| author | haftmann | 
| Wed, 14 Feb 2007 10:06:16 +0100 | |
| changeset 22320 | d5260836d662 | 
| parent 22226 | 699385e6cb45 | 
| child 22432 | 1d00d26fee0d | 
| permissions | -rw-r--r-- | 
| 20809 | 1  | 
(* Title: HOL/Infnite_Set.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Stephan Merz  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* Infinite Sets and Related Concepts *}
 | 
|
7  | 
||
8  | 
theory Infinite_Set  | 
|
| 21256 | 9  | 
imports Main  | 
| 20809 | 10  | 
begin  | 
11  | 
||
12  | 
subsection "Infinite Sets"  | 
|
13  | 
||
14  | 
text {*
 | 
|
15  | 
Some elementary facts about infinite sets, mostly by Stefan Merz.  | 
|
16  | 
Beware! Because "infinite" merely abbreviates a negation, these  | 
|
17  | 
  lemmas may not work well with @{text "blast"}.
 | 
|
18  | 
*}  | 
|
19  | 
||
20  | 
abbreviation  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
21  | 
infinite :: "'a set \<Rightarrow> bool" where  | 
| 20809 | 22  | 
"infinite S == \<not> finite S"  | 
23  | 
||
24  | 
text {*
 | 
|
25  | 
Infinite sets are non-empty, and if we remove some elements from an  | 
|
26  | 
infinite set, the result is still infinite.  | 
|
27  | 
*}  | 
|
28  | 
||
29  | 
lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
 | 
|
30  | 
by auto  | 
|
31  | 
||
32  | 
lemma infinite_remove:  | 
|
33  | 
  "infinite S \<Longrightarrow> infinite (S - {a})"
 | 
|
34  | 
by simp  | 
|
35  | 
||
36  | 
lemma Diff_infinite_finite:  | 
|
37  | 
assumes T: "finite T" and S: "infinite S"  | 
|
38  | 
shows "infinite (S - T)"  | 
|
39  | 
using T  | 
|
40  | 
proof induct  | 
|
41  | 
from S  | 
|
42  | 
  show "infinite (S - {})" by auto
 | 
|
43  | 
next  | 
|
44  | 
fix T x  | 
|
45  | 
assume ih: "infinite (S - T)"  | 
|
46  | 
  have "S - (insert x T) = (S - T) - {x}"
 | 
|
47  | 
by (rule Diff_insert)  | 
|
48  | 
with ih  | 
|
49  | 
show "infinite (S - (insert x T))"  | 
|
50  | 
by (simp add: infinite_remove)  | 
|
51  | 
qed  | 
|
52  | 
||
53  | 
lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)"  | 
|
54  | 
by simp  | 
|
55  | 
||
56  | 
lemma infinite_super:  | 
|
57  | 
assumes T: "S \<subseteq> T" and S: "infinite S"  | 
|
58  | 
shows "infinite T"  | 
|
59  | 
proof  | 
|
60  | 
assume "finite T"  | 
|
61  | 
with T have "finite S" by (simp add: finite_subset)  | 
|
62  | 
with S show False by simp  | 
|
63  | 
qed  | 
|
64  | 
||
65  | 
text {*
 | 
|
66  | 
As a concrete example, we prove that the set of natural numbers is  | 
|
67  | 
infinite.  | 
|
68  | 
*}  | 
|
69  | 
||
70  | 
lemma finite_nat_bounded:  | 
|
71  | 
assumes S: "finite (S::nat set)"  | 
|
72  | 
  shows "\<exists>k. S \<subseteq> {..<k}"  (is "\<exists>k. ?bounded S k")
 | 
|
73  | 
using S  | 
|
74  | 
proof induct  | 
|
75  | 
  have "?bounded {} 0" by simp
 | 
|
76  | 
  then show "\<exists>k. ?bounded {} k" ..
