| author | haftmann | 
| Mon, 06 Jun 2016 21:28:46 +0200 | |
| changeset 63239 | d562c9948dee | 
| parent 63117 | acb6d72fc42e | 
| child 64320 | ba194424b895 | 
| permissions | -rw-r--r-- | 
| 58627 | 1 | (* Title: HOL/Library/Linear_Temporal_Logic_on_Streams.thy | 
| 2 | Author: Andrei Popescu, TU Muenchen | |
| 3 | Author: Dmitriy Traytel, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 60500 | 6 | section \<open>Linear Temporal Logic on Streams\<close> | 
| 58627 | 7 | |
| 8 | theory Linear_Temporal_Logic_on_Streams | |
| 59000 | 9 | imports Stream Sublist Extended_Nat Infinite_Set | 
| 58627 | 10 | begin | 
| 11 | ||
| 60500 | 12 | section\<open>Preliminaries\<close> | 
| 58627 | 13 | |
| 14 | lemma shift_prefix: | |
| 15 | assumes "xl @- xs = yl @- ys" and "length xl \<le> length yl" | |
| 63117 | 16 | shows "prefix xl yl" | 
| 58627 | 17 | using assms proof(induct xl arbitrary: yl xs ys) | 
| 18 | case (Cons x xl yl xs ys) | |
| 19 | thus ?case by (cases yl) auto | |
| 20 | qed auto | |
| 21 | ||
| 22 | lemma shift_prefix_cases: | |
| 23 | assumes "xl @- xs = yl @- ys" | |
| 63117 | 24 | shows "prefix xl yl \<or> prefix yl xl" | 
| 61239 | 25 | using shift_prefix[OF assms] | 
| 26 | by (cases "length xl \<le> length yl") (metis, metis assms nat_le_linear shift_prefix) | |
| 58627 | 27 | |
| 28 | ||
| 60500 | 29 | section\<open>Linear temporal logic\<close> | 
| 58627 | 30 | |
| 31 | (* Propositional connectives: *) | |
| 32 | abbreviation (input) IMPL (infix "impl" 60) | |
| 33 | where "\<phi> impl \<psi> \<equiv> \<lambda> xs. \<phi> xs \<longrightarrow> \<psi> xs" | |
| 34 | ||
| 35 | abbreviation (input) OR (infix "or" 60) | |
| 36 | where "\<phi> or \<psi> \<equiv> \<lambda> xs. \<phi> xs \<or> \<psi> xs" | |
| 37 | ||
| 38 | abbreviation (input) AND (infix "aand" 60) | |
| 39 | where "\<phi> aand \<psi> \<equiv> \<lambda> xs. \<phi> xs \<and> \<psi> xs" | |
| 40 | ||
| 41 | abbreviation (input) "not \<phi> \<equiv> \<lambda> xs. \<not> \<phi> xs" | |
| 42 | ||
| 43 | abbreviation (input) "true \<equiv> \<lambda> xs. True" | |
| 44 | ||
| 45 | abbreviation (input) "false \<equiv> \<lambda> xs. False" | |
| 46 | ||
| 47 | lemma impl_not_or: "\<phi> impl \<psi> = (not \<phi>) or \<psi>" | |
| 48 | by blast | |
| 49 | ||
| 50 | lemma not_or: "not (\<phi> or \<psi>) = (not \<phi>) aand (not \<psi>)" | |
| 51 | by blast | |
| 52 | ||
| 53 | lemma not_aand: "not (\<phi> aand \<psi>) = (not \<phi>) or (not \<psi>)" | |
| 54 | by blast | |
| 55 | ||
| 56 | lemma non_not[simp]: "not (not \<phi>) = \<phi>" by simp | |
| 57 | ||
| 58 | (* Temporal (LTL) connectives: *) | |
| 59 | fun holds where "holds P xs \<longleftrightarrow> P (shd xs)" | |
| 60 | fun nxt where "nxt \<phi> xs = \<phi> (stl xs)" | |
| 61 | ||
| 59000 | 62 | definition "HLD s = holds (\<lambda>x. x \<in> s)" | 
| 63 | ||
| 64 | abbreviation HLD_nxt (infixr "\<cdot>" 65) where | |
| 65 | "s \<cdot> P \<equiv> HLD s aand nxt P" | |
| 66 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 67 | context | 
| 62093 | 68 | notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 69 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 70 | |
| 58627 | 71 | inductive ev for \<phi> where | 
| 72 | base: "\<phi> xs \<Longrightarrow> ev \<phi> xs" | |
| 73 | | | |
| 74 | step: "ev \<phi> (stl xs) \<Longrightarrow> ev \<phi> xs" | |
| 75 | ||
| 76 | coinductive alw for \<phi> where | |
| 77 | alw: "\<lbrakk>\<phi> xs; alw \<phi> (stl xs)\<rbrakk> \<Longrightarrow> alw \<phi> xs" | |
| 78 | ||
| 79 | (* weak until: *) | |
| 80 | coinductive UNTIL (infix "until" 60) for \<phi> \<psi> where | |
| 81 | base: "\<psi> xs \<Longrightarrow> (\<phi> until \<psi>) xs" | |
| 82 | | | |
| 83 | step: "\<lbrakk>\<phi> xs; (\<phi> until \<psi>) (stl xs)\<rbrakk> \<Longrightarrow> (\<phi> until \<psi>) xs" | |
| 84 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 85 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 86 | |
| 58627 | 87 | lemma holds_mono: | 
| 88 | assumes holds: "holds P xs" and 0: "\<And> x. P x \<Longrightarrow> Q x" | |
| 89 | shows "holds Q xs" | |
| 90 | using assms by auto | |
| 91 | ||
| 92 | lemma holds_aand: | |
| 93 | "(holds P aand holds Q) steps \<longleftrightarrow> holds (\<lambda> step. P step \<and> Q step) steps" by auto | |
| 94 | ||
| 59000 | 95 | lemma HLD_iff: "HLD s \<omega> \<longleftrightarrow> shd \<omega> \<in> s" | 
| 96 | by (simp add: HLD_def) | |
| 97 | ||
| 98 | lemma HLD_Stream[simp]: "HLD X (x ## \<omega>) \<longleftrightarrow> x \<in> X" | |
