| 
435
 | 
     1  | 
(*  Title: 	ZF/Rel.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
For Rel.thy.  Relations in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Rel;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
(*** Some properties of relations -- useful? ***)
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
(* irreflexivity *)
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
val prems = goalw Rel.thy [irrefl_def]
  | 
| 
 | 
    16  | 
    "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)";
  | 
| 
 | 
    17  | 
by (REPEAT (ares_tac (prems @ [ballI]) 1));
  | 
| 
760
 | 
    18  | 
qed "irreflI";
  | 
| 
435
 | 
    19  | 
  | 
| 
 | 
    20  | 
val prems = goalw Rel.thy [irrefl_def]
  | 
| 
 | 
    21  | 
    "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r";
  | 
| 
 | 
    22  | 
by (rtac (prems MRS bspec) 1);
  | 
| 
760
 | 
    23  | 
qed "irreflE";
  | 
| 
435
 | 
    24  | 
  | 
| 
 | 
    25  | 
(* symmetry *)
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
val prems = goalw Rel.thy [sym_def]
  | 
| 
 | 
    28  | 
     "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)";
  | 
| 
 | 
    29  | 
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
  | 
| 
760
 | 
    30  | 
qed "symI";
  | 
| 
435
 | 
    31  | 
  | 
| 
 | 
    32  | 
goalw Rel.thy [sym_def] "!!r. [| sym(r); <x,y>: r |]  ==>  <y,x>: r";
  | 
| 
 | 
    33  | 
by (fast_tac ZF_cs 1);
  | 
| 
760
 | 
    34  | 
qed "symE";
  | 
| 
435
 | 
    35  | 
  | 
| 
 | 
    36  | 
(* antisymmetry *)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
val prems = goalw Rel.thy [antisym_def]
  | 
| 
 | 
    39  | 
     "[| !!x y.[| <x,y>: r;  <y,x>: r |] ==> x=y |] ==> \
  | 
| 
 | 
    40  | 
\     antisym(r)";
  | 
| 
 | 
    41  | 
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
  | 
| 
760
 | 
    42  | 
qed "antisymI";
  | 
| 
435
 | 
    43  | 
  | 
| 
 | 
    44  | 
val prems = goalw Rel.thy [antisym_def]
  | 
| 
 | 
    45  | 
     "!!r. [| antisym(r); <x,y>: r;  <y,x>: r |]  ==>  x=y";
  | 
| 
 | 
    46  | 
by (fast_tac ZF_cs 1);
  | 
| 
760
 | 
    47  | 
qed "antisymE";
  | 
| 
435
 | 
    48  | 
  | 
| 
 | 
    49  | 
(* transitivity *)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
goalw Rel.thy [trans_def]
  | 
| 
 | 
    52  | 
    "!!r. [| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r";
  | 
| 
 | 
    53  | 
by (fast_tac ZF_cs 1);
  | 
| 
760
 | 
    54  | 
qed "transD";
  | 
| 
435
 | 
    55  | 
  | 
| 
 | 
    56  | 
goalw Rel.thy [trans_on_def]
  | 
| 
 | 
    57  | 
    "!!r. [| trans[A](r);  <a,b>:r;  <b,c>:r;  a:A;  b:A;  c:A |] ==> <a,c>:r";
  | 
| 
 | 
    58  | 
by (fast_tac ZF_cs 1);
  | 
| 
760
 | 
    59  | 
qed "trans_onD";
  | 
| 
435
 | 
    60  | 
  |