||
21411 | 106 |
text {* size of a datatype value *} |
21243 | 107 |
|
21411 | 108 |
class size = |
109 |
fixes size :: "'a \<Rightarrow> nat" |
|
21243 | 110 |
|
13449 | 111 |
text {* @{typ nat} is a datatype *} |
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
112 |
|
5188
633ec5f6c155
Declaration of type 'nat' as a datatype (this allows usage of
berghofe
parents:
4640
diff
changeset
|
113 |
rep_datatype nat |
13449 | 114 |
distinct Suc_not_Zero Zero_not_Suc |
115 |
inject Suc_Suc_eq |
|
21411 | 116 |
induction nat_induct |
117 |
||
118 |
declare nat.induct [case_names 0 Suc, induct type: nat] |
|
119 |
declare nat.exhaust [case_names 0 Suc, cases type: nat] |
|
13449 | 120 |
|
21672 | 121 |
lemmas nat_rec_0 = nat.recs(1) |
122 |
and nat_rec_Suc = nat.recs(2) |
|
123 |
||
124 |
lemmas nat_case_0 = nat.cases(1) |
|
125 |
and nat_case_Suc = nat.cases(2) |
|
126 |
||
127 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
128 |
lemma n_not_Suc_n: "n \<noteq> Suc n" |
13449 | 129 |
by (induct n) simp_all |
130 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
131 |
lemma Suc_n_not_n: "Suc t \<noteq> t" |
13449 | 132 |
by (rule not_sym, rule n_not_Suc_n) |
133 |
||
134 |
text {* A special form of induction for reasoning |
|
135 |
about @{term "m < n"} and @{term "m - n"} *} |
|
136 |
||
137 |
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> |
|
138 |
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" |
|
14208 | 139 |
apply (rule_tac x = m in spec) |
15251 | 140 |
apply (induct n) |
13449 | 141 |
prefer 2 |
142 |
apply (rule allI) |
|
17589 | 143 |
apply (induct_tac x, iprover+) |
13449 | 144 |
done |
145 |
||
146 |
subsection {* Basic properties of "less than" *} |
|
147 |
||
148 |
lemma wf_pred_nat: "wf pred_nat" |
|
14208 | 149 |
apply (unfold wf_def pred_nat_def, clarify) |
150 |
apply (induct_tac x, blast+) |
|
13449 | 151 |
done |
152 |
||
153 |
lemma wf_less: "wf {(x, y::nat). x < y}" |
|
154 |
apply (unfold less_def) |
|
14208 | 155 |
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast) |
13449 | 156 |
done |
157 |
||
158 |
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)" |
|
159 |
apply (unfold less_def) |
|
160 |
apply (rule refl) |
|
161 |
done |
|
162 |
||
163 |
subsubsection {* Introduction properties *} |
|
164 |
||
165 |
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)" |
|
166 |
apply (unfold less_def) |
|
14208 | 167 |
apply (rule trans_trancl [THEN transD], assumption+) |
13449 | 168 |
done |
169 |
||
170 |
lemma lessI [iff]: "n < Suc n" |
|
171 |
apply (unfold less_def pred_nat_def) |
|
172 |
apply (simp add: r_into_trancl) |
|
173 |
done |
|
174 |
||
175 |
lemma less_SucI: "i < j ==> i < Suc j" |
|
14208 | 176 |
apply (rule less_trans, assumption) |
13449 | 177 |
apply (rule lessI) |
178 |
done |
|
179 |
||
180 |
lemma zero_less_Suc [iff]: "0 < Suc n" |
|
181 |
apply (induct n) |
|
182 |
apply (rule lessI) |
|
183 |
apply (erule less_trans) |
|
184 |
apply (rule lessI) |
|
185 |
done |
|
186 |
||
187 |
subsubsection {* Elimination properties *} |
|
188 |
||
189 |
lemma less_not_sym: "n < m ==> ~ m < (n::nat)" |
|
190 |
apply (unfold less_def) |
|
191 |
apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym]) |
|
192 |
done |
|
193 |
||
194 |
lemma less_asym: |
|
195 |
assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P |
|
196 |
apply (rule contrapos_np) |
|
197 |
apply (rule less_not_sym) |
|
198 |
apply (rule h1) |
|
199 |
apply (erule h2) |
|
200 |
done |
|
201 |
||
202 |
lemma less_not_refl: "~ n < (n::nat)" |
|
203 |
apply (unfold less_def) |
|
204 |
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl]) |
|
205 |
done |
|
206 |
||
207 |
lemma less_irrefl [elim!]: "(n::nat) < n ==> R" |
|
208 |
by (rule notE, rule less_not_refl) |
|
209 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
210 |
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast |
13449 | 211 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
212 |
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" |
13449 | 213 |
by (rule not_sym, rule less_not_refl2) |
214 |
||
215 |
lemma lessE: |
|
216 |
assumes major: "i < k" |
|
217 |
and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" |
|
218 |
shows P |
|
14208 | 219 |
apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all) |
13449 | 220 |
apply (erule p1) |
221 |
apply (rule p2) |
|
14208 | 222 |
apply (simp add: less_def pred_nat_def, assumption) |
13449 | 223 |
done |
224 |
||
225 |
lemma not_less0 [iff]: "~ n < (0::nat)" |
|
226 |
by (blast elim: lessE) |
|
227 |
||
228 |
lemma less_zeroE: "(n::nat) < 0 ==> R" |
|
229 |
by (rule notE, rule not_less0) |
|
230 |
||
231 |
lemma less_SucE: assumes major: "m < Suc n" |
|
232 |
and less: "m < n ==> P" and eq: "m = n ==> P" shows P |
|
233 |
apply (rule major [THEN lessE]) |
|
14208 | 234 |
apply (rule eq, blast) |
235 |
apply (rule less, blast) |
|
13449 | 236 |
done |
237 |
||
238 |
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" |
|
239 |
by (blast elim!: less_SucE intro: less_trans) |
|
240 |
||
241 |
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)" |
|
242 |
by (simp add: less_Suc_eq) |
|
243 |
||
244 |
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" |
|
245 |
by (simp add: less_Suc_eq) |
|
246 |
||
247 |
lemma Suc_mono: "m < n ==> Suc m < Suc n" |
|
248 |
by (induct n) (fast elim: less_trans lessE)+ |
|
249 |
||
250 |
text {* "Less than" is a linear ordering *} |
|
251 |
lemma less_linear: "m < n | m = n | n < (m::nat)" |
|
15251 | 252 |
apply (induct m) |
253 |
apply (induct n) |
|
13449 | 254 |
apply (rule refl [THEN disjI1, THEN disjI2]) |
255 |
apply (rule zero_less_Suc [THEN disjI1]) |
|
256 |
apply (blast intro: Suc_mono less_SucI elim: lessE) |
|
257 |
done |
|
258 |
||
14302 | 259 |
text {* "Less than" is antisymmetric, sort of *} |
260 |
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" |
|
261 |
apply(simp only:less_Suc_eq) |
|
262 |
apply blast |
|
263 |
done |
|
264 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
265 |
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" |
13449 | 266 |
using less_linear by blast |
267 |
||
268 |
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" |
|
269 |
and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" |
|
270 |
shows "P n m" |
|
271 |
apply (rule less_linear [THEN disjE]) |
|
272 |
apply (erule_tac [2] disjE) |
|
273 |
apply (erule lessCase) |
|
274 |
apply (erule sym [THEN eqCase]) |
|
275 |
apply (erule major) |
|
276 |
done |
|
277 |
||
278 |
||
279 |
subsubsection {* Inductive (?) properties *} |
|
280 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
281 |
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" |
13449 | 282 |
apply (simp add: nat_neq_iff) |
283 |
apply (blast elim!: less_irrefl less_SucE elim: less_asym) |
|
284 |
done |
|
285 |
||
286 |
lemma Suc_lessD: "Suc m < n ==> m < n" |
|
287 |
apply (induct n) |
|
288 |
apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+ |
|
289 |
done |
|
