author | fleury <Mathias.Fleury@mpi-inf.mpg.de> |
Tue, 30 Oct 2018 16:24:01 +0100 | |
changeset 69204 | d5ab1636660b |
parent 69064 | 5840724b1d71 |
child 80914 | d97fdabd9e2b |
permissions | -rw-r--r-- |
64962 | 1 |
(* Title: HOL/Decision_Procs/Algebra_Aux.thy |
2 |
Author: Stefan Berghofer |
|
3 |
*) |
|
4 |
||
5 |
section \<open>Things that can be added to the Algebra library\<close> |
|
6 |
||
7 |
theory Algebra_Aux |
|
67123 | 8 |
imports "HOL-Algebra.Ring" |
64962 | 9 |
begin |
10 |
||
67123 | 11 |
definition of_natural :: "('a, 'm) ring_scheme \<Rightarrow> nat \<Rightarrow> 'a" ("\<guillemotleft>_\<guillemotright>\<^sub>\<nat>\<index>") |
67399 | 12 |
where "\<guillemotleft>n\<guillemotright>\<^sub>\<nat>\<^bsub>R\<^esub> = ((\<oplus>\<^bsub>R\<^esub>) \<one>\<^bsub>R\<^esub> ^^ n) \<zero>\<^bsub>R\<^esub>" |
64962 | 13 |
|
67123 | 14 |
definition of_integer :: "('a, 'm) ring_scheme \<Rightarrow> int \<Rightarrow> 'a" ("\<guillemotleft>_\<guillemotright>\<index>") |
15 |
where "\<guillemotleft>i\<guillemotright>\<^bsub>R\<^esub> = (if 0 \<le> i then \<guillemotleft>nat i\<guillemotright>\<^sub>\<nat>\<^bsub>R\<^esub> else \<ominus>\<^bsub>R\<^esub> \<guillemotleft>nat (- i)\<guillemotright>\<^sub>\<nat>\<^bsub>R\<^esub>)" |
|
64962 | 16 |
|
67123 | 17 |
context ring |
18 |
begin |
|
64962 | 19 |
|
20 |
lemma of_nat_0 [simp]: "\<guillemotleft>0\<guillemotright>\<^sub>\<nat> = \<zero>" |
|
21 |
by (simp add: of_natural_def) |
|
22 |
||
23 |
lemma of_nat_Suc [simp]: "\<guillemotleft>Suc n\<guillemotright>\<^sub>\<nat> = \<one> \<oplus> \<guillemotleft>n\<guillemotright>\<^sub>\<nat>" |
|
24 |
by (simp add: of_natural_def) |
|
25 |
||
26 |
lemma of_int_0 [simp]: "\<guillemotleft>0\<guillemotright> = \<zero>" |
|
27 |
by (simp add: of_integer_def) |
|
28 |
||
29 |
lemma of_nat_closed [simp]: "\<guillemotleft>n\<guillemotright>\<^sub>\<nat> \<in> carrier R" |
|
30 |
by (induct n) simp_all |
|
31 |
||
32 |
lemma of_int_closed [simp]: "\<guillemotleft>i\<guillemotright> \<in> carrier R" |
|
33 |
by (simp add: of_integer_def) |
|
34 |
||
35 |
lemma of_int_minus [simp]: "\<guillemotleft>- i\<guillemotright> = \<ominus> \<guillemotleft>i\<guillemotright>" |
|
36 |
by (simp add: of_integer_def) |
|
37 |
||
38 |
lemma of_nat_add [simp]: "\<guillemotleft>m + n\<guillemotright>\<^sub>\<nat> = \<guillemotleft>m\<guillemotright>\<^sub>\<nat> \<oplus> \<guillemotleft>n\<guillemotright>\<^sub>\<nat>" |
|
39 |
by (induct m) (simp_all add: a_ac) |
|
40 |
||
41 |
lemma of_nat_diff [simp]: "n \<le> m \<Longrightarrow> \<guillemotleft>m - n\<guillemotright>\<^sub>\<nat> = \<guillemotleft>m\<guillemotright>\<^sub>\<nat> \<ominus> \<guillemotleft>n\<guillemotright>\<^sub>\<nat>" |
|
42 |
proof (induct m arbitrary: n) |
|
67123 | 43 |
case 0 |
44 |
then show ?case by (simp add: minus_eq) |
|
45 |
next |
|
46 |
case Suc': (Suc m) |
|
64962 | 47 |
show ?case |
48 |
proof (cases n) |
|
67123 | 49 |
case 0 |
50 |
then show ?thesis |
|
51 |
by (simp add: minus_eq) |
|
52 |
next |
|
64962 | 53 |
case (Suc k) |
54 |
with Suc' have "\<guillemotleft>Suc m - Suc k\<guillemotright>\<^sub>\<nat> = \<guillemotleft>m\<guillemotright>\<^sub>\<nat> \<ominus> \<guillemotleft>k\<guillemotright>\<^sub>\<nat>" by simp |
|
55 |
also have "\<dots> = \<one> \<oplus> \<ominus> \<one> \<oplus> (\<guillemotleft>m\<guillemotright>\<^sub>\<nat> \<ominus> \<guillemotleft>k\<guillemotright>\<^sub>\<nat>)" |
|
56 |
by (simp add: r_neg) |
|
57 |