| 99 | by (simp add: HLD_iff) | |
| 100 | ||
| 58627 | 101 | lemma nxt_mono: | 
| 102 | assumes nxt: "nxt \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 103 | shows "nxt \<psi> xs" | |
| 104 | using assms by auto | |
| 105 | ||
| 59000 | 106 | declare ev.intros[intro] | 
| 107 | declare alw.cases[elim] | |
| 108 | ||
| 109 | lemma ev_induct_strong[consumes 1, case_names base step]: | |
| 110 | "ev \<phi> x \<Longrightarrow> (\<And>xs. \<phi> xs \<Longrightarrow> P xs) \<Longrightarrow> (\<And>xs. ev \<phi> (stl xs) \<Longrightarrow> \<not> \<phi> xs \<Longrightarrow> P (stl xs) \<Longrightarrow> P xs) \<Longrightarrow> P x" | |
| 111 | by (induct rule: ev.induct) auto | |
| 112 | ||
| 113 | lemma alw_coinduct[consumes 1, case_names alw stl]: | |
| 114 | "X x \<Longrightarrow> (\<And>x. X x \<Longrightarrow> \<phi> x) \<Longrightarrow> (\<And>x. X x \<Longrightarrow> \<not> alw \<phi> (stl x) \<Longrightarrow> X (stl x)) \<Longrightarrow> alw \<phi> x" | |
| 115 | using alw.coinduct[of X x \<phi>] by auto | |
| 116 | ||
| 58627 | 117 | lemma ev_mono: | 
| 118 | assumes ev: "ev \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 119 | shows "ev \<psi> xs" | |
| 61239 | 120 | using ev by induct (auto simp: 0) | 
| 58627 | 121 | |
| 122 | lemma alw_mono: | |
| 123 | assumes alw: "alw \<phi> xs" and 0: "\<And> xs. \<phi> xs \<Longrightarrow> \<psi> xs" | |
| 124 | shows "alw \<psi> xs" | |
| 61239 | 125 | using alw by coinduct (auto simp: 0) | 
| 58627 | 126 | |
| 127 | lemma until_monoL: | |
| 128 | assumes until: "(\<phi>1 until \<psi>) xs" and 0: "\<And> xs. \<phi>1 xs \<Longrightarrow> \<phi>2 xs" | |
| 129 | shows "(\<phi>2 until \<psi>) xs" | |
| 130 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 131 | ||
| 132 | lemma until_monoR: | |
| 133 | assumes until: "(\<phi> until \<psi>1) xs" and 0: "\<And> xs. \<psi>1 xs \<Longrightarrow> \<psi>2 xs" | |
| 134 | shows "(\<phi> until \<psi>2) xs" | |
| 135 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 136 | ||
| 137 | lemma until_mono: | |
| 138 | assumes until: "(\<phi>1 until \<psi>1) xs" and | |
| 139 | 0: "\<And> xs. \<phi>1 xs \<Longrightarrow> \<phi>2 xs" "\<And> xs. \<psi>1 xs \<Longrightarrow> \<psi>2 xs" | |
| 140 | shows "(\<phi>2 until \<psi>2) xs" | |
| 141 | using until by coinduct (auto elim: UNTIL.cases simp: 0) | |
| 142 | ||
| 143 | lemma until_false: "\<phi> until false = alw \<phi>" | |
| 144 | proof- | |
| 145 |   {fix xs assume "(\<phi> until false) xs" hence "alw \<phi> xs"
 | |
| 61239 | 146 | by coinduct (auto elim: UNTIL.cases) | 
| 58627 | 147 | } | 
| 148 | moreover | |
| 149 |   {fix xs assume "alw \<phi> xs" hence "(\<phi> until false) xs"
 | |
| 61239 | 150 | by coinduct auto | 
| 58627 | 151 | } | 
| 152 | ultimately show ?thesis by blast | |
| 153 | qed | |
| 154 | ||
| 155 | lemma ev_nxt: "ev \<phi> = (\<phi> or nxt (ev \<phi>))" | |
| 61239 | 156 | by (rule ext) (metis ev.simps nxt.simps) | 
| 58627 | 157 | |
| 158 | lemma alw_nxt: "alw \<phi> = (\<phi> aand nxt (alw \<phi>))" | |
| 61239 | 159 | by (rule ext) (metis alw.simps nxt.simps) | 
| 58627 | 160 | |
| 161 | lemma ev_ev[simp]: "ev (ev \<phi>) = ev \<phi>" | |
| 162 | proof- | |
| 163 |   {fix xs
 | |
| 164 | assume "ev (ev \<phi>) xs" hence "ev \<phi> xs" | |
| 61239 | 165 | by induct auto | 
| 58627 | 166 | } | 
| 61239 | 167 | thus ?thesis by auto | 
| 58627 | 168 | qed | 
| 169 | ||
| 170 | lemma alw_alw[simp]: "alw (alw \<phi>) = alw \<phi>" | |
| 171 | proof- | |
| 172 |   {fix xs
 | |
| 173 | assume "alw \<phi> xs" hence "alw (alw \<phi>) xs" | |
| 61239 | 174 | by coinduct auto | 
| 58627 | 175 | } | 
| 61239 | 176 | thus ?thesis by auto | 
| 58627 | 177 | qed | 
| 178 | ||
| 179 | lemma ev_shift: | |
| 180 | assumes "ev \<phi> xs" | |
| 181 | shows "ev \<phi> (xl @- xs)" | |
| 61239 | 182 | using assms by (induct xl) auto | 
| 58627 | 183 | |
| 184 | lemma ev_imp_shift: | |
| 185 | assumes "ev \<phi> xs" shows "\<exists> xl xs2. xs = xl @- xs2 \<and> \<phi> xs2" | |
| 186 | using assms by induct (metis shift.simps(1), metis shift.simps(2) stream.collapse)+ | |
| 187 | ||
| 188 | lemma alw_ev_shift: "alw \<phi> xs1 \<Longrightarrow> ev (alw \<phi>) (xl @- xs1)" | |
| 61239 | 189 | by (auto intro: ev_shift) | 
| 58627 | 190 | |
| 191 | lemma alw_shift: | |
| 192 | assumes "alw \<phi> (xl @- xs)" | |
| 193 | shows "alw \<phi> xs" | |
| 61239 | 194 | using assms by (induct xl) auto | 
| 58627 | 195 | |
| 196 | lemma ev_ex_nxt: | |
| 197 | assumes "ev \<phi> xs" | |