290 |
||
291 |
lemma Suc_lessE: assumes major: "Suc i < k" |
|
292 |
and minor: "!!j. i < j ==> k = Suc j ==> P" shows P |
|
293 |
apply (rule major [THEN lessE]) |
|
294 |
apply (erule lessI [THEN minor]) |
|
14208 | 295 |
apply (erule Suc_lessD [THEN minor], assumption) |
13449 | 296 |
done |
297 |
||
298 |
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" |
|
299 |
by (blast elim: lessE dest: Suc_lessD) |
|
4104 | 300 |
|
16635 | 301 |
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)" |
13449 | 302 |
apply (rule iffI) |
303 |
apply (erule Suc_less_SucD) |
|
304 |
apply (erule Suc_mono) |
|
305 |
done |
|
306 |
||
307 |
lemma less_trans_Suc: |
|
308 |
assumes le: "i < j" shows "j < k ==> Suc i < k" |
|
14208 | 309 |
apply (induct k, simp_all) |
13449 | 310 |
apply (insert le) |
311 |
apply (simp add: less_Suc_eq) |
|
312 |
apply (blast dest: Suc_lessD) |
|
313 |
done |
|
314 |
||
16635 | 315 |
lemma [code]: "((n::nat) < 0) = False" by simp |
316 |
lemma [code]: "(0 < Suc n) = True" by simp |
|
317 |
||
13449 | 318 |
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *} |
319 |
lemma not_less_eq: "(~ m < n) = (n < Suc m)" |
|
14208 | 320 |
by (rule_tac m = m and n = n in diff_induct, simp_all) |
13449 | 321 |
|
322 |
text {* Complete induction, aka course-of-values induction *} |
|
323 |
lemma nat_less_induct: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
324 |
assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" |
13449 | 325 |
apply (rule_tac a=n in wf_induct) |
326 |
apply (rule wf_pred_nat [THEN wf_trancl]) |
|
327 |
apply (rule prem) |
|
14208 | 328 |
apply (unfold less_def, assumption) |
13449 | 329 |
done |
330 |
||
14131 | 331 |
lemmas less_induct = nat_less_induct [rule_format, case_names less] |
332 |
||
21243 | 333 |
|
14131 | 334 |
subsection {* Properties of "less than or equal" *} |
13449 | 335 |
|
336 |
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
337 |
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)" |
13449 | 338 |
by (unfold le_def, rule not_less_eq [symmetric]) |
339 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
340 |
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" |
13449 | 341 |
by (rule less_Suc_eq_le [THEN iffD2]) |
342 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
343 |
lemma le0 [iff]: "(0::nat) \<le> n" |
13449 | 344 |
by (unfold le_def, rule not_less0) |
345 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
346 |
lemma Suc_n_not_le_n: "~ Suc n \<le> n" |
13449 | 347 |
by (simp add: le_def) |
348 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
349 |
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)" |
13449 | 350 |
by (induct i) (simp_all add: le_def) |
351 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
352 |
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" |
13449 | 353 |
by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq) |
354 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
355 |
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" |
17589 | 356 |
by (drule le_Suc_eq [THEN iffD1], iprover+) |
13449 | 357 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
358 |
lemma Suc_leI: "m < n ==> Suc(m) \<le> n" |
13449 | 359 |
apply (simp add: le_def less_Suc_eq) |
360 |
apply (blast elim!: less_irrefl less_asym) |
|
361 |
done -- {* formerly called lessD *} |
|
362 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
363 |
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n" |
13449 | 364 |
by (simp add: le_def less_Suc_eq) |
365 |
||
366 |
text {* Stronger version of @{text Suc_leD} *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
367 |
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" |
13449 | 368 |
apply (simp add: le_def less_Suc_eq) |
369 |
using less_linear |
|
370 |
apply blast |
|
371 |
done |
|
372 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
373 |
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)" |
13449 | 374 |
by (blast intro: Suc_leI Suc_le_lessD) |
375 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
376 |
lemma le_SucI: "m \<le> n ==> m \<le> Suc n" |
13449 | 377 |
by (unfold le_def) (blast dest: Suc_lessD) |
378 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
379 |
lemma less_imp_le: "m < n ==> m \<le> (n::nat)" |
13449 | 380 |
by (unfold le_def) (blast elim: less_asym) |
381 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
382 |
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *} |
13449 | 383 |
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq |
384 |
||
385 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
386 |
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *} |
13449 | 387 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
388 |
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)" |
13449 | 389 |
apply (unfold le_def) |
390 |
using less_linear |
|
391 |
apply (blast elim: less_irrefl less_asym) |
|
392 |
done |
|
393 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
394 |
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" |
13449 | 395 |
apply (unfold le_def) |
396 |
using less_linear |
|
397 |
apply (blast elim!: less_irrefl elim: less_asym) |
|
398 |
done |
|
399 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
400 |
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" |
17589 | 401 |
by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq) |
13449 | 402 |
|
403 |
text {* Useful with @{text Blast}. *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
404 |
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" |
13449 | 405 |
by (rule less_or_eq_imp_le, rule disjI2) |
406 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
407 |
lemma le_refl: "n \<le> (n::nat)" |
13449 | 408 |
by (simp add: le_eq_less_or_eq) |
409 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
410 |
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)" |
13449 | 411 |
by (blast dest!: le_imp_less_or_eq intro: less_trans) |
412 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
413 |
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)" |
13449 | 414 |
by (blast dest!: le_imp_less_or_eq intro: less_trans) |
415 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
416 |
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" |
13449 | 417 |
by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans) |
418 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
419 |
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" |
13449 | 420 |
by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym) |
421 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
422 |
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)" |
13449 | 423 |
by (simp add: le_simps) |
424 |
||
425 |
text {* Axiom @{text order_less_le} of class @{text order}: *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
426 |
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" |
13449 | 427 |
by (simp add: le_def nat_neq_iff) (blast elim!: less_asym) |