 | 
|
77  | 
next  | 
|
78  | 
fix S x  | 
|
79  | 
assume "\<exists>k. ?bounded S k"  | 
|
80  | 
then obtain k where k: "?bounded S k" ..  | 
|
81  | 
show "\<exists>k. ?bounded (insert x S) k"  | 
|
82  | 
proof (cases "x < k")  | 
|
83  | 
case True  | 
|
84  | 
with k show ?thesis by auto  | 
|
85  | 
next  | 
|
86  | 
case False  | 
|
87  | 
with k have "?bounded S (Suc x)" by auto  | 
|
88  | 
then show ?thesis by auto  | 
|
89  | 
qed  | 
|
90  | 
qed  | 
|
91  | 
||
92  | 
lemma finite_nat_iff_bounded:  | 
|
93  | 
  "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})"  (is "?lhs = ?rhs")
 | 
|
94  | 
proof  | 
|
95  | 
assume ?lhs  | 
|
96  | 
then show ?rhs by (rule finite_nat_bounded)  | 
|
97  | 
next  | 
|
98  | 
assume ?rhs  | 
|
99  | 
  then obtain k where "S \<subseteq> {..<k}" ..
 | 
|
100  | 
then show "finite S"  | 
|
101  | 
by (rule finite_subset) simp  | 
|
102  | 
qed  | 
|
103  | 
||
104  | 
lemma finite_nat_iff_bounded_le:  | 
|
105  | 
  "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})"  (is "?lhs = ?rhs")
 | 
|
106  | 
proof  | 
|
107  | 
assume ?lhs  | 
|
108  | 
  then obtain k where "S \<subseteq> {..<k}"
 | 
|
109  | 
by (blast dest: finite_nat_bounded)  | 
|
110  | 
  then have "S \<subseteq> {..k}" by auto
 | 
|
111  | 
then show ?rhs ..  | 
|
112  | 
next  | 
|
113  | 
assume ?rhs  | 
|
114  | 
  then obtain k where "S \<subseteq> {..k}" ..
 | 
|
115  | 
then show "finite S"  | 
|
116  | 
by (rule finite_subset) simp  | 
|
117  | 
qed  | 
|
118  | 
||
119  | 
lemma infinite_nat_iff_unbounded:  | 
|
120  | 
"infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"  | 
|
121  | 
(is "?lhs = ?rhs")  | 
|
122  | 
proof  | 
|
123  | 
assume ?lhs  | 
|
124  | 
show ?rhs  | 
|
125  | 
proof (rule ccontr)  | 
|
126  | 
assume "\<not> ?rhs"  | 
|
127  | 
then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast  | 
|
128  | 
    then have "S \<subseteq> {..m}"
 | 
|
129  | 
by (auto simp add: sym [OF linorder_not_less])  | 
|
130  | 
with `?lhs` show False  | 
|
131  | 
by (simp add: finite_nat_iff_bounded_le)  | 
|
132  | 
qed  | 
|
133  | 
next  | 
|
134  | 
assume ?rhs  | 
|
135  | 
show ?lhs  | 
|
136  | 
proof  | 
|
137  | 
assume "finite S"  | 
|
138  | 
    then obtain m where "S \<subseteq> {..m}"
 | 
|
139  | 
by (auto simp add: finite_nat_iff_bounded_le)  | 
|
140  | 
then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto  | 
|
141  | 
with `?rhs` show False by blast  | 
|
142  | 
qed  | 
|
143  | 
qed  | 
|
144  | 
||
145  | 
lemma infinite_nat_iff_unbounded_le:  | 
|
146  | 
"infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"  | 
|
147  | 
(is "?lhs = ?rhs")  | 
|
148  | 
proof  | 
|
149  | 
assume ?lhs  | 
|
150  | 
show ?rhs  | 
|
151  | 
proof  | 
|
152  | 
fix m  | 
|
153  | 
from `?lhs` obtain n where "m<n \<and> n\<in>S"  | 
|
154  | 
by (auto simp add: infinite_nat_iff_unbounded)  | 
|
155  | 
then have "m\<le>n \<and> n\<in>S" by simp  | 
|
156  | 
then show "\<exists>n. m \<le> n \<and> n \<in> S" ..  | 
|
157  | 
qed  | 
|
158  | 
next  | 
|
159  | 
