author | kleing |
Sun, 24 Mar 2002 14:05:53 +0100 | |
changeset 13065 | d6585b32412b |
parent 13052 | 3bf41c474a88 |
child 13092 | eae72c47d07f |
permissions | -rw-r--r-- |
12951 | 1 |
(* Title: HOL/MicroJava/BV/BVExample.thy |
2 |
ID: $Id$ |
|
3 |
Author: Gerwin Klein |
|
4 |
*) |
|
5 |
||
12972 | 6 |
header {* \isaheader{Example Welltypings}\label{sec:BVExample} *} |
12951 | 7 |
|
13052 | 8 |
theory BVExample = JVMListExample + BVSpecTypeSafe: |
12951 | 9 |
|
12972 | 10 |
text {* |
11 |
This theory shows type correctness of the example program in section |
|
12 |
\ref{sec:JVMListExample} (p. \pageref{sec:JVMListExample}) by |
|
13 |
explicitly providing a welltyping. It also shows that the start |
|
14 |
state of the program conforms to the welltyping; hence type safe |
|
15 |
execution is guaranteed. |
|
16 |
*} |
|
17 |
||
12951 | 18 |
section "Setup" |
19 |
text {* |
|
20 |
Since the types @{typ cnam}, @{text vnam}, and @{text mname} are |
|
21 |
anonymous, we describe distinctness of names in the example by axioms: |
|
22 |
*} |
|
23 |
axioms |
|
24 |
distinct_classes: "list_nam \<noteq> test_nam" |
|
25 |
distinct_fields: "val_nam \<noteq> next_nam" |
|
26 |
||
27 |
text {* Shorthands for definitions we will have to use often in the |
|
28 |
proofs below: *} |
|
29 |
lemmas name_defs = list_name_def test_name_def val_name_def next_name_def |
|
30 |
lemmas system_defs = SystemClasses_def ObjectC_def NullPointerC_def |
|
31 |
OutOfMemoryC_def ClassCastC_def |
|
32 |
lemmas class_defs = list_class_def test_class_def |
|
33 |
||
34 |
text {* These auxiliary proofs are for efficiency: class lookup, |
|
35 |
subclass relation, method and field lookup are computed only once: |
|
36 |
*} |
|
37 |
lemma class_Object [simp]: |
|
38 |
"class E Object = Some (arbitrary, [],[])" |
|
39 |
by (simp add: class_def system_defs E_def) |
|
40 |
||
41 |
lemma class_NullPointer [simp]: |
|
42 |
"class E (Xcpt NullPointer) = Some (Object, [], [])" |
|
43 |
by (simp add: class_def system_defs E_def) |
|
44 |
||
45 |
lemma class_OutOfMemory [simp]: |
|
46 |
"class E (Xcpt OutOfMemory) = Some (Object, [], [])" |
|
47 |
by (simp add: class_def system_defs E_def) |
|
48 |
||
49 |
lemma class_ClassCast [simp]: |
|
50 |
"class E (Xcpt ClassCast) = Some (Object, [], [])" |
|
51 |
by (simp add: class_def system_defs E_def) |
|
52 |
||
53 |
lemma class_list [simp]: |
|
54 |
"class E list_name = Some list_class" |
|
55 |
by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric]) |
|
56 |
||
57 |
lemma class_test [simp]: |
|
58 |
"class E test_name = Some test_class" |
|
59 |
by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric]) |
|
60 |
||
61 |
lemma E_classes [simp]: |
|
62 |
"{C. is_class E C} = {list_name, test_name, Xcpt NullPointer, |
|
63 |
Xcpt ClassCast, Xcpt OutOfMemory, Object}" |
|
64 |
by (auto simp add: is_class_def class_def system_defs E_def name_defs class_defs) |
|
65 |
||
66 |
text {* The subclass releation spelled out: *} |
|
67 |
lemma subcls1: |
|
68 |