428 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
429 |
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" |
13449 | 430 |
by (rule iffD2, rule nat_less_le, rule conjI) |
431 |
||
432 |
text {* Axiom @{text linorder_linear} of class @{text linorder}: *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
433 |
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" |
13449 | 434 |
apply (simp add: le_eq_less_or_eq) |
435 |
using less_linear |
|
436 |
apply blast |
|
437 |
done |
|
438 |
||
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
439 |
text {* Type {@typ nat} is a wellfounded linear order *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
440 |
|
14691 | 441 |
instance nat :: "{order, linorder, wellorder}" |
442 |
by intro_classes |
|
443 |
(assumption | |
|
444 |
rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+ |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
445 |
|
15921 | 446 |
lemmas linorder_neqE_nat = linorder_neqE[where 'a = nat] |
447 |
||
13449 | 448 |
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" |
449 |
by (blast elim!: less_SucE) |
|
450 |
||
451 |
text {* |
|
452 |
Rewrite @{term "n < Suc m"} to @{term "n = m"} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
453 |
if @{term "~ n < m"} or @{term "m \<le> n"} hold. |
13449 | 454 |
Not suitable as default simprules because they often lead to looping |
455 |
*} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
456 |
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" |
13449 | 457 |
by (rule not_less_less_Suc_eq, rule leD) |
458 |
||
459 |
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq |
|
460 |
||
461 |
||
462 |
text {* |
|
463 |
Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. |
|
464 |
No longer added as simprules (they loop) |
|
465 |
but via @{text reorient_simproc} in Bin |
|
466 |
*} |
|
467 |
||
468 |
text {* Polymorphic, not just for @{typ nat} *} |
|
469 |
lemma zero_reorient: "(0 = x) = (x = 0)" |
|
470 |
by auto |
|
471 |
||
472 |
lemma one_reorient: "(1 = x) = (x = 1)" |
|
473 |
by auto |
|
474 |
||
21243 | 475 |
|
13449 | 476 |
subsection {* Arithmetic operators *} |
1660 | 477 |
|
21411 | 478 |
class power = |
479 |
fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "\<^loc>^" 80) |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
480 |
|
13449 | 481 |
text {* arithmetic operators @{text "+ -"} and @{text "*"} *} |
482 |
||
21456 | 483 |
instance nat :: "{plus, minus, times}" .. |
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
484 |
|
13449 | 485 |
primrec |
486 |
add_0: "0 + n = n" |
|
487 |
add_Suc: "Suc m + n = Suc (m + n)" |
|
488 |
||
489 |
primrec |
|
490 |
diff_0: "m - 0 = m" |
|
491 |
diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
492 |
|
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
493 |
primrec |
13449 | 494 |
mult_0: "0 * n = 0" |
495 |
mult_Suc: "Suc m * n = n + (m * n)" |
|
496 |
||
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
497 |
text {* These two rules ease the use of primitive recursion. |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
498 |
NOTE USE OF @{text "=="} *} |
13449 | 499 |
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" |
500 |
by simp |
|
501 |
||
502 |
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" |
|
503 |
by simp |
|
504 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
505 |
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" |
13449 | 506 |
by (case_tac n) simp_all |
507 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
508 |
lemma gr_implies_not0: "!!n::nat. m<n ==> n \<noteq> 0" |
13449 | 509 |
by (case_tac n) simp_all |
510 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
511 |
lemma neq0_conv [iff]: "!!n::nat. (n \<noteq> 0) = (0 < n)" |
13449 | 512 |
by (case_tac n) simp_all |
513 |
||
514 |
text {* This theorem is useful with @{text blast} *} |
|
515 |
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" |
|
17589 | 516 |
by (rule iffD1, rule neq0_conv, iprover) |
13449 | 517 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
518 |
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" |
13449 | 519 |
by (fast intro: not0_implies_Suc) |
520 |
||
521 |
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)" |
|
522 |
apply (rule iffI) |
|
14208 | 523 |
apply (rule ccontr, simp_all) |
13449 | 524 |
done |
525 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
526 |
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" |
13449 | 527 |
by (induct m') simp_all |
528 |
||
529 |
text {* Useful in certain inductive arguments *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
530 |
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" |
13449 | 531 |
by (case_tac m) simp_all |
532 |
||
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
533 |
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n" |
13449 | 534 |
apply (rule nat_less_induct) |
535 |
apply (case_tac n) |
|
536 |
apply (case_tac [2] nat) |
|
537 |
apply (blast intro: less_trans)+ |
|
538 |
done |
|
539 |
||
21243 | 540 |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
15281
diff
changeset
|
541 |
subsection {* @{text LEAST} theorems for type @{typ nat}*} |
13449 | 542 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
543 |
lemma Least_Suc: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
544 |
"[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" |
14208 | 545 |
apply (case_tac "n", auto) |
13449 | 546 |
apply (frule LeastI) |
547 |
apply (drule_tac P = "%x. P (Suc x) " in LeastI) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
548 |
apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") |
13449 | 549 |
apply (erule_tac [2] Least_le) |
14208 | 550 |
apply (case_tac "LEAST x. P x", auto) |
13449 | 551 |
apply (drule_tac P = "%x. P (Suc x) " in Least_le) |
552 |
apply (blast intro: order_antisym) |
|
553 |
done |
|
554 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
555 |
lemma Least_Suc2: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
556 |
"[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
557 |
by (erule (1) Least_Suc [THEN ssubst], simp) |
13449 | 558 |
|
559 |
||
560 |
subsection {* @{term min} and @{term max} *} |
|
561 |
||
562 |
lemma min_0L [simp]: "min 0 n = (0::nat)" |
|
563 |
by (rule min_leastL) simp |
|
564 |
||
565 |
lemma min_0R [simp]: "min n 0 = (0::nat)" |
|
566 |
by (rule min_leastR) simp |
|
567 |
||
568 |
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" |
|
569 |
by (simp add: min_of_mono) |
|
570 |
||
571 |
lemma max_0L [simp]: "max 0 n = (n::nat)" |
|
572 |
by (rule max_leastL) simp |
|
573 |
||
574 |
lemma max_0R [simp]: "max n 0 = (n::nat)" |
|
575 |
by (rule max_leastR) simp |
|
576 |
||
577 |
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" |
|
578 |
by (simp add: max_of_mono) |
|
579 |
||
580 |
||
581 |
subsection {* Basic rewrite rules for the arithmetic operators *} |
|
582 |
||
583 |
text {* Difference *} |
|
584 |
||
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