| 198 | shows "\<exists> n. (nxt ^^ n) \<phi> xs" | |
| 199 | using assms proof induct | |
| 200 | case (base xs) thus ?case by (intro exI[of _ 0]) auto | |
| 201 | next | |
| 202 | case (step xs) | |
| 203 | then obtain n where "(nxt ^^ n) \<phi> (stl xs)" by blast | |
| 204 | thus ?case by (intro exI[of _ "Suc n"]) (metis funpow.simps(2) nxt.simps o_def) | |
| 205 | qed | |
| 206 | ||
| 207 | lemma alw_sdrop: | |
| 208 | assumes "alw \<phi> xs" shows "alw \<phi> (sdrop n xs)" | |
| 209 | by (metis alw_shift assms stake_sdrop) | |
| 210 | ||
| 211 | lemma nxt_sdrop: "(nxt ^^ n) \<phi> xs \<longleftrightarrow> \<phi> (sdrop n xs)" | |
| 212 | by (induct n arbitrary: xs) auto | |
| 213 | ||
| 214 | definition "wait \<phi> xs \<equiv> LEAST n. (nxt ^^ n) \<phi> xs" | |
| 215 | ||
| 216 | lemma nxt_wait: | |
| 217 | assumes "ev \<phi> xs" shows "(nxt ^^ (wait \<phi> xs)) \<phi> xs" | |
| 218 | unfolding wait_def using ev_ex_nxt[OF assms] by(rule LeastI_ex) | |
| 219 | ||
| 220 | lemma nxt_wait_least: | |
| 221 | assumes ev: "ev \<phi> xs" and nxt: "(nxt ^^ n) \<phi> xs" shows "wait \<phi> xs \<le> n" | |
| 222 | unfolding wait_def using ev_ex_nxt[OF ev] by (metis Least_le nxt) | |
| 223 | ||
| 224 | lemma sdrop_wait: | |
| 225 | assumes "ev \<phi> xs" shows "\<phi> (sdrop (wait \<phi> xs) xs)" | |
| 226 | using nxt_wait[OF assms] unfolding nxt_sdrop . | |
| 227 | ||
| 228 | lemma sdrop_wait_least: | |
| 229 | assumes ev: "ev \<phi> xs" and nxt: "\<phi> (sdrop n xs)" shows "wait \<phi> xs \<le> n" | |
| 230 | using assms nxt_wait_least unfolding nxt_sdrop by auto | |
| 231 | ||
| 232 | lemma nxt_ev: "(nxt ^^ n) \<phi> xs \<Longrightarrow> ev \<phi> xs" | |
| 61239 | 233 | by (induct n arbitrary: xs) auto | 
| 58627 | 234 | |
| 235 | lemma not_ev: "not (ev \<phi>) = alw (not \<phi>)" | |
| 236 | proof(rule ext, safe) | |
| 237 | fix xs assume "not (ev \<phi>) xs" thus "alw (not \<phi>) xs" | |
| 61239 | 238 | by (coinduct) auto | 
| 58627 | 239 | next | 
| 240 | fix xs assume "ev \<phi> xs" and "alw (not \<phi>) xs" thus False | |
| 61239 | 241 | by (induct) auto | 
| 58627 | 242 | qed | 
| 243 | ||
| 244 | lemma not_alw: "not (alw \<phi>) = ev (not \<phi>)" | |
| 245 | proof- | |
| 246 | have "not (alw \<phi>) = not (alw (not (not \<phi>)))" by simp | |
| 247 | also have "... = ev (not \<phi>)" unfolding not_ev[symmetric] by simp | |
| 248 | finally show ?thesis . | |
| 249 | qed | |
| 250 | ||
| 251 | lemma not_ev_not[simp]: "not (ev (not \<phi>)) = alw \<phi>" | |
| 252 | unfolding not_ev by simp | |
| 253 | ||
| 254 | lemma not_alw_not[simp]: "not (alw (not \<phi>)) = ev \<phi>" | |
| 255 | unfolding not_alw by simp | |
| 256 | ||
| 257 | lemma alw_ev_sdrop: | |
| 258 | assumes "alw (ev \<phi>) (sdrop m xs)" | |
| 259 | shows "alw (ev \<phi>) xs" | |
| 260 | using assms | |
| 261 | by coinduct (metis alw_nxt ev_shift funpow_swap1 nxt.simps nxt_sdrop stake_sdrop) | |
| 262 | ||
| 263 | lemma ev_alw_imp_alw_ev: | |
| 264 | assumes "ev (alw \<phi>) xs" shows "alw (ev \<phi>) xs" | |
| 61239 | 265 | using assms by induct (metis (full_types) alw_mono ev.base, metis alw alw_nxt ev.step) | 
| 58627 | 266 | |
| 267 | lemma alw_aand: "alw (\<phi> aand \<psi>) = alw \<phi> aand alw \<psi>" | |
| 268 | proof- | |
| 269 |   {fix xs assume "alw (\<phi> aand \<psi>) xs" hence "(alw \<phi> aand alw \<psi>) xs"
 | |
| 270 | by (auto elim: alw_mono) | |
| 271 | } | |
| 272 | moreover | |
| 273 |   {fix xs assume "(alw \<phi> aand alw \<psi>) xs" hence "alw (\<phi> aand \<psi>) xs"
 | |
| 61239 | 274 | by coinduct auto | 
| 58627 | 275 | } | 
| 276 | ultimately show ?thesis by blast | |
| 277 | qed | |
| 278 | ||
| 279 | lemma ev_or: "ev (\<phi> or \<psi>) = ev \<phi> or ev \<psi>" | |
| 280 | proof- | |
| 281 |   {fix xs assume "(ev \<phi> or ev \<psi>) xs" hence "ev (\<phi> or \<psi>) xs"
 | |
| 282 | by (auto elim: ev_mono) | |
| 283 | } | |
| 284 | moreover | |
| 285 |   {fix xs assume "ev (\<phi> or \<psi>) xs" hence "(ev \<phi> or ev \<psi>) xs"
 | |
| 61239 | 286 | by induct auto | 
| 58627 | 287 | } | 
| 288 | ultimately show ?thesis by blast | |
| 289 | qed | |
| 290 | ||
| 291 | lemma ev_alw_aand: | |
| 292 | assumes \<phi>: "ev (alw \<phi>) xs" and \<psi>: "ev (alw \<psi>) xs" | |
| 293 | shows "ev (alw (\<phi> aand \<psi>)) xs" | |
| 294 | proof- | |
| 295 | obtain xl xs1 where xs1: "xs = xl @- xs1" and \<phi>\<phi>: "alw \<phi> xs1" | |
| 296 | using \<phi> by (metis ev_imp_shift) | |
| 297 | moreover obtain yl ys1 where xs2: "xs = yl @- ys1" and \<psi>\<psi>: "alw \<psi> ys1" | |
