| 
31974
 | 
     1  | 
(*  Title:      FOL/ex/Intuitionistic.thy
  | 
| 
14239
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
31974
 | 
     6  | 
header {* Intuitionistic First-Order Logic *}
 | 
| 
14239
 | 
     7  | 
  | 
| 
31974
 | 
     8  | 
theory Intuitionistic
  | 
| 
 | 
     9  | 
imports IFOL
  | 
| 
 | 
    10  | 
begin
  | 
| 
14239
 | 
    11  | 
  | 
| 
 | 
    12  | 
(*
  | 
| 
 | 
    13  | 
Single-step ML commands:
  | 
| 
 | 
    14  | 
by (IntPr.step_tac 1)
  | 
| 
 | 
    15  | 
by (biresolve_tac safe_brls 1);
  | 
| 
 | 
    16  | 
by (biresolve_tac haz_brls 1);
  | 
| 
 | 
    17  | 
by (assume_tac 1);
  | 
| 
 | 
    18  | 
by (IntPr.safe_tac 1);
  | 
| 
 | 
    19  | 
by (IntPr.mp_tac 1);
  | 
| 
 | 
    20  | 
by (IntPr.fast_tac 1);
  | 
| 
 | 
    21  | 
*)
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
text{*Metatheorem (for \emph{propositional} formulae):
 | 
| 
 | 
    25  | 
  $P$ is classically provable iff $\neg\neg P$ is intuitionistically provable.
  | 
| 
 | 
    26  | 
  Therefore $\neg P$ is classically provable iff it is intuitionistically
  | 
| 
 | 
    27  | 
  provable.
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
Proof: Let $Q$ be the conjuction of the propositions $A\vee\neg A$, one for
  | 
| 
 | 
    30  | 
each atom $A$ in $P$.  Now $\neg\neg Q$ is intuitionistically provable because
  | 
| 
 | 
    31  | 
$\neg\neg(A\vee\neg A)$ is and because double-negation distributes over
  | 
| 
 | 
    32  | 
conjunction.  If $P$ is provable classically, then clearly $Q\rightarrow P$ is
  | 
| 
 | 
    33  | 
provable intuitionistically, so $\neg\neg(Q\rightarrow P)$ is also provable
  | 
| 
 | 
    34  | 
intuitionistically.  The latter is intuitionistically equivalent to $\neg\neg
  | 
| 
 | 
    35  | 
Q\rightarrow\neg\neg P$, hence to $\neg\neg P$, since $\neg\neg Q$ is
  | 
| 
 | 
    36  | 
intuitionistically provable.  Finally, if $P$ is a negation then $\neg\neg P$
  | 
| 
 | 
    37  | 
is intuitionstically equivalent to $P$.  [Andy Pitts] *}
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma "~~(P&Q) <-> ~~P & ~~Q"
  | 
| 
 | 
    40  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma "~~ ((~P --> Q) --> (~P --> ~Q) --> P)"
  | 
| 
 | 
    43  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
text{*Double-negation does NOT distribute over disjunction*}
 | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
lemma "~~(P-->Q)  <-> (~~P --> ~~Q)"
  | 
| 
 | 
    48  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
lemma "~~~P <-> ~P"
  | 
| 
 | 
    51  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
lemma "~~((P --> Q | R)  -->  (P-->Q) | (P-->R))"
  | 
| 
 | 
    54  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
lemma "(P<->Q) <-> (Q<->P)"
  | 
| 
 | 
    57  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma "((P --> (Q | (Q-->R))) --> R) --> R"
  | 
| 
 | 
    60  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma "(((G-->A) --> J) --> D --> E) --> (((H-->B)-->I)-->C-->J)
  | 
| 
 | 
    63  | 
      --> (A-->H) --> F --> G --> (((C-->B)-->I)-->D)-->(A-->C)
  | 
| 
 | 
    64  | 
      --> (((F-->A)-->B) --> I) --> E"
  | 
| 
 | 
    65  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
text{*Lemmas for the propositional double-negation translation*}
 | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lemma "P --> ~~P"
  | 
| 
 | 
    71  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma "~~(~~P --> P)"
  | 
| 
 | 
    74  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
lemma "~~P & ~~(P --> Q) --> ~~Q"
  | 
| 
 | 
    77  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
text{*The following are classically but not constructively valid.