585 |
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" |
15251 | 586 |
by (induct n) simp_all |
13449 | 587 |
|
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
588 |
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n" |
15251 | 589 |
by (induct n) simp_all |
13449 | 590 |
|
591 |
||
592 |
text {* |
|
593 |
Could be (and is, below) generalized in various ways |
|
594 |
However, none of the generalizations are currently in the simpset, |
|
595 |
and I dread to think what happens if I put them in |
|
596 |
*} |
|
597 |
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n" |
|
598 |
by (simp split add: nat.split) |
|
599 |
||
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
600 |
declare diff_Suc [simp del, code del] |
13449 | 601 |
|
602 |
||
603 |
subsection {* Addition *} |
|
604 |
||
605 |
lemma add_0_right [simp]: "m + 0 = (m::nat)" |
|
606 |
by (induct m) simp_all |
|
607 |
||
608 |
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" |
|
609 |
by (induct m) simp_all |
|
610 |
||
19890 | 611 |
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" |
612 |
by simp |
|
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
613 |
|
13449 | 614 |
|
615 |
text {* Associative law for addition *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
616 |
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" |
13449 | 617 |
by (induct m) simp_all |
618 |
||
619 |
text {* Commutative law for addition *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
620 |
lemma nat_add_commute: "m + n = n + (m::nat)" |
13449 | 621 |
by (induct m) simp_all |
622 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
623 |
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" |
13449 | 624 |
apply (rule mk_left_commute [of "op +"]) |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
625 |
apply (rule nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
626 |
apply (rule nat_add_commute) |
13449 | 627 |
done |
628 |
||
14331 | 629 |
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" |
13449 | 630 |
by (induct k) simp_all |
631 |
||
14331 | 632 |
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" |
13449 | 633 |
by (induct k) simp_all |
634 |
||
14331 | 635 |
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" |
13449 | 636 |
by (induct k) simp_all |
637 |
||
14331 | 638 |
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" |
13449 | 639 |
by (induct k) simp_all |
640 |
||
641 |
text {* Reasoning about @{text "m + 0 = 0"}, etc. *} |
|
642 |
||
643 |
lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)" |
|
644 |
by (case_tac m) simp_all |
|
645 |
||
646 |
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" |
|
647 |
by (case_tac m) simp_all |
|
648 |
||
649 |
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" |
|
650 |
by (rule trans, rule eq_commute, rule add_is_1) |
|
651 |
||
652 |
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)" |
|
653 |
by (simp del: neq0_conv add: neq0_conv [symmetric]) |
|
654 |
||
655 |
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0" |
|
656 |
apply (drule add_0_right [THEN ssubst]) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
657 |
apply (simp add: nat_add_assoc del: add_0_right) |
13449 | 658 |
done |
659 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
660 |
|
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
661 |
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
662 |
apply(induct k) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
663 |
apply simp |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
664 |
apply(drule comp_inj_on[OF _ inj_Suc]) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
665 |
apply (simp add:o_def) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
666 |
done |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
667 |
|
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
668 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
669 |
subsection {* Multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
670 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
671 |
text {* right annihilation in product *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
672 |
lemma mult_0_right [simp]: "(m::nat) * 0 = 0" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
673 |
by (induct m) simp_all |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
674 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
675 |
text {* right successor law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
676 |
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
677 |
by (induct m) (simp_all add: nat_add_left_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
678 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
679 |
text {* Commutative law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
680 |
lemma nat_mult_commute: "m * n = n * (m::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
681 |
by (induct m) simp_all |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
682 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
683 |
text {* addition distributes over multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
684 |
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
685 |
by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
686 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
687 |
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
688 |
by (induct m) (simp_all add: nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
689 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
690 |
text {* Associative law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
691 |
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
692 |
by (induct m) (simp_all add: add_mult_distrib) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
693 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
694 |
|
14740 | 695 |
text{*The naturals form a @{text comm_semiring_1_cancel}*} |
14738 | 696 |
instance nat :: comm_semiring_1_cancel |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
697 |
proof |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
698 |
fix i j k :: nat |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
699 |
show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
700 |
show "i + j = j + i" by (rule nat_add_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
701 |
show "0 + i = i" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
702 |
show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
703 |
show "i * j = j * i" by (rule nat_mult_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
704 |
show "1 * i = i" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
705 |
show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
706 |
show "0 \<noteq> (1::nat)" by simp |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
707 |
assume "k+i = k+j" thus "i=j" by simp |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
708 |
qed |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