| 298 | using \<psi> by (metis ev_imp_shift) | |
| 299 | ultimately have 0: "xl @- xs1 = yl @- ys1" by auto | |
| 63117 | 300 | hence "prefix xl yl \<or> prefix yl xl" using shift_prefix_cases by auto | 
| 58627 | 301 | thus ?thesis proof | 
| 63117 | 302 | assume "prefix xl yl" | 
| 303 | then obtain yl1 where yl: "yl = xl @ yl1" by (elim prefixE) | |
| 58627 | 304 | have xs1': "xs1 = yl1 @- ys1" using 0 unfolding yl by simp | 
| 305 | have "alw \<phi> ys1" using \<phi>\<phi> unfolding xs1' by (metis alw_shift) | |
| 306 | hence "alw (\<phi> aand \<psi>) ys1" using \<psi>\<psi> unfolding alw_aand by auto | |
| 307 | thus ?thesis unfolding xs2 by (auto intro: alw_ev_shift) | |
| 308 | next | |
| 63117 | 309 | assume "prefix yl xl" | 
| 310 | then obtain xl1 where xl: "xl = yl @ xl1" by (elim prefixE) | |
| 58627 | 311 | have ys1': "ys1 = xl1 @- xs1" using 0 unfolding xl by simp | 
| 312 | have "alw \<psi> xs1" using \<psi>\<psi> unfolding ys1' by (metis alw_shift) | |
| 313 | hence "alw (\<phi> aand \<psi>) xs1" using \<phi>\<phi> unfolding alw_aand by auto | |
| 314 | thus ?thesis unfolding xs1 by (auto intro: alw_ev_shift) | |
| 315 | qed | |
| 316 | qed | |
| 317 | ||
| 318 | lemma ev_alw_alw_impl: | |
| 319 | assumes "ev (alw \<phi>) xs" and "alw (alw \<phi> impl ev \<psi>) xs" | |
| 320 | shows "ev \<psi> xs" | |
| 61239 | 321 | using assms by induct auto | 
| 58627 | 322 | |
| 323 | lemma ev_alw_stl[simp]: "ev (alw \<phi>) (stl x) \<longleftrightarrow> ev (alw \<phi>) x" | |
| 324 | by (metis (full_types) alw_nxt ev_nxt nxt.simps) | |
| 325 | ||
| 326 | lemma alw_alw_impl_ev: | |
| 327 | "alw (alw \<phi> impl ev \<psi>) = (ev (alw \<phi>) impl alw (ev \<psi>))" (is "?A = ?B") | |
| 328 | proof- | |
| 329 |   {fix xs assume "?A xs \<and> ev (alw \<phi>) xs" hence "alw (ev \<psi>) xs"
 | |
| 61239 | 330 | by coinduct (auto elim: ev_alw_alw_impl) | 
| 58627 | 331 | } | 
| 332 | moreover | |
| 333 |   {fix xs assume "?B xs" hence "?A xs"
 | |
| 61239 | 334 | by coinduct auto | 
| 58627 | 335 | } | 
| 336 | ultimately show ?thesis by blast | |
| 337 | qed | |
| 338 | ||
| 339 | lemma ev_alw_impl: | |
| 340 | assumes "ev \<phi> xs" and "alw (\<phi> impl \<psi>) xs" shows "ev \<psi> xs" | |
| 61239 | 341 | using assms by induct auto | 
| 58627 | 342 | |
| 343 | lemma ev_alw_impl_ev: | |
| 344 | assumes "ev \<phi> xs" and "alw (\<phi> impl ev \<psi>) xs" shows "ev \<psi> xs" | |
| 345 | using ev_alw_impl[OF assms] by simp | |
| 346 | ||
| 347 | lemma alw_mp: | |
| 348 | assumes "alw \<phi> xs" and "alw (\<phi> impl \<psi>) xs" | |
| 349 | shows "alw \<psi> xs" | |
| 350 | proof- | |
| 351 |   {assume "alw \<phi> xs \<and> alw (\<phi> impl \<psi>) xs" hence ?thesis
 | |
| 61239 | 352 | by coinduct auto | 
| 58627 | 353 | } | 
| 354 | thus ?thesis using assms by auto | |
| 355 | qed | |
| 356 | ||
| 357 | lemma all_imp_alw: | |
| 358 | assumes "\<And> xs. \<phi> xs" shows "alw \<phi> xs" | |
| 359 | proof- | |
| 360 |   {assume "\<forall> xs. \<phi> xs"
 | |
| 361 | hence ?thesis by coinduct auto | |
| 362 | } | |
| 363 | thus ?thesis using assms by auto | |
| 364 | qed | |
| 365 | ||
| 366 | lemma alw_impl_ev_alw: | |
| 367 | assumes "alw (\<phi> impl ev \<psi>) xs" | |
| 368 | shows "alw (ev \<phi> impl ev \<psi>) xs" | |
| 61239 | 369 | using assms by coinduct (auto dest: ev_alw_impl) | 
| 58627 | 370 | |
| 371 | lemma ev_holds_sset: | |
| 372 | "ev (holds P) xs \<longleftrightarrow> (\<exists> x \<in> sset xs. P x)" (is "?L \<longleftrightarrow> ?R") | |
| 373 | proof safe | |
| 374 | assume ?L thus ?R by induct (metis holds.simps stream.set_sel(1), metis stl_sset) | |
| 375 | next | |
| 376 | fix x assume "x \<in> sset xs" "P x" | |
| 377 | thus ?L by (induct rule: sset_induct) (simp_all add: ev.base ev.step) | |
| 378 | qed | |
| 379 | ||
| 380 | (* LTL as a program logic: *) | |
| 381 | lemma alw_invar: | |
| 382 | assumes "\<phi> xs" and "alw (\<phi> impl nxt \<phi>) xs" | |
| 383 | shows "alw \<phi> xs" | |
| 384 | proof- | |
| 385 |   {assume "\<phi> xs \<and> alw (\<phi> impl nxt \<phi>) xs" hence ?thesis
 | |
| 61239 | 386 | by coinduct auto | 
| 58627 | 387 | } | 
| 388 | thus ?thesis using assms by auto | |
| 389 | qed | |
| 390 | ||
| 391 | lemma variance: | |
| 392 | assumes 1: "\<phi> xs" and 2: "alw (\<phi> impl (\<psi> or nxt \<phi>)) xs" | |
| 393 | shows "(alw \<phi> or ev \<psi>) xs" | |
| 394 | proof- | |
| 395 |   {assume "\<not> ev \<psi> xs" hence "alw (not \<psi>) xs" unfolding not_ev[symmetric] .