also have "\<dots> = \<guillemotleft>Suc m\<guillemotright>\<^sub>\<nat> \<ominus> \<guillemotleft>Suc k\<guillemotright>\<^sub>\<nat>" |
|
58 |
by (simp add: minus_eq minus_add a_ac) |
|
59 |
finally show ?thesis using Suc by simp |
|
67123 | 60 |
qed |
61 |
qed |
|
64962 | 62 |
|
63 |
lemma of_int_add [simp]: "\<guillemotleft>i + j\<guillemotright> = \<guillemotleft>i\<guillemotright> \<oplus> \<guillemotleft>j\<guillemotright>" |
|
64 |
proof (cases "0 \<le> i") |
|
65 |
case True |
|
66 |
show ?thesis |
|
67 |
proof (cases "0 \<le> j") |
|
68 |
case True |
|
67123 | 69 |
with \<open>0 \<le> i\<close> show ?thesis |
70 |
by (simp add: of_integer_def nat_add_distrib) |
|
64962 | 71 |
next |
72 |
case False |
|
73 |
show ?thesis |
|
74 |
proof (cases "0 \<le> i + j") |
|
75 |
case True |
|
76 |
then have "\<guillemotleft>i + j\<guillemotright> = \<guillemotleft>nat (i - (- j))\<guillemotright>\<^sub>\<nat>" |
|
77 |
by (simp add: of_integer_def) |
|
64998 | 78 |
also from True \<open>0 \<le> i\<close> \<open>\<not> 0 \<le> j\<close> |
64962 | 79 |
have "nat (i - (- j)) = nat i - nat (- j)" |
80 |
by (simp add: nat_diff_distrib) |
|
64998 | 81 |
finally show ?thesis using True \<open>0 \<le> i\<close> \<open>\<not> 0 \<le> j\<close> |
64962 | 82 |
by (simp add: minus_eq of_integer_def) |
83 |
next |
|
84 |
case False |
|
85 |
then have "\<guillemotleft>i + j\<guillemotright> = \<ominus> \<guillemotleft>nat (- j - i)\<guillemotright>\<^sub>\<nat>" |
|
86 |
by (simp add: of_integer_def) (simp only: diff_conv_add_uminus add_ac) |
|
64998 | 87 |
also from False \<open>0 \<le> i\<close> \<open>\<not> 0 \<le> j\<close> |
64962 | 88 |
have "nat (- j - i) = nat (- j) - nat i" |
89 |
by (simp add: nat_diff_distrib) |
|
64998 | 90 |
finally show ?thesis using False \<open>0 \<le> i\<close> \<open>\<not> 0 \<le> j\<close> |
64962 | 91 |
by (simp add: minus_eq minus_add a_ac of_integer_def) |
92 |
qed |
|
93 |
qed |
|
94 |
next |
|
95 |
case False |
|
96 |
show ?thesis |
|
97 |
proof (cases "0 \<le> j") |
|
98 |
case True |
|
99 |
show ?thesis |
|
100 |
proof (cases "0 \<le> i + j") |
|
101 |
case True |
|
102 |
then have "\<guillemotleft>i + j\<guillemotright> = \<guillemotleft>nat (j - (- i))\<guillemotright>\<^sub>\<nat>" |
|
103 |
by (simp add: of_integer_def add_ac) |
|
64998 | 104 |
also from True \<open>\<not> 0 \<le> i\<close> \<open>0 \<le> j\<close> |
64962 | 105 |
have "nat (j - (- i)) = nat j - nat (- i)" |
106 |
by (simp add: nat_diff_distrib) |
|
64998 | 107 |
finally show ?thesis using True \<open>\<not> 0 \<le> i\<close> \<open>0 \<le> j\<close> |
64962 | 108 |
by (simp add: minus_eq minus_add a_ac of_integer_def) |
109 |
next |
|
110 |
case False |
|
111 |
then have "\<guillemotleft>i + j\<guillemotright> = \<ominus> \<guillemotleft>nat (- i - j)\<guillemotright>\<^sub>\<nat>" |
|
112 |
by (simp add: of_integer_def) |
|
64998 | 113 |
also from False \<open>\<not> 0 \<le> i\<close> \<open>0 \<le> j\<close> |
64962 | 114 |
have "nat (- i - j) = nat (- i) - nat j" |
115 |
by (simp add: nat_diff_distrib) |
|
64998 | 116 |
finally show ?thesis using False \<open>\<not> 0 \<le> i\<close> \<open>0 \<le> j\<close> |
64962 | 117 |
by (simp add: minus_eq minus_add of_integer_def) |
118 |
qed |
|
119 |
next |
|
120 |
case False |
|
64998 | 121 |
with \<open>\<not> 0 \<le> i\<close> show ?thesis |
64962 | 122 |
by (simp add: of_integer_def nat_add_distrib minus_add diff_conv_add_uminus |
67123 | 123 |
del: add_uminus_conv_diff uminus_add_conv_diff) |
64962 | 124 |
qed |
125 |
qed |