 | 
| 
 | 
    81  | 
      The attempt to prove them terminates quickly!*}
  | 
| 
 | 
    82  | 
lemma "((P-->Q) --> P)  -->  P"
  | 
| 
 | 
    83  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
    84  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
    85  | 
oops
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma "(P&Q-->R)  -->  (P-->R) | (Q-->R)"
  | 
| 
 | 
    88  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
    89  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
    90  | 
oops
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
subsection{*de Bruijn formulae*}
 | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
text{*de Bruijn formula with three predicates*}
 | 
| 
 | 
    96  | 
lemma "((P<->Q) --> P&Q&R) &
  | 
| 
 | 
    97  | 
               ((Q<->R) --> P&Q&R) &
  | 
| 
 | 
    98  | 
               ((R<->P) --> P&Q&R) --> P&Q&R"
  | 
| 
 | 
    99  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
text{*de Bruijn formula with five predicates*}
 | 
| 
 | 
   103  | 
lemma "((P<->Q) --> P&Q&R&S&T) &
  | 
| 
 | 
   104  | 
               ((Q<->R) --> P&Q&R&S&T) &
  | 
| 
 | 
   105  | 
               ((R<->S) --> P&Q&R&S&T) &
  | 
| 
 | 
   106  | 
               ((S<->T) --> P&Q&R&S&T) &
  | 
| 
 | 
   107  | 
               ((T<->P) --> P&Q&R&S&T) --> P&Q&R&S&T"
  | 
| 
 | 
   108  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
(*** Problems from of Sahlin, Franzen and Haridi,
  | 
| 
 | 
   112  | 
     An Intuitionistic Predicate Logic Theorem Prover.
  | 
| 
 | 
   113  | 
     J. Logic and Comp. 2 (5), October 1992, 619-656.
  | 
| 
 | 
   114  | 
***)
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
text{*Problem 1.1*}
 | 
| 
 | 
   117  | 
lemma "(ALL x. EX y. ALL z. p(x) & q(y) & r(z)) <->
  | 
| 
 | 
   118  | 
      (ALL z. EX y. ALL x. p(x) & q(y) & r(z))"
  | 
| 
 | 
   119  | 
by (tactic{*IntPr.best_dup_tac 1*})  --{*SLOW*}
 | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
text{*Problem 3.1*}
 | 
| 
 | 
   122  | 
lemma "~ (EX x. ALL y. mem(y,x) <-> ~ mem(x,x))"
  | 
| 
 | 
   123  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
text{*Problem 4.1: hopeless!*}
 | 
| 
 | 
   126  | 
lemma "(ALL x. p(x) --> p(h(x)) | p(g(x))) & (EX x. p(x)) & (ALL x. ~p(h(x)))
  | 
| 
 | 
   127  | 
      --> (EX x. p(g(g(g(g(g(x)))))))"
  | 
| 
 | 
   128  | 
oops
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
subsection{*Intuitionistic FOL: propositional problems based on Pelletier.*}
 | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
text{*~~1*}
 | 
| 
 | 
   134  | 
lemma "~~((P-->Q)  <->  (~Q --> ~P))"
  | 
| 
 | 
   135  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
text{*~~2*}
 | 
| 
 | 
   138  | 
lemma "~~(~~P  <->  P)"
  | 
| 
 | 
   139  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
text{*3*}
 | 
| 
 | 
   142  | 
lemma "~(P-->Q) --> (Q-->P)"
  | 
| 
 | 
   143  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
text{*~~4*}
 | 
| 
 | 
   146  | 
lemma "~~((~P-->Q)  <->  (~Q --> P))"
  | 
| 
 | 
   147  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
text{*~~5*}
 | 
| 
 | 
   150  | 
lemma "~~((P|Q-->P|R) --> P|(Q-->R))"
  | 
| 
 | 
   151  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
text{*~~6*}
 | 
| 
 | 
   154  | 
lemma "~~(P | ~P)"
  | 
| 
 | 
   155  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
text{*~~7*}
 | 
| 
 | 
   158  | 
lemma "~~(P | ~~~P)"
  | 
| 
 | 
   159  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
text{*~~8.  Peirce's law*}
 | 
| 