assume ?rhs  | 
|
160  | 
show ?lhs  | 
|
161  | 
proof (auto simp add: infinite_nat_iff_unbounded)  | 
|
162  | 
fix m  | 
|
163  | 
from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S"  | 
|
164  | 
by blast  | 
|
165  | 
then have "m<n \<and> n\<in>S" by simp  | 
|
166  | 
then show "\<exists>n. m < n \<and> n \<in> S" ..  | 
|
167  | 
qed  | 
|
168  | 
qed  | 
|
169  | 
||
170  | 
text {*
 | 
|
171  | 
For a set of natural numbers to be infinite, it is enough to know  | 
|
172  | 
  that for any number larger than some @{text k}, there is some larger
 | 
|
173  | 
number that is an element of the set.  | 
|
174  | 
*}  | 
|
175  | 
||
176  | 
lemma unbounded_k_infinite:  | 
|
177  | 
assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"  | 
|
178  | 
shows "infinite (S::nat set)"  | 
|
179  | 
proof -  | 
|
180  | 
  {
 | 
|
181  | 
fix m have "\<exists>n. m<n \<and> n\<in>S"  | 
|
182  | 
proof (cases "k<m")  | 
|
183  | 
case True  | 
|
184  | 
with k show ?thesis by blast  | 
|
185  | 
next  | 
|
186  | 
case False  | 
|
187  | 
from k obtain n where "Suc k < n \<and> n\<in>S" by auto  | 
|
188  | 
with False have "m<n \<and> n\<in>S" by auto  | 
|
189  | 
then show ?thesis ..  | 
|
190  | 
qed  | 
|
191  | 
}  | 
|
192  | 
then show ?thesis  | 
|
193  | 
by (auto simp add: infinite_nat_iff_unbounded)  | 
|
194  | 
qed  | 
|
195  | 
||
196  | 
lemma nat_infinite [simp]: "infinite (UNIV :: nat set)"  | 
|
197  | 
by (auto simp add: infinite_nat_iff_unbounded)  | 
|
198  | 
||
199  | 
lemma nat_not_finite [elim]: "finite (UNIV::nat set) \<Longrightarrow> R"  | 
|
200  | 
by simp  | 
|
201  | 
||
202  | 
text {*
 | 
|
203  | 
Every infinite set contains a countable subset. More precisely we  | 
|
204  | 
  show that a set @{text S} is infinite if and only if there exists an
 | 
|
205  | 
  injective function from the naturals into @{text S}.
 | 
|
206  | 
*}  | 
|
207  | 
||
208  | 
lemma range_inj_infinite:  | 
|
209  | 
"inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)"  | 
|
210  | 
proof  | 
|
211  | 
assume "inj f"  | 
|
212  | 
and "finite (range f)"  | 
|
213  | 
then have "finite (UNIV::nat set)"  | 
|
214  | 
by (auto intro: finite_imageD simp del: nat_infinite)  | 
|
215  | 
then show False by simp  | 
|
216  | 
qed  | 
|
217  | 
||
| 22226 | 218  | 
lemma int_infinite [simp]:  | 
219  | 
shows "infinite (UNIV::int set)"  | 
|
220  | 
proof -  | 
|
221  | 
from inj_int have "infinite (range int)" by (rule range_inj_infinite)  | 
|
222  | 
moreover  | 
|
223  | 
have "range int \<subseteq> (UNIV::int set)" by simp  | 
|
224  | 
ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super)  | 
|
225  | 
qed  | 
|
226  | 
||
| 20809 | 227  | 
text {*
 | 
228  | 
The ``only if'' direction is harder because it requires the  | 
|
229  | 
construction of a sequence of pairwise different elements of an  | 
|
230  | 
  infinite set @{text S}. The idea is to construct a sequence of
 | 
|
231  | 
  non-empty and infinite subsets of @{text S} obtained by successively
 | 
|
232  | 
  removing elements of @{text S}.