|
126 |
||
127 |
lemma of_int_diff [simp]: "\<guillemotleft>i - j\<guillemotright> = \<guillemotleft>i\<guillemotright> \<ominus> \<guillemotleft>j\<guillemotright>" |
|
128 |
by (simp only: diff_conv_add_uminus of_int_add) (simp add: minus_eq) |
|
129 |
||
130 |
lemma of_nat_mult [simp]: "\<guillemotleft>i * j\<guillemotright>\<^sub>\<nat> = \<guillemotleft>i\<guillemotright>\<^sub>\<nat> \<otimes> \<guillemotleft>j\<guillemotright>\<^sub>\<nat>" |
|
131 |
by (induct i) (simp_all add: l_distr) |
|
132 |
||
133 |
lemma of_int_mult [simp]: "\<guillemotleft>i * j\<guillemotright> = \<guillemotleft>i\<guillemotright> \<otimes> \<guillemotleft>j\<guillemotright>" |
|
134 |
proof (cases "0 \<le> i") |
|
135 |
case True |
|
136 |
show ?thesis |
|
137 |
proof (cases "0 \<le> j") |
|
138 |
case True |
|
64998 | 139 |
with \<open>0 \<le> i\<close> show ?thesis |
64962 | 140 |
by (simp add: of_integer_def nat_mult_distrib zero_le_mult_iff) |
141 |
next |
|
142 |
case False |
|
64998 | 143 |
with \<open>0 \<le> i\<close> show ?thesis |
64962 | 144 |
by (simp add: of_integer_def zero_le_mult_iff |
145 |
minus_mult_right nat_mult_distrib r_minus |
|
146 |
del: minus_mult_right [symmetric]) |
|
147 |
qed |
|
148 |
next |
|
149 |
case False |
|
150 |
show ?thesis |
|
151 |
proof (cases "0 \<le> j") |
|
152 |
case True |
|
64998 | 153 |
with \<open>\<not> 0 \<le> i\<close> show ?thesis |
64962 | 154 |
by (simp add: of_integer_def zero_le_mult_iff |
155 |
minus_mult_left nat_mult_distrib l_minus |
|
156 |
del: minus_mult_left [symmetric]) |
|
157 |
next |
|
158 |
case False |
|
64998 | 159 |
with \<open>\<not> 0 \<le> i\<close> show ?thesis |
64962 | 160 |
by (simp add: of_integer_def zero_le_mult_iff |
161 |
minus_mult_minus [of i j, symmetric] nat_mult_distrib |
|
162 |
l_minus r_minus |
|
163 |
del: minus_mult_minus |
|
164 |
minus_mult_left [symmetric] minus_mult_right [symmetric]) |
|
165 |
qed |
|
166 |
qed |
|
167 |
||
168 |
lemma of_int_1 [simp]: "\<guillemotleft>1\<guillemotright> = \<one>" |
|
169 |
by (simp add: of_integer_def) |
|
170 |
||
171 |
lemma of_int_2: "\<guillemotleft>2\<guillemotright> = \<one> \<oplus> \<one>" |
|
172 |
by (simp add: of_integer_def numeral_2_eq_2) |
|
173 |
||
174 |
lemma minus_0_r [simp]: "x \<in> carrier R \<Longrightarrow> x \<ominus> \<zero> = x" |
|
175 |
by (simp add: minus_eq) |
|
176 |
||
177 |
lemma minus_0_l [simp]: "x \<in> carrier R \<Longrightarrow> \<zero> \<ominus> x = \<ominus> x" |
|
178 |
by (simp add: minus_eq) |
|
179 |
||
180 |
lemma eq_diff0: |
|
181 |
assumes "x \<in> carrier R" "y \<in> carrier R" |
|
67123 | 182 |
shows "x \<ominus> y = \<zero> \<longleftrightarrow> x = y" |
64962 | 183 |
proof |
184 |
assume "x \<ominus> y = \<zero>" |
|
185 |
with assms have "x \<oplus> (\<ominus> y \<oplus> y) = y" |
|
186 |
by (simp add: minus_eq a_assoc [symmetric]) |
|
187 |
with assms show "x = y" by (simp add: l_neg) |
|
188 |
next |
|
189 |
assume "x = y" |
|
190 |
with assms show "x \<ominus> y = \<zero>" by (simp add: minus_eq r_neg) |
|
191 |
qed |
|
192 |
||
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
193 |
lemma power2_eq_square: "x \<in> carrier R \<Longrightarrow> x [^] (2::nat) = x \<otimes> x" |
64962 | 194 |
by (simp add: numeral_eq_Suc) |
195 |
||
196 |
lemma eq_neg_iff_add_eq_0: |
|
197 |
assumes "x \<in> carrier R" "y \<in> carrier R" |
|
67123 | 198 |
shows "x = \<ominus> y \<longleftrightarrow> x \<oplus> y = \<zero>" |
64962 | 199 |
proof |
200 |
assume "x = \<ominus> y" |