 | |
| 396 | moreover have "alw (not \<psi> impl (\<phi> impl nxt \<phi>)) xs" | |
| 61239 | 397 | using 2 by coinduct auto | 
| 58627 | 398 | ultimately have "alw (\<phi> impl nxt \<phi>) xs" by(auto dest: alw_mp) | 
| 399 | with 1 have "alw \<phi> xs" by(rule alw_invar) | |
| 400 | } | |
| 401 | thus ?thesis by blast | |
| 402 | qed | |
| 403 | ||
| 404 | lemma ev_alw_imp_nxt: | |
| 405 | assumes e: "ev \<phi> xs" and a: "alw (\<phi> impl (nxt \<phi>)) xs" | |
| 406 | shows "ev (alw \<phi>) xs" | |
| 407 | proof- | |
| 408 | obtain xl xs1 where xs: "xs = xl @- xs1" and \<phi>: "\<phi> xs1" | |
| 409 | using e by (metis ev_imp_shift) | |
| 410 | have "\<phi> xs1 \<and> alw (\<phi> impl (nxt \<phi>)) xs1" using a \<phi> unfolding xs by (metis alw_shift) | |
| 61239 | 411 | hence "alw \<phi> xs1" by(coinduct xs1 rule: alw.coinduct) auto | 
| 58627 | 412 | thus ?thesis unfolding xs by (auto intro: alw_ev_shift) | 
| 413 | qed | |
| 414 | ||
| 415 | ||
| 59000 | 416 | inductive ev_at :: "('a stream \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a stream \<Rightarrow> bool" for P :: "'a stream \<Rightarrow> bool" where
 | 
| 417 | base: "P \<omega> \<Longrightarrow> ev_at P 0 \<omega>" | |
| 418 | | step:"\<not> P \<omega> \<Longrightarrow> ev_at P n (stl \<omega>) \<Longrightarrow> ev_at P (Suc n) \<omega>" | |
| 419 | ||
| 420 | inductive_simps ev_at_0[simp]: "ev_at P 0 \<omega>" | |
| 421 | inductive_simps ev_at_Suc[simp]: "ev_at P (Suc n) \<omega>" | |
| 422 | ||
| 423 | lemma ev_at_imp_snth: "ev_at P n \<omega> \<Longrightarrow> P (sdrop n \<omega>)" | |
| 424 | by (induction n arbitrary: \<omega>) auto | |
| 425 | ||
| 426 | lemma ev_at_HLD_imp_snth: "ev_at (HLD X) n \<omega> \<Longrightarrow> \<omega> !! n \<in> X" | |
| 427 | by (auto dest!: ev_at_imp_snth simp: HLD_iff) | |
| 428 | ||
| 429 | lemma ev_at_HLD_single_imp_snth: "ev_at (HLD {x}) n \<omega> \<Longrightarrow> \<omega> !! n = x"
 | |
| 430 | by (drule ev_at_HLD_imp_snth) simp | |
| 431 | ||
| 432 | lemma ev_at_unique: "ev_at P n \<omega> \<Longrightarrow> ev_at P m \<omega> \<Longrightarrow> n = m" | |
| 433 | proof (induction arbitrary: m rule: ev_at.induct) | |
| 434 | case (base \<omega>) then show ?case | |
| 435 | by (simp add: ev_at.simps[of _ _ \<omega>]) | |
| 436 | next | |
| 437 | case (step \<omega> n) from step.prems step.hyps step.IH[of "m - 1"] show ?case | |
| 438 | by (auto simp add: ev_at.simps[of _ _ \<omega>]) | |
| 439 | qed | |
| 440 | ||
| 441 | lemma ev_iff_ev_at: "ev P \<omega> \<longleftrightarrow> (\<exists>n. ev_at P n \<omega>)" | |
| 442 | proof | |
| 443 | assume "ev P \<omega>" then show "\<exists>n. ev_at P n \<omega>" | |
| 444 | by (induction rule: ev_induct_strong) (auto intro: ev_at.intros) | |
| 445 | next | |
| 446 | assume "\<exists>n. ev_at P n \<omega>" | |
| 447 | then obtain n where "ev_at P n \<omega>" | |
| 448 | by auto | |
| 449 | then show "ev P \<omega>" | |
| 450 | by induction auto | |
| 451 | qed | |
| 452 | ||
| 453 | lemma ev_at_shift: "ev_at (HLD X) i (stake (Suc i) \<omega> @- \<omega>' :: 's stream) \<longleftrightarrow> ev_at (HLD X) i \<omega>" | |
| 454 | by (induction i arbitrary: \<omega>) (auto simp: HLD_iff) | |
| 455 | ||
| 456 | lemma ev_iff_ev_at_unqiue: "ev P \<omega> \<longleftrightarrow> (\<exists>!n. ev_at P n \<omega>)" | |
| 457 | by (auto intro: ev_at_unique simp: ev_iff_ev_at) | |
| 458 | ||
| 459 | lemma alw_HLD_iff_streams: "alw (HLD X) \<omega> \<longleftrightarrow> \<omega> \<in> streams X" | |
| 460 | proof | |
| 461 | assume "alw (HLD X) \<omega>" then show "\<omega> \<in> streams X" | |
| 462 | proof (coinduction arbitrary: \<omega>) | |
| 463 | case (streams \<omega>) then show ?case by (cases \<omega>) auto | |
| 464 | qed | |
| 465 | next | |
| 466 | assume "\<omega> \<in> streams X" then show "alw (HLD X) \<omega>" | |
| 467 | proof (coinduction arbitrary: \<omega>) | |
| 468 | case (alw \<omega>) then show ?case by (cases \<omega>) auto | |
| 469 | qed | |
| 470 | qed | |
| 471 | ||
| 472 | lemma not_HLD: "not (HLD X) = HLD (- X)" | |
| 473 | by (auto simp: HLD_iff) | |
| 474 | ||
| 475 | lemma not_alw_iff: "\<not> (alw P \<omega>) \<longleftrightarrow> ev (not P) \<omega>" | |
| 476 | using not_alw[of P] by (simp add: fun_eq_iff) | |
| 477 | ||
| 478 | lemma not_ev_iff: "\<not> (ev P \<omega>) \<longleftrightarrow> alw (not P) \<omega>" | |
| 479 | using not_alw_iff[of "not P" \<omega>, symmetric] by simp | |
| 480 | ||
| 481 | lemma ev_Stream: "ev P (x ## s) \<longleftrightarrow> P (x ## s) \<or> ev P s" | |
| 482 | by (auto elim: ev.cases) | |
| 483 | ||
| 484 | lemma alw_ev_imp_ev_alw: | |
| 485 | assumes "alw (ev P) \<omega>" shows "ev (P aand alw (ev P)) \<omega>" | |
| 486 | proof - | |
| 487 | have "ev P \<omega>" using assms by auto | |
| 488 | from this assms show ?thesis | |