 | 
|
233  | 
*}  | 
|
234  | 
||
235  | 
lemma linorder_injI:  | 
|
236  | 
assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y"  | 
|
237  | 
shows "inj f"  | 
|
238  | 
proof (rule inj_onI)  | 
|
239  | 
fix x y  | 
|
240  | 
assume f_eq: "f x = f y"  | 
|
241  | 
show "x = y"  | 
|
242  | 
proof (rule linorder_cases)  | 
|
243  | 
assume "x < y"  | 
|
244  | 
with hyp have "f x \<noteq> f y" by blast  | 
|
245  | 
with f_eq show ?thesis by simp  | 
|
246  | 
next  | 
|
247  | 
assume "x = y"  | 
|
248  | 
then show ?thesis .  | 
|
249  | 
next  | 
|
250  | 
assume "y < x"  | 
|
251  | 
with hyp have "f y \<noteq> f x" by blast  | 
|
252  | 
with f_eq show ?thesis by simp  | 
|
253  | 
qed  | 
|
254  | 
qed  | 
|
255  | 
||
256  | 
lemma infinite_countable_subset:  | 
|
257  | 
assumes inf: "infinite (S::'a set)"  | 
|
258  | 
shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"  | 
|
259  | 
proof -  | 
|
260  | 
  def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | 
|
261  | 
def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)"  | 
|
262  | 
have Sseq_inf: "\<And>n. infinite (Sseq n)"  | 
|
263  | 
proof -  | 
|
264  | 
fix n  | 
|
265  | 
show "infinite (Sseq n)"  | 
|
266  | 
proof (induct n)  | 
|
267  | 
from inf show "infinite (Sseq 0)"  | 
|
268  | 
by (simp add: Sseq_def)  | 
|
269  | 
next  | 
|
270  | 
fix n  | 
|
271  | 
assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))"  | 
|
272  | 
by (simp add: Sseq_def infinite_remove)  | 
|
273  | 
qed  | 
|
274  | 
qed  | 
|
275  | 
have Sseq_S: "\<And>n. Sseq n \<subseteq> S"  | 
|
276  | 
proof -  | 
|
277  | 
fix n  | 
|
278  | 
show "Sseq n \<subseteq> S"  | 
|
279  | 
by (induct n) (auto simp add: Sseq_def)  | 
|
280  | 
qed  | 
|
281  | 
have Sseq_pick: "\<And>n. pick n \<in> Sseq n"  | 
|
282  | 
proof -  | 
|
283  | 
fix n  | 
|
284  | 
show "pick n \<in> Sseq n"  | 
|
285  | 
proof (unfold pick_def, rule someI_ex)  | 
|
286  | 
from Sseq_inf have "infinite (Sseq n)" .  | 
|
287  | 
      then have "Sseq n \<noteq> {}" by auto
 | 
|
288  | 
then show "\<exists>x. x \<in> Sseq n" by auto  | 
|
289  | 
qed  | 
|
290  | 
qed  | 
|
291  | 
with Sseq_S have rng: "range pick \<subseteq> S"  | 
|
292  | 
by auto  | 
|
293  | 
have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)"  | 
|
294  | 
proof -  | 
|
295  | 
fix n m  | 
|
296  | 
show "pick n \<notin> Sseq (n + Suc m)"  | 
|
297  | 
by (induct m) (auto simp add: Sseq_def pick_def)  | 
|
298  | 
qed  | 
|
299  | 
have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)"  | 
|
300  | 
proof -  | 
|
301  | 
fix n m  | 
|
302  | 
from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" .  | 
|
303  | 
moreover from pick_Sseq_gt  | 
|
304  | 
have "pick n \<notin> Sseq (n + Suc m)" .  | 
|
305  | 
ultimately show "pick n \<noteq> pick (n + Suc m)"  | 
|
306  | 
by auto  | 
|
307  | 
qed  | 
|
308  | 
have inj: "inj pick"  | 
|
309  | 
proof (rule linorder_injI)  | 
|
310  | 
fix i j :: nat  | 
|
311  | 
assume "i < j"  | 
|
312  | 
show "pick i \<noteq> pick j"  | 
|
313  | 
proof  | 
|
314  | 
assume eq: "pick i = pick j"  | 
|
315  | 
from `i < j` obtain k where "j = i + Suc k"  | 
|
316  | 
by (auto simp add: less_iff_Suc_add)  | 
|
317  | 
with pick_pick have "pick i \<noteq> pick j" by simp  | 
|
318  | 
with eq show False by simp  | 
|
319  | 
qed  | 
|
320  | 
qed  | 
|
321  | 
from rng inj show ?thesis by auto  | 
|
322  | 
qed  | 
|
323  | 
||
324  | 
lemma infinite_iff_countable_subset:  | 
|
325  | 
"infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"  | 