|
201 |
with assms show "x \<oplus> y = \<zero>" by (simp add: l_neg) |
|
202 |
next |
|
203 |
assume "x \<oplus> y = \<zero>" |
|
204 |
with assms have "x \<oplus> (y \<oplus> \<ominus> y) = \<zero> \<oplus> \<ominus> y" |
|
205 |
by (simp add: a_assoc [symmetric]) |
|
206 |
with assms show "x = \<ominus> y" |
|
207 |
by (simp add: r_neg) |
|
208 |
qed |
|
209 |
||
210 |
lemma neg_equal_iff_equal: |
|
211 |
assumes x: "x \<in> carrier R" and y: "y \<in> carrier R" |
|
67123 | 212 |
shows "\<ominus> x = \<ominus> y \<longleftrightarrow> x = y" |
64962 | 213 |
proof |
214 |
assume "\<ominus> x = \<ominus> y" |
|
215 |
then have "\<ominus> (\<ominus> x) = \<ominus> (\<ominus> y)" by simp |
|
216 |
with x y show "x = y" by simp |
|
217 |
next |
|
218 |
assume "x = y" |
|
219 |
then show "\<ominus> x = \<ominus> y" by simp |
|
220 |
qed |
|
221 |
||
222 |
lemma neg_equal_swap: |
|
223 |
assumes x: "x \<in> carrier R" and y: "y \<in> carrier R" |
|
224 |
shows "(\<ominus> x = y) = (x = \<ominus> y)" |
|
225 |
using assms neg_equal_iff_equal [of x "\<ominus> y"] |
|
226 |
by simp |
|
227 |
||
228 |
lemma mult2: "x \<in> carrier R \<Longrightarrow> x \<oplus> x = \<guillemotleft>2\<guillemotright> \<otimes> x" |
|
229 |
by (simp add: of_int_2 l_distr) |
|
230 |
||
231 |
end |
|
232 |
||
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
233 |
lemma (in cring) of_int_power [simp]: "\<guillemotleft>i ^ n\<guillemotright> = \<guillemotleft>i\<guillemotright> [^] n" |
64962 | 234 |
by (induct n) (simp_all add: m_ac) |
235 |
||
67123 | 236 |
definition cring_class_ops :: "'a::comm_ring_1 ring" |
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
67399
diff
changeset
|
237 |
where "cring_class_ops \<equiv> \<lparr>carrier = UNIV, mult = (*), one = 1, zero = 0, add = (+)\<rparr>" |
64962 | 238 |
|
239 |
lemma cring_class: "cring cring_class_ops" |
|
240 |
apply unfold_locales |
|
241 |
apply (auto simp add: cring_class_ops_def ring_distribs Units_def) |
|
242 |
apply (rule_tac x="- x" in exI) |
|
243 |
apply simp |
|
244 |
done |
|
245 |
||
246 |
lemma carrier_class: "x \<in> carrier cring_class_ops" |
|
247 |
by (simp add: cring_class_ops_def) |
|
248 |
||
249 |
lemma zero_class: "\<zero>\<^bsub>cring_class_ops\<^esub> = 0" |
|
250 |
by (simp add: cring_class_ops_def) |
|
251 |
||
252 |
lemma one_class: "\<one>\<^bsub>cring_class_ops\<^esub> = 1" |
|
253 |
by (simp add: cring_class_ops_def) |
|
254 |
||
255 |
lemma plus_class: "x \<oplus>\<^bsub>cring_class_ops\<^esub> y = x + y" |
|
256 |
by (simp add: cring_class_ops_def) |
|
257 |
||
258 |
lemma times_class: "x \<otimes>\<^bsub>cring_class_ops\<^esub> y = x * y" |
|
259 |
by (simp add: cring_class_ops_def) |
|
260 |
||
261 |
lemma uminus_class: "\<ominus>\<^bsub>cring_class_ops\<^esub> x = - x" |
|
262 |
apply (simp add: a_inv_def m_inv_def cring_class_ops_def) |
|
263 |
apply (rule the_equality) |
|
264 |
apply (simp_all add: eq_neg_iff_add_eq_0) |
|
265 |
done |
|
266 |
||
267 |
lemma minus_class: "x \<ominus>\<^bsub>cring_class_ops\<^esub> y = x - y" |
|
268 |
by (simp add: a_minus_def carrier_class plus_class uminus_class) |
|
269 |
||
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
270 |
lemma power_class: "x [^]\<^bsub>cring_class_ops\<^esub> n = x ^ n" |
64962 | 271 |
by (induct n) (simp_all add: one_class times_class |
272 |
monoid.nat_pow_0 [OF comm_monoid.axioms(1) [OF cring.axioms(2) [OF cring_class]]] |
|
273 |
monoid.nat_pow_Suc [OF comm_monoid.axioms(1) [OF cring.axioms(2) [OF cring_class]]]) |
