author | haftmann |
Fri, 09 May 2014 08:13:26 +0200 | |
changeset 56920 | d651b944c67e |
parent 53015 | a1119cf551e8 |
child 58889 | 5b7a9633cfa8 |
permissions | -rw-r--r-- |
43158 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
50303 | 3 |
header "Definite Initialization Analysis" |
43158 | 4 |
|
51698 | 5 |
theory Vars imports Com |
43158 | 6 |
begin |
7 |
||
8 |
subsection "The Variables in an Expression" |
|
9 |
||
10 |
text{* We need to collect the variables in both arithmetic and boolean |
|
11 |
expressions. For a change we do not introduce two functions, e.g.\ @{text |
|
12 |
avars} and @{text bvars}, but we overload the name @{text vars} |
|
13 |
via a \emph{type class}, a device that originated with Haskell: *} |
|
14 |
||
15 |
class vars = |
|
45212 | 16 |
fixes vars :: "'a \<Rightarrow> vname set" |
43158 | 17 |
|
18 |
text{* This defines a type class ``vars'' with a single |
|
19 |
function of (coincidentally) the same name. Then we define two separated |
|
20 |
instances of the class, one for @{typ aexp} and one for @{typ bexp}: *} |
|
21 |
||
22 |
instantiation aexp :: vars |
|
23 |
begin |
|
24 |
||
45212 | 25 |
fun vars_aexp :: "aexp \<Rightarrow> vname set" where |
45774 | 26 |
"vars (N n) = {}" | |
27 |
"vars (V x) = {x}" | |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
28 |
"vars (Plus a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2" |
43158 | 29 |
|
30 |
instance .. |
|
31 |
||
32 |
end |
|
33 |
||
50173 | 34 |
value "vars (Plus (V ''x'') (V ''y''))" |
43158 | 35 |
|
36 |
instantiation bexp :: vars |
|
37 |
begin |
|
38 |
||
45212 | 39 |
fun vars_bexp :: "bexp \<Rightarrow> vname set" where |
45774 | 40 |
"vars (Bc v) = {}" | |
41 |
"vars (Not b) = vars b" | |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
42 |
"vars (And b\<^sub>1 b\<^sub>2) = vars b\<^sub>1 \<union> vars b\<^sub>2" | |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
43 |
"vars (Less a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2" |
43158 | 44 |
|
45 |
instance .. |
|
46 |
||
47 |
end |
|
48 |
||
50173 | 49 |
value "vars (Less (Plus (V ''z'') (V ''y'')) (V ''x''))" |
43158 | 50 |
|
51 |
abbreviation |
|
52 |
eq_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" |
|
53 |
("(_ =/ _/ on _)" [50,0,50] 50) where |
|
54 |
"f = g on X == \<forall> x \<in> X. f x = g x" |
|
55 |
||
56 |
lemma aval_eq_if_eq_on_vars[simp]: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
57 |
"s\<^sub>1 = s\<^sub>2 on vars a \<Longrightarrow> aval a s\<^sub>1 = aval a s\<^sub>2" |
45015 | 58 |
apply(induction a) |
43158 | 59 |
apply simp_all |
60 |
done |
|
61 |
||
62 |
lemma bval_eq_if_eq_on_vars: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
63 |
"s\<^sub>1 = s\<^sub>2 on vars b \<Longrightarrow> bval b s\<^sub>1 = bval b s\<^sub>2" |
45015 | 64 |
proof(induction b) |
43158 | 65 |
case (Less a1 a2) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52072
diff
changeset
|
66 |
hence "aval a1 s\<^sub>1 = aval a1 s\<^sub>2" and "aval a2 s\<^sub>1 = aval a2 s\<^sub>2" by simp_all |
43158 | 67 |
thus ?case by simp |
68 |
qed simp_all |
|
69 |
||
52072 | 70 |
fun lvars :: "com \<Rightarrow> vname set" where |
71 |
"lvars SKIP = {}" | |
|
72 |
"lvars (x::=e) = {x}" | |
|
73 |
"lvars (c1;;c2) = lvars c1 \<union> lvars c2" | |
|
74 |
"lvars (IF b THEN c1 ELSE c2) = lvars c1 \<union> lvars c2" | |
|
75 |
"lvars (WHILE b DO c) = lvars c" |
|
76 |
||
77 |
fun rvars :: "com \<Rightarrow> vname set" where |
|
78 |
"rvars SKIP = {}" | |
|
79 |
"rvars (x::=e) = vars e" | |
|
80 |
"rvars (c1;;c2) = rvars c1 \<union> rvars c2" | |
|
81 |
"rvars (IF b THEN c1 ELSE c2) = vars b \<union> rvars c1 \<union> rvars c2" | |
|
82 |
"rvars (WHILE b DO c) = vars b \<union> rvars c" |
|
51698 | 83 |
|
84 |
instantiation com :: vars |
|
85 |
begin |
|
86 |
||
52072 | 87 |
definition "vars_com c = lvars c \<union> rvars c" |
51698 | 88 |
|
89 |
instance .. |
|
90 |
||
43158 | 91 |
end |
51698 | 92 |
|
52072 | 93 |
lemma vars_com_simps[simp]: |
94 |
"vars SKIP = {}" |
|
95 |
"vars (x::=e) = {x} \<union> vars e" |
|
96 |
"vars (c1;;c2) = vars c1 \<union> vars c2" |
|
97 |
"vars (IF b THEN c1 ELSE c2) = vars b \<union> vars c1 \<union> vars c2" |
|
98 |
"vars (WHILE b DO c) = vars b \<union> vars c" |
|
99 |
by(auto simp: vars_com_def) |
|
51698 | 100 |
|
101 |
lemma finite_avars[simp]: "finite(vars(a::aexp))" |
|
102 |
by(induction a) simp_all |
|
103 |
||
104 |
lemma finite_bvars[simp]: "finite(vars(b::bexp))" |
|
52072 | 105 |
by(induction b) simp_all |
106 |
||
107 |
lemma finite_lvars[simp]: "finite(lvars(c))" |
|
108 |
by(induction c) simp_all |
|
109 |
||
110 |
lemma finite_rvars[simp]: "finite(rvars(c))" |
|
111 |
by(induction c) simp_all |
|
51698 | 112 |
|
113 |
lemma finite_cvars[simp]: "finite(vars(c::com))" |
|
52072 | 114 |
by(simp add: vars_com_def) |
51698 | 115 |
|
116 |
end |