709 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
710 |
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" |
15251 | 711 |
apply (induct m) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
712 |
apply (induct_tac [2] n, simp_all) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
713 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
714 |
|
21243 | 715 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
716 |
subsection {* Monotonicity of Addition *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
717 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
718 |
text {* strict, in 1st argument *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
719 |
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
720 |
by (induct k) simp_all |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
721 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
722 |
text {* strict, in both arguments *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
723 |
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
724 |
apply (rule add_less_mono1 [THEN less_trans], assumption+) |
15251 | 725 |
apply (induct j, simp_all) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
726 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
727 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
728 |
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
729 |
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
730 |
apply (induct n) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
731 |
apply (simp_all add: order_le_less) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
732 |
apply (blast elim!: less_SucE |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
733 |
intro!: add_0_right [symmetric] add_Suc_right [symmetric]) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
734 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
735 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
736 |
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
737 |
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
738 |
apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
739 |
apply (induct_tac x) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
740 |
apply (simp_all add: add_less_mono) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
741 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
742 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
743 |
|
14740 | 744 |
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*} |
14738 | 745 |
instance nat :: ordered_semidom |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
746 |
proof |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
747 |
fix i j k :: nat |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
748 |
show "0 < (1::nat)" by simp |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
749 |
show "i \<le> j ==> k + i \<le> k + j" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
750 |
show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
751 |
qed |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
752 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
753 |
lemma nat_mult_1: "(1::nat) * n = n" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
754 |
by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
755 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
756 |
lemma nat_mult_1_right: "n * (1::nat) = n" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
757 |
by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
758 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
759 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
760 |
subsection {* Additional theorems about "less than" *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
761 |
|
19870 | 762 |
text{*An induction rule for estabilishing binary relations*} |
763 |
lemma less_Suc_induct: |
|
764 |
assumes less: "i < j" |
|
765 |
and step: "!!i. P i (Suc i)" |
|
766 |
and trans: "!!i j k. P i j ==> P j k ==> P i k" |
|
767 |
shows "P i j" |
|
768 |
proof - |
|
769 |
from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add) |
|
770 |
have "P i (Suc(i+k))" |
|
771 |
proof (induct k) |
|
772 |
case 0 |
|
773 |
show ?case by (simp add: step) |
|
774 |
next |
|
775 |
case (Suc k) |
|
776 |
thus ?case by (auto intro: prems) |
|
777 |
qed |
|
778 |
thus "P i j" by (simp add: j) |
|
779 |
qed |
|
780 |
||
781 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
782 |
text {* A [clumsy] way of lifting @{text "<"} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
783 |
monotonicity to @{text "\<le>"} monotonicity *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
784 |
lemma less_mono_imp_le_mono: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
785 |
assumes lt_mono: "!!i j::nat. i < j ==> f i < f j" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
786 |
and le: "i \<le> j" shows "f i \<le> ((f j)::nat)" using le |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
787 |
apply (simp add: order_le_less) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
788 |
apply (blast intro!: lt_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
789 |
done |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
790 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
791 |
text {* non-strict, in 1st argument *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
792 |
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
793 |
by (rule add_right_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
794 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
795 |
text {* non-strict, in both arguments *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
796 |
lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
797 |
by (rule add_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
798 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
799 |
lemma le_add2: "n \<le> ((m + n)::nat)" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
800 |
by (insert add_right_mono [of 0 m n], simp) |
13449 | 801 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
802 |
lemma le_add1: "n \<le> ((n + m)::nat)" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
803 |
by (simp add: add_commute, rule le_add2) |
13449 | 804 |
|
805 |
lemma less_add_Suc1: "i < Suc (i + m)" |
|
806 |
by (rule le_less_trans, rule le_add1, rule lessI) |
|
807 |
||
808 |
lemma less_add_Suc2: "i < Suc (m + i)" |
|
809 |
by (rule le_less_trans, rule le_add2, rule lessI) |
|
810 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
811 |
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" |
17589 | 812 |
by (iprover intro!: less_add_Suc1 less_imp_Suc_add) |
13449 | 813 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
814 |
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" |
13449 | 815 |
by (rule le_trans, assumption, rule le_add1) |
816 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
817 |
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" |
13449 | 818 |
by (rule le_trans, assumption, rule le_add2) |
819 |
||