|
274 |
||
275 |
lemma of_nat_class: "\<guillemotleft>n\<guillemotright>\<^sub>\<nat>\<^bsub>cring_class_ops\<^esub> = of_nat n" |
|
276 |
by (induct n) (simp_all add: cring_class_ops_def of_natural_def) |
|
277 |
||
278 |
lemma of_int_class: "\<guillemotleft>i\<guillemotright>\<^bsub>cring_class_ops\<^esub> = of_int i" |
|
279 |
by (simp add: of_integer_def of_nat_class uminus_class) |
|
280 |
||
281 |
lemmas class_simps = zero_class one_class plus_class minus_class uminus_class |
|
282 |
times_class power_class of_nat_class of_int_class carrier_class |
|
283 |
||
284 |
interpretation cring_class: cring "cring_class_ops::'a::comm_ring_1 ring" |
|
67123 | 285 |
rewrites "(\<zero>\<^bsub>cring_class_ops\<^esub>::'a) = 0" |
286 |
and "(\<one>\<^bsub>cring_class_ops\<^esub>::'a) = 1" |
|
287 |
and "(x::'a) \<oplus>\<^bsub>cring_class_ops\<^esub> y = x + y" |
|
288 |
and "(x::'a) \<otimes>\<^bsub>cring_class_ops\<^esub> y = x * y" |
|
289 |
and "\<ominus>\<^bsub>cring_class_ops\<^esub> (x::'a) = - x" |
|
290 |
and "(x::'a) \<ominus>\<^bsub>cring_class_ops\<^esub> y = x - y" |
|
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
291 |
and "(x::'a) [^]\<^bsub>cring_class_ops\<^esub> n = x ^ n" |
67123 | 292 |
and "\<guillemotleft>n\<guillemotright>\<^sub>\<nat>\<^bsub>cring_class_ops\<^esub> = of_nat n" |
293 |
and "((\<guillemotleft>i\<guillemotright>\<^bsub>cring_class_ops\<^esub>)::'a) = of_int i" |
|
294 |
and "(Int.of_int (numeral m)::'a) = numeral m" |
|
64962 | 295 |
by (simp_all add: cring_class class_simps) |
296 |
||
297 |
lemma (in domain) nat_pow_eq_0_iff [simp]: |
|
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
298 |
"a \<in> carrier R \<Longrightarrow> (a [^] (n::nat) = \<zero>) = (a = \<zero> \<and> n \<noteq> 0)" |
64962 | 299 |
by (induct n) (auto simp add: integral_iff) |
300 |
||
301 |
lemma (in domain) square_eq_iff: |
|
302 |
assumes "x \<in> carrier R" "y \<in> carrier R" |
|
303 |
shows "(x \<otimes> x = y \<otimes> y) = (x = y \<or> x = \<ominus> y)" |
|
304 |
proof |
|
305 |
assume "x \<otimes> x = y \<otimes> y" |
|
306 |
with assms have "(x \<ominus> y) \<otimes> (x \<oplus> y) = x \<otimes> y \<oplus> \<ominus> (x \<otimes> y) \<oplus> (y \<otimes> y \<oplus> \<ominus> (y \<otimes> y))" |
|
307 |
by (simp add: r_distr l_distr minus_eq r_minus m_comm a_ac) |
|
308 |
with assms show "x = y \<or> x = \<ominus> y" |
|
309 |
by (simp add: integral_iff eq_neg_iff_add_eq_0 eq_diff0 r_neg) |
|
310 |
next |
|
311 |
assume "x = y \<or> x = \<ominus> y" |
|
67123 | 312 |
with assms show "x \<otimes> x = y \<otimes> y" |
313 |
by (auto simp add: l_minus r_minus) |
|
64962 | 314 |
qed |
315 |
||
67123 | 316 |
definition m_div :: "('a, 'b) ring_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<oslash>\<index>" 70) |
317 |
where "x \<oslash>\<^bsub>G\<^esub> y = (if y = \<zero>\<^bsub>G\<^esub> then \<zero>\<^bsub>G\<^esub> else x \<otimes>\<^bsub>G\<^esub> inv\<^bsub>G\<^esub> y)" |
|
64962 | 318 |
|
319 |
context field |
|
320 |
begin |
|
321 |
||
322 |
lemma inv_closed [simp]: "x \<in> carrier R \<Longrightarrow> x \<noteq> \<zero> \<Longrightarrow> inv x \<in> carrier R" |
|
323 |
by (simp add: field_Units) |
|
324 |
||
325 |
lemma l_inv [simp]: "x \<in> carrier R \<Longrightarrow> x \<noteq> \<zero> \<Longrightarrow> inv x \<otimes> x = \<one>" |
|
326 |
by (simp add: field_Units) |
|
327 |
||
328 |
lemma r_inv [simp]: "x \<in> carrier R \<Longrightarrow> x \<noteq> \<zero> \<Longrightarrow> x \<otimes> inv x = \<one>" |
