| 
0
 | 
     1  | 
(*  Title: 	FOL/fol.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Tactics and lemmas for fol.thy (classical First-Order Logic)
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open FOLP;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
signature FOLP_LEMMAS = 
  | 
| 
 | 
    12  | 
  sig
  | 
| 
 | 
    13  | 
  val disjCI : thm
  | 
| 
 | 
    14  | 
  val excluded_middle : thm
  | 
| 
 | 
    15  | 
  val exCI : thm
  | 
| 
 | 
    16  | 
  val ex_classical : thm
  | 
| 
 | 
    17  | 
  val iffCE : thm
  | 
| 
 | 
    18  | 
  val impCE : thm
  | 
| 
 | 
    19  | 
  val notnotD : thm
  | 
| 
 | 
    20  | 
  val swap : thm
  | 
| 
 | 
    21  | 
  end;
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
structure FOLP_Lemmas : FOLP_LEMMAS = 
  | 
| 
 | 
    25  | 
struct
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
(*** Classical introduction rules for | and EX ***)
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
val disjCI = prove_goal FOLP.thy 
  | 
| 
 | 
    30  | 
   "(!!x.x:~Q ==> f(x):P) ==> ?p : P|Q"
  | 
| 
 | 
    31  | 
 (fn prems=>
  | 
| 
 | 
    32  | 
  [ (resolve_tac [classical] 1),
  | 
| 
 | 
    33  | 
    (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
  | 
| 
 | 
    34  | 
    (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
(*introduction rule involving only EX*)
  | 
| 
 | 
    37  | 
val ex_classical = prove_goal FOLP.thy 
  | 
| 
 | 
    38  | 
   "( !!u.u:~(EX x. P(x)) ==> f(u):P(a)) ==> ?p : EX x.P(x)"
  | 
| 
 | 
    39  | 
 (fn prems=>
  | 
| 
 | 
    40  | 
  [ (resolve_tac [classical] 1),
  | 
| 
 | 
    41  | 
    (eresolve_tac (prems RL [exI]) 1) ]);
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
(*version of above, simplifying ~EX to ALL~ *)
  | 
| 
 | 
    44  | 
val exCI = prove_goal FOLP.thy 
  | 
| 
 | 
    45  | 
   "(!!u.u:ALL x. ~P(x) ==> f(u):P(a)) ==> ?p : EX x.P(x)"
  | 
| 
 | 
    46  | 
 (fn [prem]=>
  | 
| 
 | 
    47  | 
  [ (resolve_tac [ex_classical] 1),
  | 
| 
 | 
    48  | 
    (resolve_tac [notI RS allI RS prem] 1),
  | 
| 
 | 
    49  | 
    (eresolve_tac [notE] 1),
  | 
| 
 | 
    50  | 
    (eresolve_tac [exI] 1) ]);
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
val excluded_middle = prove_goal FOLP.thy "?p : ~P | P"
  | 
| 
 | 
    53  | 
 (fn _=> [ rtac disjCI 1, assume_tac 1 ]);
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
(*** Special elimination rules *)
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
(*Classical implies (-->) elimination. *)
  | 
| 
 | 
    60  | 
val impCE = prove_goal FOLP.thy 
  | 
| 
 | 
    61  | 
    "[| p:P-->Q;  !!x.x:~P ==> f(x):R;  !!y.y:Q ==> g(y):R |] ==> ?p : R"
  | 
| 
 | 
    62  | 
 (fn major::prems=>
  | 
| 
 | 
    63  | 
  [ (resolve_tac [excluded_middle RS disjE] 1),
  | 
| 
 | 
    64  | 
    (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
(*Double negation law*)
  | 
| 
 | 
    67  | 
val notnotD = prove_goal FOLP.thy "p:~~P ==> ?p : P"
  | 
| 
 | 
    68  | 
 (fn [major]=>
  | 
| 
 | 
    69  | 
  [ (resolve_tac [classical] 1), (eresolve_tac [major RS notE] 1) ]);
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
(*** Tactics for implication and contradiction ***)
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
(*Classical <-> elimination.  Proof substitutes P=Q in 
  | 
| 
 | 
    75  | 
    ~P ==> ~Q    and    P ==> Q  *)
  | 
| 
 | 
    76  | 
val iffCE = prove_goalw FOLP.thy [iff_def]
  | 
| 
 | 
    77  | 
    "[| p:P<->Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R;  \
  | 
| 
 | 
    78  | 
\                !!x y.[| x:~P; y:~Q |] ==> g(x,y):R |] ==> ?p : R"
  | 
| 
 | 
    79  | 
 (fn prems =>
  | 
| 
 | 
    80  | 
  [ (resolve_tac [conjE] 1),
  | 
| 
 | 
    81  | 
    (REPEAT (DEPTH_SOLVE_1 
  | 
| 
 | 
    82  | 
	(etac impCE 1  ORELSE  mp_tac 1  ORELSE  ares_tac prems 1))) ]);
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
(*Should be used as swap since ~P becomes redundant*)
  | 
| 
 | 
    86  | 
val swap = prove_goal FOLP.thy 
  | 
| 
 | 
    87  | 
   "p:~P ==> (!!x.x:~Q ==> f(x):P) ==> ?p : Q"
  | 
| 
 | 
    88  | 
 (fn major::prems=>
  | 
| 
 | 
    89  | 
  [ (resolve_tac [classical] 1),
  | 
| 
 | 
    90  | 
    (rtac (major RS notE) 1),
  | 
| 
 | 
    91  | 
    (REPEAT (ares_tac prems 1)) ]);
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
end;
  | 
| 
 | 
    94  | 
  | 
| 
 | 
    95  | 
open FOLP_Lemmas;
  |