|
326  | 
by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super)  | 
|
327  | 
||
328  | 
text {*
 | 
|
329  | 
For any function with infinite domain and finite range there is some  | 
|
330  | 
element that is the image of infinitely many domain elements. In  | 
|
331  | 
particular, any infinite sequence of elements from a finite set  | 
|
332  | 
contains some element that occurs infinitely often.  | 
|
333  | 
*}  | 
|
334  | 
||
335  | 
lemma inf_img_fin_dom:  | 
|
336  | 
assumes img: "finite (f`A)" and dom: "infinite A"  | 
|
337  | 
  shows "\<exists>y \<in> f`A. infinite (f -` {y})"
 | 
|
338  | 
proof (rule ccontr)  | 
|
339  | 
assume "\<not> ?thesis"  | 
|
340  | 
  with img have "finite (UN y:f`A. f -` {y})" by (blast intro: finite_UN_I)
 | 
|
341  | 
  moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
 | 
|
342  | 
moreover note dom  | 
|
343  | 
ultimately show False by (simp add: infinite_super)  | 
|
344  | 
qed  | 
|
345  | 
||
346  | 
lemma inf_img_fin_domE:  | 
|
347  | 
assumes "finite (f`A)" and "infinite A"  | 
|
348  | 
  obtains y where "y \<in> f`A" and "infinite (f -` {y})"
 | 
|
349  | 
using prems by (blast dest: inf_img_fin_dom)  | 
|
350  | 
||
351  | 
||
352  | 
subsection "Infinitely Many and Almost All"  | 
|
353  | 
||
354  | 
text {*
 | 
|
355  | 
We often need to reason about the existence of infinitely many  | 
|
356  | 
(resp., all but finitely many) objects satisfying some predicate, so  | 
|
357  | 
we introduce corresponding binders and their proof rules.  | 
|
358  | 
*}  | 
|
359  | 
||
360  | 
definition  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
361  | 
  Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "INF " 10) where
 | 
| 20809 | 362  | 
  "Inf_many P = infinite {x. P x}"
 | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
363  | 
|
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
364  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
365  | 
  Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "MOST " 10) where
 | 
| 20809 | 366  | 
"Alm_all P = (\<not> (INF x. \<not> P x))"  | 
367  | 
||
| 21210 | 368  | 
notation (xsymbols)  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
369  | 
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and  | 
| 20809 | 370  | 
Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)  | 
371  | 
||
| 21210 | 372  | 
notation (HTML output)  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
373  | 
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and  | 
| 20809 | 374  | 
Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)  | 
375  | 
||
376  | 
lemma INF_EX:  | 
|
377  | 
"(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"  | 
|
378  | 
unfolding Inf_many_def  | 
|
379  | 
proof (rule ccontr)  | 
|
380  | 
  assume inf: "infinite {x. P x}"
 | 
|
381  | 
  assume "\<not> ?thesis" then have "{x. P x} = {}" by simp
 | 
|
382  | 
  then have "finite {x. P x}" by simp
 | 
|
383  | 
with inf show False by simp  | 
|
384  | 
qed  | 
|
385  | 
||
386  | 
lemma MOST_iff_finiteNeg: "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
 | 
|
387  | 
by (simp add: Alm_all_def Inf_many_def)  | 
|
388  | 
||
389  | 
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"  | 
|
390  | 
by (simp add: MOST_iff_finiteNeg)  | 
|
391  | 
||
392  | 
lemma INF_mono:  | 
|
393  | 
assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"  | 
|
394  | 
shows "\<exists>\<^sub>\<infinity>x. Q x"  | 
|
395  | 
proof -  | 
|
396  | 
  from inf have "infinite {x. P x}" unfolding Inf_many_def .