| 489 | by induct auto | |
| 490 | qed | |
| 491 | ||
| 492 | lemma ev_False: "ev (\<lambda>x. False) \<omega> \<longleftrightarrow> False" | |
| 493 | proof | |
| 494 | assume "ev (\<lambda>x. False) \<omega>" then show False | |
| 495 | by induct auto | |
| 496 | qed auto | |
| 497 | ||
| 498 | lemma alw_False: "alw (\<lambda>x. False) \<omega> \<longleftrightarrow> False" | |
| 499 | by auto | |
| 500 | ||
| 501 | lemma ev_iff_sdrop: "ev P \<omega> \<longleftrightarrow> (\<exists>m. P (sdrop m \<omega>))" | |
| 502 | proof safe | |
| 503 | assume "ev P \<omega>" then show "\<exists>m. P (sdrop m \<omega>)" | |
| 504 | by (induct rule: ev_induct_strong) (auto intro: exI[of _ 0] exI[of _ "Suc n" for n]) | |
| 505 | next | |
| 506 | fix m assume "P (sdrop m \<omega>)" then show "ev P \<omega>" | |
| 507 | by (induct m arbitrary: \<omega>) auto | |
| 508 | qed | |
| 509 | ||
| 510 | lemma alw_iff_sdrop: "alw P \<omega> \<longleftrightarrow> (\<forall>m. P (sdrop m \<omega>))" | |
| 511 | proof safe | |
| 512 | fix m assume "alw P \<omega>" then show "P (sdrop m \<omega>)" | |
| 513 | by (induct m arbitrary: \<omega>) auto | |
| 514 | next | |
| 515 | assume "\<forall>m. P (sdrop m \<omega>)" then show "alw P \<omega>" | |
| 516 | by (coinduction arbitrary: \<omega>) (auto elim: allE[of _ 0] allE[of _ "Suc n" for n]) | |
| 517 | qed | |
| 518 | ||
| 519 | lemma infinite_iff_alw_ev: "infinite {m. P (sdrop m \<omega>)} \<longleftrightarrow> alw (ev P) \<omega>"
 | |
| 520 | unfolding infinite_nat_iff_unbounded_le alw_iff_sdrop ev_iff_sdrop | |
| 521 | by simp (metis le_Suc_ex le_add1) | |
| 522 | ||
| 523 | lemma alw_inv: | |
| 524 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 525 | shows "alw P (f s) \<longleftrightarrow> alw (\<lambda>x. P (f x)) s" | |
| 526 | proof | |
| 527 | assume "alw P (f s)" then show "alw (\<lambda>x. P (f x)) s" | |
| 528 | by (coinduction arbitrary: s rule: alw_coinduct) | |
| 529 | (auto simp: stl) | |
| 530 | next | |
| 531 | assume "alw (\<lambda>x. P (f x)) s" then show "alw P (f s)" | |
| 532 | by (coinduction arbitrary: s rule: alw_coinduct) (auto simp: stl[symmetric]) | |
| 533 | qed | |
| 534 | ||
| 535 | lemma ev_inv: | |
| 536 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 537 | shows "ev P (f s) \<longleftrightarrow> ev (\<lambda>x. P (f x)) s" | |
| 538 | proof | |
| 539 | assume "ev P (f s)" then show "ev (\<lambda>x. P (f x)) s" | |
| 540 | by (induction "f s" arbitrary: s) (auto simp: stl) | |
| 541 | next | |
| 542 | assume "ev (\<lambda>x. P (f x)) s" then show "ev P (f s)" | |
| 543 | by induction (auto simp: stl[symmetric]) | |
| 544 | qed | |
| 545 | ||
| 546 | lemma alw_smap: "alw P (smap f s) \<longleftrightarrow> alw (\<lambda>x. P (smap f x)) s" | |
| 547 | by (rule alw_inv) simp | |
| 548 | ||
| 549 | lemma ev_smap: "ev P (smap f s) \<longleftrightarrow> ev (\<lambda>x. P (smap f x)) s" | |
| 550 | by (rule ev_inv) simp | |
| 551 | ||
| 552 | lemma alw_cong: | |
| 553 | assumes P: "alw P \<omega>" and eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>" | |
| 554 | shows "alw Q1 \<omega> \<longleftrightarrow> alw Q2 \<omega>" | |
| 555 | proof - | |
| 556 | from eq have "(alw P aand Q1) = (alw P aand Q2)" by auto | |
| 557 | then have "alw (alw P aand Q1) \<omega> = alw (alw P aand Q2) \<omega>" by auto | |
| 558 | with P show "alw Q1 \<omega> \<longleftrightarrow> alw Q2 \<omega>" | |
| 559 | by (simp add: alw_aand) | |
| 560 | qed | |
| 561 | ||
| 562 | lemma ev_cong: | |
| 563 | assumes P: "alw P \<omega>" and eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>" | |
| 564 | shows "ev Q1 \<omega> \<longleftrightarrow> ev Q2 \<omega>" | |
| 565 | proof - | |
| 566 | from P have "alw (\<lambda>xs. Q1 xs \<longrightarrow> Q2 xs) \<omega>" by (rule alw_mono) (simp add: eq) | |
| 567 | moreover from P have "alw (\<lambda>xs. Q2 xs \<longrightarrow> Q1 xs) \<omega>" by (rule alw_mono) (simp add: eq) | |
| 568 | moreover note ev_alw_impl[of Q1 \<omega> Q2] ev_alw_impl[of Q2 \<omega> Q1] | |
| 569 | ultimately show "ev Q1 \<omega> \<longleftrightarrow> ev Q2 \<omega>" | |
| 570 | by auto | |
| 571 | qed | |
| 572 | ||
| 573 | lemma alwD: "alw P x \<Longrightarrow> P x" | |
| 574 | by auto | |
| 575 | ||
| 576 | lemma alw_alwD: "alw P \<omega> \<Longrightarrow> alw (alw P) \<omega>" | |
| 577 | by simp | |
| 578 | ||
| 579 | lemma alw_ev_stl: "alw (ev P) (stl \<omega>) \<longleftrightarrow> alw (ev P) \<omega>" | |
| 580 | by (auto intro: alw.intros) | |
| 581 | ||
| 582 | lemma holds_Stream: "holds P (x ## s) \<longleftrightarrow> P x" | |
| 583 | by simp | |
| 584 | ||
| 585 | lemma holds_eq1[simp]: "holds (op = x) = HLD {x}"
 | |
| 586 | by rule (auto simp: HLD_iff) | |
| 587 | ||
| 588 | lemma holds_eq2[simp]: "holds (\<lambda>y. y = x) = HLD {x}"