"subcls1 E = {(list_name,Object), (test_name,Object), (Xcpt NullPointer, Object), |
|
69 |
(Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)}" |
|
70 |
apply (simp add: subcls1_def2) |
|
71 |
apply (simp add: name_defs class_defs system_defs E_def class_def) |
|
72 |
apply (auto split: split_if_asm) |
|
73 |
done |
|
74 |
||
75 |
text {* The subclass relation is acyclic; hence its converse is well founded: *} |
|
76 |
lemma notin_rtrancl: |
|
77 |
"(a,b) \<in> r\<^sup>* \<Longrightarrow> a \<noteq> b \<Longrightarrow> (\<And>y. (a,y) \<notin> r) \<Longrightarrow> False" |
|
78 |
by (auto elim: converse_rtranclE) |
|
79 |
||
80 |
lemma acyclic_subcls1_E: "acyclic (subcls1 E)" |
|
81 |
apply (rule acyclicI) |
|
82 |
apply (simp add: subcls1) |
|
83 |
apply (auto dest!: tranclD) |
|
84 |
apply (auto elim!: notin_rtrancl simp add: name_defs distinct_classes) |
|
85 |
done |
|
86 |
||
87 |
lemma wf_subcls1_E: "wf ((subcls1 E)\<inverse>)" |
|
88 |
apply (rule finite_acyclic_wf_converse) |
|
89 |
apply (simp add: subcls1) |
|
90 |
apply (rule acyclic_subcls1_E) |
|
91 |
done |
|
92 |
||
93 |
text {* Method and field lookup: *} |
|
94 |
lemma method_Object [simp]: |
|
95 |
"method (E, Object) = empty" |
|
96 |
by (simp add: method_rec_lemma [OF class_Object wf_subcls1_E]) |
|
97 |
||
98 |
lemma method_append [simp]: |
|
99 |
"method (E, list_name) (append_name, [Class list_name]) = |
|
100 |
Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])" |
|
101 |
apply (insert class_list) |
|
102 |
apply (unfold list_class_def) |
|
103 |
apply (drule method_rec_lemma [OF _ wf_subcls1_E]) |
|
104 |
apply simp |
|
105 |
done |
|
106 |
||
107 |
lemma method_makelist [simp]: |
|
108 |
"method (E, test_name) (makelist_name, []) = |
|
109 |
Some (test_name, PrimT Void, 3, 2, make_list_ins, [])" |
|
110 |
apply (insert class_test) |
|
111 |
apply (unfold test_class_def) |
|
112 |
apply (drule method_rec_lemma [OF _ wf_subcls1_E]) |
|
113 |
apply simp |
|
114 |
done |
|
115 |
||
116 |
lemma field_val [simp]: |
|
117 |
"field (E, list_name) val_name = Some (list_name, PrimT Integer)" |
|
118 |
apply (unfold field_def) |
|
119 |
apply (insert class_list) |
|
120 |
apply (unfold list_class_def) |
|
121 |
apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) |
|
122 |
apply simp |
|
123 |
done |
|
124 |
||
125 |
lemma field_next [simp]: |
|
126 |
"field (E, list_name) next_name = Some (list_name, Class list_name)" |
|
127 |
apply (unfold field_def) |
|
128 |
apply (insert class_list) |
|
129 |
apply (unfold list_class_def) |
|
130 |
apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) |
|
131 |
apply (simp add: name_defs distinct_fields [symmetric]) |
|
132 |
done |
|
133 |
||
134 |
lemma [simp]: "fields (E, Object) = []" |
|
135 |
by (simp add: fields_rec_lemma [OF class_Object wf_subcls1_E]) |
|
136 |
||
137 |
lemma [simp]: "fields (E, Xcpt NullPointer) = []" |
|
138 |
by (simp add: fields_rec_lemma [OF class_NullPointer wf_subcls1_E]) |
|
139 |
||
140 |
lemma [simp]: "fields (E, Xcpt ClassCast) = []" |