|
329 |
by (simp add: field_Units) |
|
330 |
||
331 |
lemma inverse_unique: |
|
332 |
assumes a: "a \<in> carrier R" |
|
67123 | 333 |
and b: "b \<in> carrier R" |
334 |
and ab: "a \<otimes> b = \<one>" |
|
64962 | 335 |
shows "inv a = b" |
336 |
proof - |
|
67123 | 337 |
from ab b have *: "a \<noteq> \<zero>" |
338 |
by (cases "a = \<zero>") simp_all |
|
339 |
with a have "inv a \<otimes> (a \<otimes> b) = inv a" |
|
340 |
by (simp add: ab) |
|
341 |
with a b * show ?thesis |
|
342 |
by (simp add: m_assoc [symmetric]) |
|
64962 | 343 |
qed |
344 |
||
67123 | 345 |
lemma nonzero_inverse_inverse_eq: "a \<in> carrier R \<Longrightarrow> a \<noteq> \<zero> \<Longrightarrow> inv (inv a) = a" |
64962 | 346 |
by (rule inverse_unique) simp_all |
347 |
||
348 |
lemma inv_1 [simp]: "inv \<one> = \<one>" |
|
349 |
by (rule inverse_unique) simp_all |
|
350 |
||
351 |
lemma nonzero_inverse_mult_distrib: |
|
67123 | 352 |
assumes "a \<in> carrier R" "b \<in> carrier R" |
353 |
and "a \<noteq> \<zero>" "b \<noteq> \<zero>" |
|
64962 | 354 |
shows "inv (a \<otimes> b) = inv b \<otimes> inv a" |
355 |
proof - |
|
67123 | 356 |
from assms have "a \<otimes> (b \<otimes> inv b) \<otimes> inv a = \<one>" |
357 |
by simp |
|
358 |
with assms have eq: "a \<otimes> b \<otimes> (inv b \<otimes> inv a) = \<one>" |
|
64962 | 359 |
by (simp only: m_assoc m_closed inv_closed assms) |
67123 | 360 |
from assms show ?thesis |
361 |
using inverse_unique [OF _ _ eq] by simp |
|
64962 | 362 |
qed |
363 |
||
364 |
lemma nonzero_imp_inverse_nonzero: |
|
365 |
assumes "a \<in> carrier R" and "a \<noteq> \<zero>" |
|
366 |
shows "inv a \<noteq> \<zero>" |
|
367 |
proof |
|
67123 | 368 |
assume *: "inv a = \<zero>" |
369 |
from assms have **: "\<one> = a \<otimes> inv a" |
|
370 |
by simp |
|
371 |
also from assms have "\<dots> = \<zero>" by (simp add: *) |
|
64962 | 372 |
finally have "\<one> = \<zero>" . |
67123 | 373 |
then show False by (simp add: eq_commute) |
64962 | 374 |
qed |
375 |
||
376 |
lemma nonzero_divide_divide_eq_left: |
|
377 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> c \<in> carrier R \<Longrightarrow> b \<noteq> \<zero> \<Longrightarrow> c \<noteq> \<zero> \<Longrightarrow> |
|
67123 | 378 |
a \<oslash> b \<oslash> c = a \<oslash> (b \<otimes> c)" |
64962 | 379 |
by (simp add: m_div_def nonzero_inverse_mult_distrib m_ac integral_iff) |
380 |
||
381 |
lemma nonzero_times_divide_eq: |
|
382 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> c \<in> carrier R \<Longrightarrow> d \<in> carrier R \<Longrightarrow> |
|
67123 | 383 |
b \<noteq> \<zero> \<Longrightarrow> d \<noteq> \<zero> \<Longrightarrow> (a \<oslash> b) \<otimes> (c \<oslash> d) = (a \<otimes> c) \<oslash> (b \<otimes> d)" |
64962 | 384 |
by (simp add: m_div_def nonzero_inverse_mult_distrib m_ac integral_iff) |
385 |
||
386 |
lemma nonzero_divide_divide_eq: |
|
387 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> c \<in> carrier R \<Longrightarrow> d \<in> carrier R \<Longrightarrow> |
|
67123 | 388 |
b \<noteq> \<zero> \<Longrightarrow> c \<noteq> \<zero> \<Longrightarrow> d \<noteq> \<zero> \<Longrightarrow> (a \<oslash> b) \<oslash> (c \<oslash> d) = (a \<otimes> d) \<oslash> (b \<otimes> c)" |
64962 | 389 |
by (simp add: m_div_def nonzero_inverse_mult_distrib |
390 |
nonzero_imp_inverse_nonzero nonzero_inverse_inverse_eq m_ac integral_iff) |
|
391 |
||
392 |
lemma divide_1 [simp]: "x \<in> carrier R \<Longrightarrow> x \<oslash> \<one> = x" |