 | |
| 589 | by rule (auto simp: HLD_iff) | |
| 590 | ||
| 591 | lemma not_holds_eq[simp]: "holds (- op = x) = not (HLD {x})"
 | |
| 592 | by rule (auto simp: HLD_iff) | |
| 593 | ||
| 60500 | 594 | text \<open>Strong until\<close> | 
| 59000 | 595 | |
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 596 | context | 
| 62093 | 597 | notes [[inductive_internals]] | 
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 598 | begin | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 599 | |
| 59000 | 600 | inductive suntil (infix "suntil" 60) for \<phi> \<psi> where | 
| 601 | base: "\<psi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) \<omega>" | |
| 602 | | step: "\<phi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) (stl \<omega>) \<Longrightarrow> (\<phi> suntil \<psi>) \<omega>" | |
| 603 | ||
| 604 | inductive_simps suntil_Stream: "(\<phi> suntil \<psi>) (x ## s)" | |
| 605 | ||
| 61681 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 606 | end | 
| 
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
 wenzelm parents: 
61239diff
changeset | 607 | |
| 59000 | 608 | lemma suntil_induct_strong[consumes 1, case_names base step]: | 
| 609 | "(\<phi> suntil \<psi>) x \<Longrightarrow> | |
| 610 | (\<And>\<omega>. \<psi> \<omega> \<Longrightarrow> P \<omega>) \<Longrightarrow> | |
| 611 | (\<And>\<omega>. \<phi> \<omega> \<Longrightarrow> \<not> \<psi> \<omega> \<Longrightarrow> (\<phi> suntil \<psi>) (stl \<omega>) \<Longrightarrow> P (stl \<omega>) \<Longrightarrow> P \<omega>) \<Longrightarrow> P x" | |
| 612 | using suntil.induct[of \<phi> \<psi> x P] by blast | |
| 613 | ||
| 614 | lemma ev_suntil: "(\<phi> suntil \<psi>) \<omega> \<Longrightarrow> ev \<psi> \<omega>" | |
| 61239 | 615 | by (induct rule: suntil.induct) auto | 
| 59000 | 616 | |
| 617 | lemma suntil_inv: | |
| 618 | assumes stl: "\<And>s. f (stl s) = stl (f s)" | |
| 619 | shows "(P suntil Q) (f s) \<longleftrightarrow> ((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" | |
| 620 | proof | |
| 621 | assume "(P suntil Q) (f s)" then show "((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" | |
| 622 | by (induction "f s" arbitrary: s) (auto simp: stl intro: suntil.intros) | |
| 623 | next | |
| 624 | assume "((\<lambda>x. P (f x)) suntil (\<lambda>x. Q (f x))) s" then show "(P suntil Q) (f s)" | |
| 625 | by induction (auto simp: stl[symmetric] intro: suntil.intros) | |
| 626 | qed | |
| 627 | ||
| 628 | lemma suntil_smap: "(P suntil Q) (smap f s) \<longleftrightarrow> ((\<lambda>x. P (smap f x)) suntil (\<lambda>x. Q (smap f x))) s" | |
| 629 | by (rule suntil_inv) simp | |
| 630 | ||
| 631 | lemma hld_smap: "HLD x (smap f s) = holds (\<lambda>y. f y \<in> x) s" | |
| 632 | by (simp add: HLD_def) | |
| 633 | ||
| 634 | lemma suntil_mono: | |
| 635 | assumes eq: "\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<Longrightarrow> Q2 \<omega>" "\<And>\<omega>. P \<omega> \<Longrightarrow> R1 \<omega> \<Longrightarrow> R2 \<omega>" | |
| 636 | assumes *: "(Q1 suntil R1) \<omega>" "alw P \<omega>" shows "(Q2 suntil R2) \<omega>" | |
| 637 | using * by induct (auto intro: eq suntil.intros) | |
| 638 | ||
| 639 | lemma suntil_cong: | |
| 640 | "alw P \<omega> \<Longrightarrow> (\<And>\<omega>. P \<omega> \<Longrightarrow> Q1 \<omega> \<longleftrightarrow> Q2 \<omega>) \<Longrightarrow> (\<And>\<omega>. P \<omega> \<Longrightarrow> R1 \<omega> \<longleftrightarrow> R2 \<omega>) \<Longrightarrow> | |
| 641 | (Q1 suntil R1) \<omega> \<longleftrightarrow> (Q2 suntil R2) \<omega>" | |
| 642 | using suntil_mono[of P Q1 Q2 R1 R2 \<omega>] suntil_mono[of P Q2 Q1 R2 R1 \<omega>] by auto | |
| 643 | ||
| 644 | lemma ev_suntil_iff: "ev (P suntil Q) \<omega> \<longleftrightarrow> ev Q \<omega>" | |
| 645 | proof | |
| 646 | assume "ev (P suntil Q) \<omega>" then show "ev Q \<omega>" | |
| 647 | by induct (auto dest: ev_suntil) | |
| 648 | next | |
| 649 | assume "ev Q \<omega>" then show "ev (P suntil Q) \<omega>" | |
| 650 | by induct (auto intro: suntil.intros) | |
| 651 | qed | |
| 652 | ||
| 653 | lemma true_suntil: "((\<lambda>_. True) suntil P) = ev P" | |
| 654 | by (simp add: suntil_def ev_def) | |
| 655 | ||
| 656 | lemma suntil_lfp: "(\<phi> suntil \<psi>) = lfp (\<lambda>P s. \<psi> s \<or> (\<phi> s \<and> P (stl s)))" | |
| 657 | by (simp add: suntil_def) | |
| 658 | ||
| 659 | lemma sfilter_P[simp]: "P (shd s) \<Longrightarrow> sfilter P s = shd s ## sfilter P (stl s)" | |
| 660 | using sfilter_Stream[of P "shd s" "stl s"] by simp | |
| 661 | ||
| 662 | lemma sfilter_not_P[simp]: "\<not> P (shd s) \<Longrightarrow> sfilter P s = sfilter P (stl s)" | |
| 663 | using sfilter_Stream[of P "shd s" "stl s"] by simp | |
| 664 | ||
| 665 | lemma sfilter_eq: | |
| 666 | assumes "ev (holds P) s" | |