820 |
lemma trans_less_add1: "(i::nat) < j ==> i < j + m" |
|
821 |
by (rule less_le_trans, assumption, rule le_add1) |
|
822 |
||
823 |
lemma trans_less_add2: "(i::nat) < j ==> i < m + j" |
|
824 |
by (rule less_le_trans, assumption, rule le_add2) |
|
825 |
||
826 |
lemma add_lessD1: "i + j < (k::nat) ==> i < k" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
827 |
apply (rule le_less_trans [of _ "i+j"]) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
828 |
apply (simp_all add: le_add1) |
13449 | 829 |
done |
830 |
||
831 |
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" |
|
832 |
apply (rule notI) |
|
833 |
apply (erule add_lessD1 [THEN less_irrefl]) |
|
834 |
done |
|
835 |
||
836 |
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" |
|
837 |
by (simp add: add_commute not_add_less1) |
|
838 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
839 |
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
840 |
apply (rule order_trans [of _ "m+k"]) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
841 |
apply (simp_all add: le_add1) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
842 |
done |
13449 | 843 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
844 |
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" |
13449 | 845 |
apply (simp add: add_commute) |
846 |
apply (erule add_leD1) |
|
847 |
done |
|
848 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
849 |
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" |
13449 | 850 |
by (blast dest: add_leD1 add_leD2) |
851 |
||
852 |
text {* needs @{text "!!k"} for @{text add_ac} to work *} |
|
853 |
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" |
|
854 |
by (force simp del: add_Suc_right |
|
855 |
simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) |
|
856 |
||
857 |
||
858 |
subsection {* Difference *} |
|
859 |
||
860 |
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0" |
|
861 |
by (induct m) simp_all |
|
862 |
||
863 |
text {* Addition is the inverse of subtraction: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
864 |
if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *} |
13449 | 865 |
lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" |
866 |
by (induct m n rule: diff_induct) simp_all |
|
867 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
868 |
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)" |
16796 | 869 |
by (simp add: add_diff_inverse linorder_not_less) |
13449 | 870 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
871 |
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)" |
13449 | 872 |
by (simp add: le_add_diff_inverse add_commute) |
873 |
||
874 |
||
875 |
subsection {* More results about difference *} |
|
876 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
877 |
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" |
13449 | 878 |
by (induct m n rule: diff_induct) simp_all |
879 |
||
880 |
lemma diff_less_Suc: "m - n < Suc m" |
|
881 |
apply (induct m n rule: diff_induct) |
|
882 |
apply (erule_tac [3] less_SucE) |
|
883 |
apply (simp_all add: less_Suc_eq) |
|
884 |
done |
|
885 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
886 |
lemma diff_le_self [simp]: "m - n \<le> (m::nat)" |
13449 | 887 |
by (induct m n rule: diff_induct) (simp_all add: le_SucI) |
888 |
||
889 |
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" |
|
890 |
by (rule le_less_trans, rule diff_le_self) |
|
891 |
||
892 |
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" |
|
893 |
by (induct i j rule: diff_induct) simp_all |
|
894 |
||
895 |
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" |
|
896 |
by (simp add: diff_diff_left) |
|
897 |
||
898 |
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" |
|
14208 | 899 |
apply (case_tac "n", safe) |
13449 | 900 |
apply (simp add: le_simps) |
901 |
done |
|
902 |
||
903 |
text {* This and the next few suggested by Florian Kammueller *} |
|
904 |
lemma diff_commute: "(i::nat) - j - k = i - k - j" |
|
905 |
by (simp add: diff_diff_left add_commute) |
|
906 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
907 |
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" |
13449 | 908 |
by (induct j k rule: diff_induct) simp_all |
909 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
910 |
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" |
13449 | 911 |
by (simp add: add_commute diff_add_assoc) |
912 |
||
913 |
lemma diff_add_inverse: "(n + m) - n = (m::nat)" |
|
914 |
by (induct n) simp_all |
|
915 |
||
916 |
lemma diff_add_inverse2: "(m + n) - n = (m::nat)" |
|
917 |
by (simp add: diff_add_assoc) |
|
918 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
919 |
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" |
13449 | 920 |
apply safe |
921 |
apply (simp_all add: diff_add_inverse2) |
|
922 |
done |
|
923 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
924 |
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" |
13449 | 925 |
by (induct m n rule: diff_induct) simp_all |
926 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
927 |
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" |
13449 | 928 |
by (rule iffD2, rule diff_is_0_eq) |
929 |
||
930 |
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" |
|
931 |
by (induct m n rule: diff_induct) simp_all |
|
932 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
933 |
lemma less_imp_add_positive: "i < j ==> \<exists>k::nat. 0 < k & i + k = j" |
13449 | 934 |
apply (rule_tac x = "j - i" in exI) |
935 |
apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym) |
|
936 |
done |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
937 |
|
13449 | 938 |
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" |
939 |
apply (induct k i rule: diff_induct) |
|
940 |
apply (simp_all (no_asm)) |
|
17589 | 941 |
apply iprover |
13449 | 942 |
done |
943 |
||
944 |
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" |
|
945 |
apply (rule diff_self_eq_0 [THEN subst]) |
|
17589 | 946 |
apply (rule zero_induct_lemma, iprover+) |
13449 | 947 |
done |
948 |
||
949 |
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" |
|
950 |
by (induct k) simp_all |
|
951 |
||
952 |
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" |
|
953 |
by (simp add: diff_cancel add_commute) |
|
954 |
||
955 |
lemma diff_add_0: "n - (n + m) = (0::nat)" |
|
956 |
by (induct n) simp_all |
|
957 |
||
958 |
||
959 |
text {* Difference distributes over multiplication *} |
|
960 |
||
961 |
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" |
|
962 |
by (induct m n rule: diff_induct) (simp_all add: diff_cancel) |
|
963 |
||
964 |
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" |
|
965 |
by (simp add: diff_mult_distrib mult_commute [of k]) |
|
966 |
-- {* NOT added as rewrites, since sometimes they are used from right-to-left *} |
|
967 |
||
968 |
lemmas nat_distrib = |
|
969 |
add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 |
|
970 |
||
971 |
||
972 |
subsection {* Monotonicity of Multiplication *} |