 | 
   162  | 
lemma "~~(((P-->Q) --> P)  -->  P)"
  | 
| 
 | 
   163  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
text{*9*}
 | 
| 
 | 
   166  | 
lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
  | 
| 
 | 
   167  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
text{*10*}
 | 
| 
 | 
   170  | 
lemma "(Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)"
  | 
| 
 | 
   171  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
subsection{*11.  Proved in each direction (incorrectly, says Pelletier!!) *}
 | 
| 
 | 
   174  | 
lemma "P<->P"
  | 
| 
 | 
   175  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   176  | 
  | 
| 
 | 
   177  | 
text{*~~12.  Dijkstra's law  *}
 | 
| 
 | 
   178  | 
lemma "~~(((P <-> Q) <-> R)  <->  (P <-> (Q <-> R)))"
  | 
| 
 | 
   179  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
lemma "((P <-> Q) <-> R)  -->  ~~(P <-> (Q <-> R))"
  | 
| 
 | 
   182  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
text{*13.  Distributive law*}
 | 
| 
 | 
   185  | 
lemma "P | (Q & R)  <-> (P | Q) & (P | R)"
  | 
| 
 | 
   186  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
text{*~~14*}
 | 
| 
 | 
   189  | 
lemma "~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))"
  | 
| 
 | 
   190  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
text{*~~15*}
 | 
| 
 | 
   193  | 
lemma "~~((P --> Q) <-> (~P | Q))"
  | 
| 
 | 
   194  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
text{*~~16*}
 | 
| 
 | 
   197  | 
lemma "~~((P-->Q) | (Q-->P))"
  | 
| 
 | 
   198  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
text{*~~17*}
 | 
| 
 | 
   201  | 
lemma "~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))"
  | 
| 
 | 
   202  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
text{*Dijkstra's "Golden Rule"*}
 | 
| 
 | 
   205  | 
lemma "(P&Q) <-> P <-> Q <-> (P|Q)"
  | 
| 
 | 
   206  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
subsection{*****Examples with quantifiers*****}
 | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
  | 
| 
 | 
   212  | 
subsection{*The converse is classical in the following implications...*}
 | 
| 
 | 
   213  | 
  | 
| 
 | 
   214  | 
lemma "(EX x. P(x)-->Q)  -->  (ALL x. P(x)) --> Q"
  | 
| 
 | 
   215  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   216  | 
  | 
| 
 | 
   217  | 
lemma "((ALL x. P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)"
  | 
| 
 | 
   218  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
lemma "((ALL x. ~P(x))-->Q)  -->  ~ (ALL x. ~ (P(x)|Q))"
  | 
| 
 | 
   221  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
lemma "(ALL x. P(x)) | Q  -->  (ALL x. P(x) | Q)"
  | 
| 
 | 
   224  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
lemma "(EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))"
  | 
| 
 | 
   227  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   228  | 
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
subsection{*The following are not constructively valid!*}
 | 
| 
 | 
   233  | 
text{*The attempt to prove them terminates quickly!*}
 | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
lemma "((ALL x. P(x))-->Q) --> (EX x. P(x)-->Q)"
  | 
| 
 | 
   236  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
   237  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
   238  | 
oops
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
lemma "(P --> (EX x. Q(x))) --> (EX x. P-->Q(x))"
  | 
| 
 | 
   241  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
   242  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