|
393 |
by (simp add: m_div_def) |
|
394 |
||
395 |
lemma add_frac_eq: |
|
67123 | 396 |
assumes "x \<in> carrier R" "y \<in> carrier R" "z \<in> carrier R" "w \<in> carrier R" |
397 |
and "y \<noteq> \<zero>" "z \<noteq> \<zero>" |
|
64962 | 398 |
shows "x \<oslash> y \<oplus> w \<oslash> z = (x \<otimes> z \<oplus> w \<otimes> y) \<oslash> (y \<otimes> z)" |
399 |
proof - |
|
400 |
from assms |
|
401 |
have "x \<oslash> y \<oplus> w \<oslash> z = x \<otimes> inv y \<otimes> (z \<otimes> inv z) \<oplus> w \<otimes> inv z \<otimes> (y \<otimes> inv y)" |
|
402 |
by (simp add: m_div_def) |
|
403 |
also from assms have "\<dots> = (x \<otimes> z \<oplus> w \<otimes> y) \<oslash> (y \<otimes> z)" |
|
404 |
by (simp add: m_div_def nonzero_inverse_mult_distrib r_distr m_ac integral_iff del: r_inv) |
|
405 |
finally show ?thesis . |
|
406 |
qed |
|
407 |
||
408 |
lemma div_closed [simp]: |
|
409 |
"x \<in> carrier R \<Longrightarrow> y \<in> carrier R \<Longrightarrow> y \<noteq> \<zero> \<Longrightarrow> x \<oslash> y \<in> carrier R" |
|
410 |
by (simp add: m_div_def) |
|
411 |
||
412 |
lemma minus_divide_left [simp]: |
|
413 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> b \<noteq> \<zero> \<Longrightarrow> \<ominus> (a \<oslash> b) = \<ominus> a \<oslash> b" |
|
414 |
by (simp add: m_div_def l_minus) |
|
415 |
||
416 |
lemma diff_frac_eq: |
|
67123 | 417 |
assumes "x \<in> carrier R" "y \<in> carrier R" "z \<in> carrier R" "w \<in> carrier R" |
418 |
and "y \<noteq> \<zero>" "z \<noteq> \<zero>" |
|
64962 | 419 |
shows "x \<oslash> y \<ominus> w \<oslash> z = (x \<otimes> z \<ominus> w \<otimes> y) \<oslash> (y \<otimes> z)" |
67123 | 420 |
using assms by (simp add: minus_eq l_minus add_frac_eq) |
64962 | 421 |
|
422 |
lemma nonzero_mult_divide_mult_cancel_left [simp]: |
|
67123 | 423 |
assumes "a \<in> carrier R" "b \<in> carrier R" "c \<in> carrier R" |
424 |
and "b \<noteq> \<zero>" "c \<noteq> \<zero>" |
|
64962 | 425 |
shows "(c \<otimes> a) \<oslash> (c \<otimes> b) = a \<oslash> b" |
426 |
proof - |
|
427 |
from assms have "(c \<otimes> a) \<oslash> (c \<otimes> b) = c \<otimes> a \<otimes> (inv b \<otimes> inv c)" |
|
428 |
by (simp add: m_div_def nonzero_inverse_mult_distrib integral_iff) |
|
429 |
also from assms have "\<dots> = a \<otimes> inv b \<otimes> (inv c \<otimes> c)" |
|
430 |
by (simp add: m_ac) |
|
67123 | 431 |
also from assms have "\<dots> = a \<otimes> inv b" |
432 |
by simp |
|
433 |
finally show ?thesis |
|
434 |
using assms by (simp add: m_div_def) |
|
64962 | 435 |
qed |
436 |
||
437 |
lemma times_divide_eq_left [simp]: |
|
438 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> c \<in> carrier R \<Longrightarrow> c \<noteq> \<zero> \<Longrightarrow> |
|
67123 | 439 |
(b \<oslash> c) \<otimes> a = b \<otimes> a \<oslash> c" |
64962 | 440 |
by (simp add: m_div_def m_ac) |
441 |
||
442 |
lemma times_divide_eq_right [simp]: |
|
443 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> c \<in> carrier R \<Longrightarrow> c \<noteq> \<zero> \<Longrightarrow> |
|
67123 | 444 |
a \<otimes> (b \<oslash> c) = a \<otimes> b \<oslash> c" |
64962 | 445 |
by (simp add: m_div_def m_ac) |
446 |
||
447 |
lemma nonzero_power_divide: |
|
448 |
"a \<in> carrier R \<Longrightarrow> b \<in> carrier R \<Longrightarrow> b \<noteq> \<zero> \<Longrightarrow> |
|
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
449 |
(a \<oslash> b) [^] (n::nat) = a [^] n \<oslash> b [^] n" |
64962 | 450 |