|
973 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
974 |
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
975 |
by (simp add: mult_right_mono) |
13449 | 976 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
977 |
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
978 |
by (simp add: mult_left_mono) |
13449 | 979 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
980 |
text {* @{text "\<le>"} monotonicity, BOTH arguments *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
981 |
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
982 |
by (simp add: mult_mono) |
13449 | 983 |
|
984 |
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
985 |
by (simp add: mult_strict_right_mono) |
13449 | 986 |
|
14266 | 987 |
text{*Differs from the standard @{text zero_less_mult_iff} in that |
988 |
there are no negative numbers.*} |
|
989 |
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" |
|
13449 | 990 |
apply (induct m) |
14208 | 991 |
apply (case_tac [2] n, simp_all) |
13449 | 992 |
done |
993 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
994 |
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)" |
13449 | 995 |
apply (induct m) |
14208 | 996 |
apply (case_tac [2] n, simp_all) |
13449 | 997 |
done |
998 |
||
999 |
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)" |
|
15251 | 1000 |
apply (induct m, simp) |
1001 |
apply (induct n, simp, fastsimp) |
|
13449 | 1002 |
done |
1003 |
||
1004 |
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)" |
|
1005 |
apply (rule trans) |
|
14208 | 1006 |
apply (rule_tac [2] mult_eq_1_iff, fastsimp) |
13449 | 1007 |
done |
1008 |
||
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1009 |
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" |
13449 | 1010 |
apply (safe intro!: mult_less_mono1) |
14208 | 1011 |
apply (case_tac k, auto) |
13449 | 1012 |
apply (simp del: le_0_eq add: linorder_not_le [symmetric]) |
1013 |
apply (blast intro: mult_le_mono1) |
|
1014 |
done |
|
1015 |
||
1016 |
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1017 |
by (simp add: mult_commute [of k]) |
13449 | 1018 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1019 |
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" |
14208 | 1020 |
by (simp add: linorder_not_less [symmetric], auto) |
13449 | 1021 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1022 |
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" |
14208 | 1023 |
by (simp add: linorder_not_less [symmetric], auto) |
13449 | 1024 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1025 |
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" |
14208 | 1026 |
apply (cut_tac less_linear, safe, auto) |
13449 | 1027 |
apply (drule mult_less_mono1, assumption, simp)+ |
1028 |
done |
|
1029 |
||
1030 |
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1031 |
by (simp add: mult_commute [of k]) |
13449 | 1032 |
|
1033 |
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" |
|
1034 |
by (subst mult_less_cancel1) simp |
|
1035 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1036 |
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" |
13449 | 1037 |
by (subst mult_le_cancel1) simp |
1038 |
||
1039 |
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" |
|
1040 |
by (subst mult_cancel1) simp |
|
1041 |
||
1042 |
text {* Lemma for @{text gcd} *} |
|
1043 |
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" |
|
1044 |
apply (drule sym) |
|
1045 |
apply (rule disjCI) |
|
1046 |
apply (rule nat_less_cases, erule_tac [2] _) |
|
1047 |
apply (fastsimp elim!: less_SucE) |
|
1048 |
apply (fastsimp dest: mult_less_mono2) |
|
1049 |
done |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
1050 |
|
20588 | 1051 |
|
18702 | 1052 |
subsection {* Code generator setup *} |
1053 |
||
20355 | 1054 |
lemma one_is_suc_zero [code inline]: |
1055 |
"1 = Suc 0" |
|
1056 |
by simp |
|
1057 |
||
20588 | 1058 |
instance nat :: eq .. |
1059 |
||
1060 |
lemma [code func]: |
|
21456 | 1061 |
"(0\<Colon>nat) = 0 \<longleftrightarrow> True" by auto |
20588 | 1062 |
|
1063 |
lemma [code func]: |
|
21456 | 1064 |
"Suc n = Suc m \<longleftrightarrow> n = m" by auto |
20588 | 1065 |
|
1066 |
lemma [code func]: |
|
21456 | 1067 |
"Suc n = 0 \<longleftrightarrow> False" by auto |
20588 | 1068 |
|
1069 |
lemma [code func]: |
|
21456 | 1070 |
"0 = Suc m \<longleftrightarrow> False" by auto |
20588 | 1071 |
|
21243 | 1072 |
|
1073 |
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *} |
|
1074 |
||
1075 |
use "arith_data.ML" |
|
1076 |
setup arith_setup |
|
1077 |
||
1078 |
text{*The following proofs may rely on the arithmetic proof procedures.*} |
|
1079 |
||
1080 |
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" |
|
1081 |
by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add) |
|
1082 |
||
1083 |
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)" |
|
1084 |
by (simp add: less_eq reflcl_trancl [symmetric] |
|
1085 |
del: reflcl_trancl, arith) |
|
1086 |
||
1087 |
lemma nat_diff_split: |
|
1088 |
"P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" |
|
1089 |
-- {* elimination of @{text -} on @{text nat} *} |
|
1090 |
by (cases "a<b" rule: case_split) |
|
1091 |
(auto simp add: diff_is_0_eq [THEN iffD2]) |
|
1092 |
||
1093 |
lemma nat_diff_split_asm: |
|
1094 |
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" |
|
1095 |
-- {* elimination of @{text -} on @{text nat} in assumptions *} |
|
1096 |
by (simp split: nat_diff_split) |
|
1097 |
||
1098 |
lemmas [arith_split] = nat_diff_split split_min split_max |
|
1099 |
||
1100 |
||
1101 |
||
1102 |
lemma le_square: "m \<le> m * (m::nat)" |
|
1103 |
by (induct m) auto |
|
1104 |
||
1105 |
lemma le_cube: "(m::nat) \<le> m * (m * m)" |
|
1106 |
by (induct m) auto |
|
1107 |
||
1108 |
||
1109 |
text{*Subtraction laws, mostly by Clemens Ballarin*} |
|
1110 |
||
1111 |
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" |
|
1112 |
by arith |
|
1113 |
||
1114 |
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" |
|
1115 |
by arith |
|
1116 |
||
1117 |
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" |
|
1118 |
by arith |
|
1119 |
||
1120 |
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" |
|
1121 |
by arith |
|
1122 |
||
1123 |
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" |
|
1124 |
by arith |
|
1125 |
||
1126 |
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" |
|
1127 |
by arith |
|
1128 |
||
1129 |
(*Replaces the previous diff_less and le_diff_less, which had the stronger |
|
1130 |
second premise n\<le>m*) |
|
1131 |
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" |
|
1132 |
by arith |
|
1133 |
||
1134 |
||
1135 |
(** Simplification of relational expressions involving subtraction **) |
|
1136 |
||
1137 |
lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" |
|
1138 |
by (simp split add: nat_diff_split) |
|
1139 |
||
1140 |
lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" |
|
1141 |
by (auto split add: nat_diff_split) |
|
1142 |
||