   243  | 
oops
  | 
| 
 | 
   244  | 
  | 
| 
 | 
   245  | 
lemma "(ALL x. P(x) | Q) --> ((ALL x. P(x)) | Q)"
  | 
| 
 | 
   246  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
   247  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
   248  | 
oops
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
lemma "(ALL x. ~~P(x)) --> ~~(ALL x. P(x))"
  | 
| 
 | 
   251  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
   252  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
   253  | 
oops
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
text{*Classically but not intuitionistically valid.  Proved by a bug in 1986!*}
 | 
| 
 | 
   256  | 
lemma "EX x. Q(x) --> (ALL x. Q(x))"
  | 
| 
 | 
   257  | 
apply (tactic{*IntPr.fast_tac 1*} | -)
 | 
| 
 | 
   258  | 
apply (rule asm_rl) --{*Checks that subgoals remain: proof failed.*}
 | 
| 
 | 
   259  | 
oops
  | 
| 
 | 
   260  | 
  | 
| 
 | 
   261  | 
  | 
| 
 | 
   262  | 
subsection{*Hard examples with quantifiers*}
 | 
| 
 | 
   263  | 
  | 
| 
 | 
   264  | 
text{*The ones that have not been proved are not known to be valid!
 | 
| 
 | 
   265  | 
  Some will require quantifier duplication -- not currently available*}
  | 
| 
 | 
   266  | 
  | 
| 
 | 
   267  | 
text{*~~18*}
 | 
| 
 | 
   268  | 
lemma "~~(EX y. ALL x. P(y)-->P(x))"
  | 
| 
 | 
   269  | 
oops  --{*NOT PROVED*}
 | 
| 
 | 
   270  | 
  | 
| 
 | 
   271  | 
text{*~~19*}
 | 
| 
 | 
   272  | 
lemma "~~(EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x)))"
  | 
| 
 | 
   273  | 
oops  --{*NOT PROVED*}
 | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
text{*20*}
 | 
| 
 | 
   276  | 
lemma "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))
  | 
| 
 | 
   277  | 
    --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"
  | 
| 
 | 
   278  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   279  | 
  | 
| 
 | 
   280  | 
text{*21*}
 | 
| 
 | 
   281  | 
lemma "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> ~~(EX x. P<->Q(x))"
  | 
| 
 | 
   282  | 
oops --{*NOT PROVED; needs quantifier duplication*}
 | 
| 
 | 
   283  | 
  | 
| 
 | 
   284  | 
text{*22*}
 | 
| 
 | 
   285  | 
lemma "(ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))"
  | 
| 
 | 
   286  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   287  | 
  | 
| 
 | 
   288  | 
text{*~~23*}
 | 
| 
 | 
   289  | 
lemma "~~ ((ALL x. P | Q(x))  <->  (P | (ALL x. Q(x))))"
  | 
| 
 | 
   290  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   291  | 
  | 
| 
 | 
   292  | 
text{*24*}
 | 
| 
 | 
   293  | 
lemma "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &
  | 
| 
 | 
   294  | 
     (~(EX x. P(x)) --> (EX x. Q(x))) & (ALL x. Q(x)|R(x) --> S(x))
  | 
| 
 | 
   295  | 
    --> ~~(EX x. P(x)&R(x))"
  | 
| 
 | 
   296  | 
txt{*Not clear why @{text fast_tac}, @{text best_tac}, @{text ASTAR} and 
 | 
| 
 | 
   297  | 
    @{text ITER_DEEPEN} all take forever*}
 | 
| 
 | 
   298  | 
apply (tactic{* IntPr.safe_tac*})
 | 
| 
 | 
   299  | 
apply (erule impE)
  | 
| 
 | 
   300  | 
apply (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   301  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   302  | 
  | 
| 
 | 
   303  | 
text{*25*}
 | 
| 
 | 
   304  | 
lemma "(EX x. P(x)) &
  | 
| 
 | 
   305  | 
        (ALL x. L(x) --> ~ (M(x) & R(x))) &
  | 
| 
 | 
   306  | 
        (ALL x. P(x) --> (M(x) & L(x))) &
  | 
| 
 | 
   307  | 
        ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)))
  | 
| 
 | 
   308  | 
    --> (EX x. Q(x)&P(x))"