by (induct n) (simp_all add: nonzero_divide_divide_eq_left) |
451 |
||
452 |
lemma r_diff_distr: |
|
453 |
"x \<in> carrier R \<Longrightarrow> y \<in> carrier R \<Longrightarrow> z \<in> carrier R \<Longrightarrow> |
|
67123 | 454 |
z \<otimes> (x \<ominus> y) = z \<otimes> x \<ominus> z \<otimes> y" |
64962 | 455 |
by (simp add: minus_eq r_distr r_minus) |
456 |
||
67123 | 457 |
lemma divide_zero_left [simp]: "a \<in> carrier R \<Longrightarrow> a \<noteq> \<zero> \<Longrightarrow> \<zero> \<oslash> a = \<zero>" |
64962 | 458 |
by (simp add: m_div_def) |
459 |
||
460 |
lemma divide_self: "a \<in> carrier R \<Longrightarrow> a \<noteq> \<zero> \<Longrightarrow> a \<oslash> a = \<one>" |
|
461 |
by (simp add: m_div_def) |
|
462 |
||
463 |
lemma divide_eq_0_iff: |
|
67123 | 464 |
assumes "a \<in> carrier R" "b \<in> carrier R" |
465 |
and "b \<noteq> \<zero>" |
|
466 |
shows "a \<oslash> b = \<zero> \<longleftrightarrow> a = \<zero>" |
|
64962 | 467 |
proof |
468 |
assume "a = \<zero>" |
|
469 |
with assms show "a \<oslash> b = \<zero>" by simp |
|
470 |
next |
|
471 |
assume "a \<oslash> b = \<zero>" |
|
472 |
with assms have "b \<otimes> (a \<oslash> b) = b \<otimes> \<zero>" by simp |
|
473 |
also from assms have "b \<otimes> (a \<oslash> b) = b \<otimes> a \<oslash> b" by simp |
|
474 |
also from assms have "b \<otimes> a = a \<otimes> b" by (simp add: m_comm) |
|
475 |
also from assms have "a \<otimes> b \<oslash> b = a \<otimes> (b \<oslash> b)" by simp |
|
476 |
also from assms have "b \<oslash> b = \<one>" by (simp add: divide_self) |
|
477 |
finally show "a = \<zero>" using assms by simp |
|
478 |
qed |
|
479 |
||
480 |
end |
|
481 |
||
482 |
lemma field_class: "field (cring_class_ops::'a::field ring)" |
|
483 |
apply unfold_locales |
|
67123 | 484 |
apply (simp_all add: cring_class_ops_def) |
64962 | 485 |
apply (auto simp add: Units_def) |
486 |
apply (rule_tac x="1 / x" in exI) |
|
487 |
apply simp |
|
488 |
done |
|
489 |
||
490 |
lemma div_class: "(x::'a::field) \<oslash>\<^bsub>cring_class_ops\<^esub> y = x / y" |
|
491 |
apply (simp add: m_div_def m_inv_def class_simps) |
|
492 |
apply (rule impI) |
|
493 |
apply (rule ssubst [OF the_equality, of _ "1 / y"]) |
|
67123 | 494 |
apply simp_all |
64962 | 495 |
apply (drule conjunct2) |
496 |
apply (drule_tac f="\<lambda>x. x / y" in arg_cong) |
|
497 |
apply simp |
|
498 |
done |
|
499 |
||
500 |
interpretation field_class: field "cring_class_ops::'a::field ring" |
|
67123 | 501 |
rewrites "(\<zero>\<^bsub>cring_class_ops\<^esub>::'a) = 0" |
502 |
and "(\<one>\<^bsub>cring_class_ops\<^esub>::'a) = 1" |
|
503 |
and "(x::'a) \<oplus>\<^bsub>cring_class_ops\<^esub> y = x + y" |
|
504 |
and "(x::'a) \<otimes>\<^bsub>cring_class_ops\<^esub> y = x * y" |
|
505 |
and "\<ominus>\<^bsub>cring_class_ops\<^esub> (x::'a) = - x" |
|
506 |
and "(x::'a) \<ominus>\<^bsub>cring_class_ops\<^esub> y = x - y" |
|
67341
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
nipkow
parents:
67123
diff
changeset
|
507 |
and "(x::'a) [^]\<^bsub>cring_class_ops\<^esub> n = x ^ n" |
67123 | 508 |
and "\<guillemotleft>n\<guillemotright>\<^sub>\<nat>\<^bsub>cring_class_ops\<^esub> = of_nat n" |
509 |
and "((\<guillemotleft>i\<guillemotright>\<^bsub>cring_class_ops\<^esub>)::'a) = of_int i" |
|
510 |
and "(x::'a) \<oslash>\<^bsub>cring_class_ops\<^esub> y = x / y" |
|
511 |
and "(Int.of_int (numeral m)::'a) = numeral m" |
|
64962 | 512 |
by (simp_all add: field_class class_simps div_class) |
513 |
||
514 |
end |