1143 |
lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" |
|
1144 |
by (auto split add: nat_diff_split) |
|
1145 |
||
1146 |
lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" |
|
1147 |
by (auto split add: nat_diff_split) |
|
1148 |
||
1149 |
||
1150 |
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*} |
|
1151 |
||
1152 |
(* Monotonicity of subtraction in first argument *) |
|
1153 |
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" |
|
1154 |
by (simp split add: nat_diff_split) |
|
1155 |
||
1156 |
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" |
|
1157 |
by (simp split add: nat_diff_split) |
|
1158 |
||
1159 |
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" |
|
1160 |
by (simp split add: nat_diff_split) |
|
1161 |
||
1162 |
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" |
|
1163 |
by (simp split add: nat_diff_split) |
|
1164 |
||
1165 |
text{*Lemmas for ex/Factorization*} |
|
1166 |
||
1167 |
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" |
|
1168 |
by (case_tac "m", auto) |
|
1169 |
||
1170 |
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" |
|
1171 |
by (case_tac "m", auto) |
|
1172 |
||
1173 |
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" |
|
1174 |
by (case_tac "m", auto) |
|
1175 |
||
1176 |
||
1177 |
text{*Rewriting to pull differences out*} |
|
1178 |
||
1179 |
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" |
|
1180 |
by arith |
|
1181 |
||
1182 |
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" |
|
1183 |
by arith |
|
1184 |
||
1185 |
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" |
|
1186 |
by arith |
|
1187 |
||
1188 |
(*The others are |
|
1189 |
i - j - k = i - (j + k), |
|
1190 |
k \<le> j ==> j - k + i = j + i - k, |
|
1191 |
k \<le> j ==> i + (j - k) = i + j - k *) |
|
1192 |
lemmas add_diff_assoc = diff_add_assoc [symmetric] |
|
1193 |
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] |
|
1194 |
declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] |
|
1195 |
||
1196 |
text{*At present we prove no analogue of @{text not_less_Least} or @{text |
|
1197 |
Least_Suc}, since there appears to be no need.*} |
|
1198 |
||
1199 |
ML |
|
1200 |
{* |
|
1201 |
val pred_nat_trancl_eq_le = thm "pred_nat_trancl_eq_le"; |
|
1202 |
val nat_diff_split = thm "nat_diff_split"; |
|
1203 |
val nat_diff_split_asm = thm "nat_diff_split_asm"; |
|
1204 |
val le_square = thm "le_square"; |
|
1205 |
val le_cube = thm "le_cube"; |
|
1206 |
val diff_less_mono = thm "diff_less_mono"; |
|
1207 |
val less_diff_conv = thm "less_diff_conv"; |
|
1208 |
val le_diff_conv = thm "le_diff_conv"; |
|
1209 |
val le_diff_conv2 = thm "le_diff_conv2"; |
|
1210 |
val diff_diff_cancel = thm "diff_diff_cancel"; |
|
1211 |
val le_add_diff = thm "le_add_diff"; |
|
1212 |
val diff_less = thm "diff_less"; |
|
1213 |
val diff_diff_eq = thm "diff_diff_eq"; |
|
1214 |
val eq_diff_iff = thm "eq_diff_iff"; |
|
1215 |
val less_diff_iff = thm "less_diff_iff"; |
|
1216 |
val le_diff_iff = thm "le_diff_iff"; |
|
1217 |
val diff_le_mono = thm "diff_le_mono"; |
|
1218 |
val diff_le_mono2 = thm "diff_le_mono2"; |
|
1219 |
val diff_less_mono2 = thm "diff_less_mono2"; |
|
1220 |
val diffs0_imp_equal = thm "diffs0_imp_equal"; |
|
1221 |
val one_less_mult = thm "one_less_mult"; |
|
1222 |
val n_less_m_mult_n = thm "n_less_m_mult_n"; |
|
1223 |
val n_less_n_mult_m = thm "n_less_n_mult_m"; |
|
1224 |
val diff_diff_right = thm "diff_diff_right"; |
|
1225 |
val diff_Suc_diff_eq1 = thm "diff_Suc_diff_eq1"; |
|
1226 |
val diff_Suc_diff_eq2 = thm "diff_Suc_diff_eq2"; |
|
1227 |
*} |
|
1228 |
||
1229 |
subsection{*Embedding of the Naturals into any @{text |
|
1230 |
semiring_1_cancel}: @{term of_nat}*} |
|
1231 |
||
1232 |
consts of_nat :: "nat => 'a::semiring_1_cancel" |
|
1233 |
||
1234 |
primrec |
|
1235 |
of_nat_0: "of_nat 0 = 0" |
|
1236 |
of_nat_Suc: "of_nat (Suc m) = of_nat m + 1" |
|
1237 |
||
1238 |
lemma of_nat_1 [simp]: "of_nat 1 = 1" |
|
1239 |
by simp |
|
1240 |
||
1241 |
lemma of_nat_add [simp]: "of_nat (m+n) = of_nat m + of_nat n" |
|
1242 |
apply (induct m) |
|
1243 |
apply (simp_all add: add_ac) |
|
1244 |
done |
|
1245 |
||
1246 |
lemma of_nat_mult [simp]: "of_nat (m*n) = of_nat m * of_nat n" |
|
1247 |
apply (induct m) |
|
1248 |
apply (simp_all add: add_ac left_distrib) |
|
1249 |
done |
|
1250 |
||
1251 |
lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)" |
|
1252 |
apply (induct m, simp_all) |
|
1253 |
apply (erule order_trans) |
|
1254 |
apply (rule less_add_one [THEN order_less_imp_le]) |
|
1255 |
done |
|
1256 |
||
1257 |
lemma less_imp_of_nat_less: |
|
1258 |
"m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)" |
|
1259 |
apply (induct m n rule: diff_induct, simp_all) |
|
1260 |
apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force) |
|
1261 |
done |
|
1262 |
||
1263 |
lemma of_nat_less_imp_less: |
|
1264 |
"of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n" |
|
1265 |
apply (induct m n rule: diff_induct, simp_all) |
|
1266 |
apply (insert zero_le_imp_of_nat) |
|
1267 |
apply (force simp add: linorder_not_less [symmetric]) |
|
1268 |
done |
|
1269 |
||
1270 |
lemma of_nat_less_iff [simp]: |
|
1271 |
"(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)" |
|
1272 |
by (blast intro: of_nat_less_imp_less less_imp_of_nat_less) |
|
1273 |
||
1274 |
text{*Special cases where either operand is zero*} |
|
1275 |
lemmas of_nat_0_less_iff = of_nat_less_iff [of 0, simplified] |
|
1276 |
lemmas of_nat_less_0_iff = of_nat_less_iff [of _ 0, simplified] |
|
1277 |
declare of_nat_0_less_iff [simp] |
|
1278 |
declare of_nat_less_0_iff [simp] |
|
1279 |
||
1280 |
lemma of_nat_le_iff [simp]: |
|
1281 |
"(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)" |
|
1282 |
by (simp add: linorder_not_less [symmetric]) |
|
1283 |
||
1284 |
text{*Special cases where either operand is zero*} |
|
1285 |
lemmas of_nat_0_le_iff = of_nat_le_iff [of 0, simplified] |
|
1286 |
lemmas of_nat_le_0_iff = of_nat_le_iff [of _ 0, simplified] |
|
1287 |
declare of_nat_0_le_iff [simp] |
|
1288 |
declare of_nat_le_0_iff [simp] |
|
1289 |
||
1290 |
text{*The ordering on the @{text semiring_1_cancel} is necessary |
|
1291 |
to exclude the possibility of a finite field, which indeed wraps back to |
|
1292 |
zero.*} |
|
1293 |
lemma of_nat_eq_iff [simp]: |
|
1294 |
"(of_nat m = (of_nat n::'a::ordered_semidom)) = (m = n)" |
|
1295 |
by (simp add: order_eq_iff) |
|
1296 |
||
1297 |
text{*Special cases where either operand is zero*} |
|
1298 |
lemmas of_nat_0_eq_iff = of_nat_eq_iff [of 0, simplified] |
|
1299 |
lemmas of_nat_eq_0_iff = of_nat_eq_iff [of _ 0, simplified] |
|
1300 |
declare of_nat_0_eq_iff [simp] |
|
1301 |
declare of_nat_eq_0_iff [simp] |
|
1302 |
||
1303 |
lemma of_nat_diff [simp]: |
|
1304 |
"n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring_1)" |
|
1305 |
by (simp del: of_nat_add |
|
1306 |
add: compare_rls of_nat_add [symmetric] split add: nat_diff_split) |
|
1307 |
||
923 | 1308 |
end |