  | 
| 
 | 
   309  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   310  | 
  | 
| 
 | 
   311  | 
text{*~~26*}
 | 
| 
 | 
   312  | 
lemma "(~~(EX x. p(x)) <-> ~~(EX x. q(x))) &
  | 
| 
 | 
   313  | 
      (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y)))
  | 
| 
 | 
   314  | 
  --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))"
  | 
| 
 | 
   315  | 
oops  --{*NOT PROVED*}
 | 
| 
 | 
   316  | 
  | 
| 
 | 
   317  | 
text{*27*}
 | 
| 
 | 
   318  | 
lemma "(EX x. P(x) & ~Q(x)) &
  | 
| 
 | 
   319  | 
              (ALL x. P(x) --> R(x)) &
  | 
| 
 | 
   320  | 
              (ALL x. M(x) & L(x) --> P(x)) &
  | 
| 
 | 
   321  | 
              ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x)))
  | 
| 
 | 
   322  | 
          --> (ALL x. M(x) --> ~L(x))"
  | 
| 
 | 
   323  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   324  | 
  | 
| 
 | 
   325  | 
text{*~~28.  AMENDED*}
 | 
| 
 | 
   326  | 
lemma "(ALL x. P(x) --> (ALL x. Q(x))) &
  | 
| 
 | 
   327  | 
        (~~(ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) &
  | 
| 
 | 
   328  | 
        (~~(EX x. S(x)) --> (ALL x. L(x) --> M(x)))
  | 
| 
 | 
   329  | 
    --> (ALL x. P(x) & L(x) --> M(x))"
  | 
| 
 | 
   330  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   331  | 
  | 
| 
 | 
   332  | 
text{*29.  Essentially the same as Principia Mathematica *11.71*}
 | 
| 
 | 
   333  | 
lemma "(EX x. P(x)) & (EX y. Q(y))
  | 
| 
 | 
   334  | 
    --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y))   <->
  | 
| 
 | 
   335  | 
         (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"
  | 
| 
 | 
   336  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   337  | 
  | 
| 
 | 
   338  | 
text{*~~30*}
 | 
| 
 | 
   339  | 
lemma "(ALL x. (P(x) | Q(x)) --> ~ R(x)) &
  | 
| 
 | 
   340  | 
        (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x))
  | 
| 
 | 
   341  | 
    --> (ALL x. ~~S(x))"
  | 
| 
 | 
   342  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   343  | 
  | 
| 
 | 
   344  | 
text{*31*}
 | 
| 
 | 
   345  | 
lemma "~(EX x. P(x) & (Q(x) | R(x))) &
  | 
| 
 | 
   346  | 
        (EX x. L(x) & P(x)) &
  | 
| 
 | 
   347  | 
        (ALL x. ~ R(x) --> M(x))
  | 
| 
 | 
   348  | 
    --> (EX x. L(x) & M(x))"
  | 
| 
 | 
   349  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   350  | 
  | 
| 
 | 
   351  | 
text{*32*}
 | 
| 
 | 
   352  | 
lemma "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) &
  | 
| 
 | 
   353  | 
        (ALL x. S(x) & R(x) --> L(x)) &
  | 
| 
 | 
   354  | 
        (ALL x. M(x) --> R(x))
  | 
| 
 | 
   355  | 
    --> (ALL x. P(x) & M(x) --> L(x))"
  | 
| 
 | 
   356  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   357  | 
  | 
| 
 | 
   358  | 
text{*~~33*}
 | 
| 
 | 
   359  | 
lemma "(ALL x. ~~(P(a) & (P(x)-->P(b))-->P(c)))  <->
  | 
| 
 | 
   360  | 
      (ALL x. ~~((~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c))))"
  | 
| 
 | 
   361  | 
apply (tactic{*IntPr.best_tac 1*})
 | 
| 
 | 
   362  | 
done
  | 
| 
 | 
   363  | 
  | 
| 
 | 
   364  | 
  | 
| 
 | 
   365  | 
text{*36*}
 | 
| 
 | 
   366  | 
lemma "(ALL x. EX y. J(x,y)) &
  | 
| 
 | 
   367  | 
      (ALL x. EX y. G(x,y)) &
  | 
| 
 | 
   368  | 
      (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z)))
  | 
| 
 | 
   369  | 
  --> (ALL x. EX y. H(x,y))"
  | 
| 
 | 
   370  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   371  | 
  | 
| 
 | 
   372  | 
text{*37*}
 | 
| 
 | 
   373  | 
lemma "(ALL z. EX w. ALL x. EX y.