| 667 | shows "sfilter P s = x ## s' \<longleftrightarrow> | |
| 668 |     P x \<and> (not (holds P) suntil (HLD {x} aand nxt (\<lambda>s. sfilter P s = s'))) s"
 | |
| 669 | using assms | |
| 670 | by (induct rule: ev_induct_strong) | |
| 671 | (auto simp add: HLD_iff intro: suntil.intros elim: suntil.cases) | |
| 672 | ||
| 673 | lemma sfilter_streams: | |
| 674 |   "alw (ev (holds P)) \<omega> \<Longrightarrow> \<omega> \<in> streams A \<Longrightarrow> sfilter P \<omega> \<in> streams {x\<in>A. P x}"
 | |
| 675 | proof (coinduction arbitrary: \<omega>) | |
| 676 | case (streams \<omega>) | |
| 677 | then have "ev (holds P) \<omega>" by blast | |
| 678 | from this streams show ?case | |
| 679 | by (induct rule: ev_induct_strong) (auto elim: streamsE) | |
| 680 | qed | |
| 681 | ||
| 682 | lemma alw_sfilter: | |
| 683 | assumes *: "alw (ev (holds P)) s" | |
| 684 | shows "alw Q (sfilter P s) \<longleftrightarrow> alw (\<lambda>x. Q (sfilter P x)) s" | |
| 685 | proof | |
| 686 | assume "alw Q (sfilter P s)" with * show "alw (\<lambda>x. Q (sfilter P x)) s" | |
| 687 | proof (coinduction arbitrary: s rule: alw_coinduct) | |
| 688 | case (stl s) | |
| 689 | then have "ev (holds P) s" | |
| 690 | by blast | |
| 691 | from this stl show ?case | |
| 692 | by (induct rule: ev_induct_strong) auto | |
| 693 | qed auto | |
| 694 | next | |
| 695 | assume "alw (\<lambda>x. Q (sfilter P x)) s" with * show "alw Q (sfilter P s)" | |
| 696 | proof (coinduction arbitrary: s rule: alw_coinduct) | |
| 697 | case (stl s) | |
| 698 | then have "ev (holds P) s" | |
| 699 | by blast | |
| 700 | from this stl show ?case | |
| 701 | by (induct rule: ev_induct_strong) auto | |
| 702 | qed auto | |
| 703 | qed | |
| 704 | ||
| 705 | lemma ev_sfilter: | |
| 706 | assumes *: "alw (ev (holds P)) s" | |
| 707 | shows "ev Q (sfilter P s) \<longleftrightarrow> ev (\<lambda>x. Q (sfilter P x)) s" | |
| 708 | proof | |
| 709 | assume "ev Q (sfilter P s)" from this * show "ev (\<lambda>x. Q (sfilter P x)) s" | |
| 710 | proof (induction "sfilter P s" arbitrary: s rule: ev_induct_strong) | |
| 711 | case (step s) | |
| 712 | then have "ev (holds P) s" | |
| 713 | by blast | |
| 714 | from this step show ?case | |
| 715 | by (induct rule: ev_induct_strong) auto | |
| 716 | qed auto | |
| 717 | next | |
| 718 | assume "ev (\<lambda>x. Q (sfilter P x)) s" then show "ev Q (sfilter P s)" | |
| 719 | proof (induction rule: ev_induct_strong) | |
| 720 | case (step s) then show ?case | |
| 721 | by (cases "P (shd s)") auto | |
| 722 | qed auto | |
| 723 | qed | |
| 724 | ||
| 725 | lemma holds_sfilter: | |
| 726 | assumes "ev (holds Q) s" shows "holds P (sfilter Q s) \<longleftrightarrow> (not (holds Q) suntil (holds (Q aand P))) s" | |
| 727 | proof | |
| 728 | assume "holds P (sfilter Q s)" with assms show "(not (holds Q) suntil (holds (Q aand P))) s" | |
| 729 | by (induct rule: ev_induct_strong) (auto intro: suntil.intros) | |
| 730 | next | |
| 731 | assume "(not (holds Q) suntil (holds (Q aand P))) s" then show "holds P (sfilter Q s)" | |
| 732 | by induct auto | |
| 733 | qed | |
| 734 | ||
| 735 | lemma suntil_aand_nxt: | |
| 736 | "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega> \<longleftrightarrow> (\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 737 | proof | |
| 738 | assume "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega>" then show "(\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 739 | by induction (auto intro: suntil.intros) | |
| 740 | next | |
| 741 | assume "(\<phi> aand nxt (\<phi> suntil \<psi>)) \<omega>" | |
| 742 | then have "(\<phi> suntil \<psi>) (stl \<omega>)" "\<phi> \<omega>" | |
| 743 | by auto | |
| 744 | then show "(\<phi> suntil (\<phi> aand nxt \<psi>)) \<omega>" | |
| 745 | by (induction "stl \<omega>" arbitrary: \<omega>) | |
| 746 | (auto elim: suntil.cases intro: suntil.intros) | |
| 747 | qed | |
| 748 | ||
| 749 | lemma alw_sconst: "alw P (sconst x) \<longleftrightarrow> P (sconst x)" | |
| 750 | proof | |
| 751 | assume "P (sconst x)" then show "alw P (sconst x)" | |
| 752 | by coinduction auto | |
| 753 | qed auto | |
| 754 | ||
| 755 | lemma ev_sconst: "ev P (sconst x) \<longleftrightarrow> P (sconst x)" | |
| 756 | proof | |
| 757 | assume "ev P (sconst x)" then show "P (sconst x)" | |
| 758 | by (induction "sconst x") auto | |
| 759 | qed auto | |
| 760 | ||
| 761 | lemma suntil_sconst: "(\<phi> suntil \<psi>) (sconst x) \<longleftrightarrow> \<psi> (sconst x)" | |
| 762 | proof | |
| 763 | assume "(\<phi> suntil \<psi>) (sconst x)" then show "\<psi> (sconst x)" | |
| 764 | by (induction "sconst x") auto | |
| 765 | qed (auto intro: suntil.intros) | |
| 766 | ||
| 767 | lemma hld_smap': "HLD x (smap f s) = HLD (f -` x) s" | |
| 768 | by (simp add: HLD_def) | |
| 58627 | 769 | |
| 62390 | 770 | end |