 | 
|
397  | 
  moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
 | 
|
398  | 
ultimately show ?thesis  | 
|
399  | 
by (simp add: Inf_many_def infinite_super)  | 
|
400  | 
qed  | 
|
401  | 
||
402  | 
lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x"  | 
|
403  | 
unfolding Alm_all_def by (blast intro: INF_mono)  | 
|
404  | 
||
405  | 
lemma INF_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"  | 
|
406  | 
by (simp add: Inf_many_def infinite_nat_iff_unbounded)  | 
|
407  | 
||
408  | 
lemma INF_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"  | 
|
409  | 
by (simp add: Inf_many_def infinite_nat_iff_unbounded_le)  | 
|
410  | 
||
411  | 
lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"  | 
|
412  | 
by (simp add: Alm_all_def INF_nat)  | 
|
413  | 
||
414  | 
lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"  | 
|
415  | 
by (simp add: Alm_all_def INF_nat_le)  | 
|
416  | 
||
417  | 
||
418  | 
subsection "Enumeration of an Infinite Set"  | 
|
419  | 
||
420  | 
text {*
 | 
|
421  | 
The set's element type must be wellordered (e.g. the natural numbers).  | 
|
422  | 
*}  | 
|
423  | 
||
424  | 
consts  | 
|
425  | 
enumerate :: "'a::wellorder set => (nat => 'a::wellorder)"  | 
|
426  | 
primrec  | 
|
427  | 
enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"  | 
|
428  | 
  enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
 | 
|
429  | 
||
430  | 
lemma enumerate_Suc':  | 
|
431  | 
    "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
 | 
|
432  | 
by simp  | 
|
433  | 
||
434  | 
lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S"  | 
|
435  | 
apply (induct n arbitrary: S)  | 
|
436  | 
apply (fastsimp intro: LeastI dest!: infinite_imp_nonempty)  | 
|
437  | 
apply (fastsimp iff: finite_Diff_singleton)  | 
|
438  | 
done  | 
|
439  | 
||
440  | 
declare enumerate_0 [simp del] enumerate_Suc [simp del]  | 
|
441  | 
||
442  | 
lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)"  | 
|
443  | 
apply (induct n arbitrary: S)  | 
|
444  | 
apply (rule order_le_neq_trans)  | 
|
445  | 
apply (simp add: enumerate_0 Least_le enumerate_in_set)  | 
|
446  | 
apply (simp only: enumerate_Suc')  | 
|
447  | 
   apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
 | 
|
448  | 
apply (blast intro: sym)  | 
|
449  | 
apply (simp add: enumerate_in_set del: Diff_iff)  | 
|
450  | 
apply (simp add: enumerate_Suc')  | 
|
451  | 
done  | 
|
452  | 
||
453  | 
lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n"  | 
|
454  | 
apply (erule less_Suc_induct)  | 
|
455  | 
apply (auto intro: enumerate_step)  | 
|
456  | 
done  | 
|
457  | 
||
458  | 
||
459  | 
subsection "Miscellaneous"  | 
|
460  | 
||
461  | 
text {*
 | 
|
462  | 
A few trivial lemmas about sets that contain at most one element.  | 
|
463  | 
These simplify the reasoning about deterministic automata.  | 
|
464  | 
*}  | 
|
465  | 
||
466  | 
definition  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
467  | 
atmost_one :: "'a set \<Rightarrow> bool" where  | 
| 20809 | 468  | 
"atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)"  | 
469  | 
||
470  | 
lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
 | 
|
471  | 
by (simp add: atmost_one_def)  | 
|
472  | 
||
473  | 
lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
 | 
|
474  | 
by (simp add: atmost_one_def)  | 
|
475  | 
||
476  | 
lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x"  | 
|
477  | 
by (simp add: atmost_one_def)  | 
|
478  | 
||
479  | 
end  |