  | 
| 
 | 
   374  | 
           ~~(P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u. Q(u,w)))) &
  | 
| 
 | 
   375  | 
        (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) &
  | 
| 
 | 
   376  | 
        (~~(EX x y. Q(x,y)) --> (ALL x. R(x,x)))
  | 
| 
 | 
   377  | 
    --> ~~(ALL x. EX y. R(x,y))"
  | 
| 
 | 
   378  | 
oops  --{*NOT PROVED*}
 | 
| 
 | 
   379  | 
  | 
| 
 | 
   380  | 
text{*39*}
 | 
| 
 | 
   381  | 
lemma "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"
  | 
| 
 | 
   382  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   383  | 
  | 
| 
 | 
   384  | 
text{*40.  AMENDED*}
 | 
| 
 | 
   385  | 
lemma "(EX y. ALL x. F(x,y) <-> F(x,x)) -->
  | 
| 
 | 
   386  | 
              ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"
  | 
| 
 | 
   387  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   388  | 
  | 
| 
 | 
   389  | 
text{*44*}
 | 
| 
 | 
   390  | 
lemma "(ALL x. f(x) -->
  | 
| 
 | 
   391  | 
              (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y))))  &
  | 
| 
 | 
   392  | 
              (EX x. j(x) & (ALL y. g(y) --> h(x,y)))
  | 
| 
 | 
   393  | 
              --> (EX x. j(x) & ~f(x))"
  | 
| 
 | 
   394  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   395  | 
  | 
| 
 | 
   396  | 
text{*48*}
 | 
| 
 | 
   397  | 
lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
  | 
| 
 | 
   398  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   399  | 
  | 
| 
 | 
   400  | 
text{*51*}
 | 
| 
 | 
   401  | 
lemma "(EX z w. ALL x y. P(x,y) <->  (x=z & y=w)) -->
  | 
| 
 | 
   402  | 
     (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"
  | 
| 
 | 
   403  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   404  | 
  | 
| 
 | 
   405  | 
text{*52*}
 | 
| 
 | 
   406  | 
text{*Almost the same as 51. *}
 | 
| 
 | 
   407  | 
lemma "(EX z w. ALL x y. P(x,y) <->  (x=z & y=w)) -->
  | 
| 
 | 
   408  | 
     (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)"
  | 
| 
 | 
   409  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   410  | 
  | 
| 
 | 
   411  | 
text{*56*}
 | 
| 
 | 
   412  | 
lemma "(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"
  | 
| 
 | 
   413  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   414  | 
  | 
| 
 | 
   415  | 
text{*57*}
 | 
| 
 | 
   416  | 
lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &
  | 
| 
 | 
   417  | 
     (ALL x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))"
  | 
| 
 | 
   418  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   419  | 
  | 
| 
 | 
   420  | 
text{*60*}
 | 
| 
 | 
   421  | 
lemma "ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
  | 
| 
 | 
   422  | 
by (tactic{*IntPr.fast_tac 1*})
 | 
| 
 | 
   423  | 
  | 
| 
 | 
   424  | 
end
  | 
| 
 | 
   425  | 
  |