|
141 |
by (simp add: fields_rec_lemma [OF class_ClassCast wf_subcls1_E]) |
|
142 |
||
143 |
lemma [simp]: "fields (E, Xcpt OutOfMemory) = []" |
|
144 |
by (simp add: fields_rec_lemma [OF class_OutOfMemory wf_subcls1_E]) |
|
145 |
||
146 |
lemma [simp]: "fields (E, test_name) = []" |
|
147 |
apply (insert class_test) |
|
148 |
apply (unfold test_class_def) |
|
149 |
apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) |
|
150 |
apply simp |
|
151 |
done |
|
152 |
||
153 |
lemmas [simp] = is_class_def |
|
154 |
||
155 |
text {* |
|
156 |
The next definition and three proof rules implement an algorithm to |
|
157 |
enumarate natural numbers. The command @{text "apply (elim pc_end pc_next pc_0"} |
|
158 |
transforms a goal of the form |
|
159 |
@{prop [display] "pc < n \<Longrightarrow> P pc"} |
|
160 |
into a series of goals |
|
161 |
@{prop [display] "P 0"} |
|
162 |
@{prop [display] "P (Suc 0)"} |
|
163 |
||
164 |
@{text "\<dots>"} |
|
165 |
||
166 |
@{prop [display] "P n"} |
|
167 |
*} |
|
168 |
constdefs |
|
169 |
intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')") |
|
170 |
"x \<in> [a, b) \<equiv> a \<le> x \<and> x < b" |
|
171 |
||
172 |
lemma pc_0: "x < n \<Longrightarrow> (x \<in> [0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" |
|
173 |
by (simp add: intervall_def) |
|
174 |
||
175 |
lemma pc_next: "x \<in> [n0, n) \<Longrightarrow> P n0 \<Longrightarrow> (x \<in> [Suc n0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" |
|
176 |
apply (cases "x=n0") |
|
177 |
apply (auto simp add: intervall_def) |
|
178 |
apply arith |
|
179 |
done |
|
180 |
||
181 |
lemma pc_end: "x \<in> [n,n) \<Longrightarrow> P x" |
|
182 |
by (unfold intervall_def) arith |
|
183 |
||
184 |
||
185 |
section "Program structure" |
|
186 |
||
187 |
text {* |
|
188 |
The program is structurally wellformed: |
|
189 |
*} |
|
190 |
lemma wf_struct: |
|
191 |
"wf_prog (\<lambda>G C mb. True) E" (is "wf_prog ?mb E") |
|
192 |
proof - |
|
193 |
have "unique E" |
|
194 |
by (simp add: system_defs E_def class_defs name_defs distinct_classes) |
|
195 |
moreover |
|
196 |
have "set SystemClasses \<subseteq> set E" by (simp add: system_defs E_def) |
|
197 |
hence "wf_syscls E" by (rule wf_syscls) |
|
198 |
moreover |
|
199 |
have "wf_cdecl ?mb E ObjectC" by (simp add: wf_cdecl_def ObjectC_def) |
|
200 |
moreover |
|
201 |
have "wf_cdecl ?mb E NullPointerC" |
|
202 |
by (auto elim: notin_rtrancl |
|
203 |
simp add: wf_cdecl_def name_defs NullPointerC_def subcls1) |
|
204 |
moreover |
|
205 |
have "wf_cdecl ?mb E ClassCastC" |
|
206 |
by (auto elim: notin_rtrancl |
|
207 |
simp add: wf_cdecl_def name_defs ClassCastC_def subcls1) |
|
208 |
moreover |
|
209 |
have "wf_cdecl ?mb E OutOfMemoryC" |
|
210 |
by (auto elim: notin_rtrancl |
|
211 |
simp add: wf_cdecl_def name_defs OutOfMemoryC_def subcls1) |
|
212 |
moreover |
|
213 |
have "wf_cdecl ?mb E (list_name, list_class)" |
|
214 |
apply (auto elim!: notin_rtrancl |
|
215 |
simp add: wf_cdecl_def wf_fdecl_def list_class_def |
|
216 |
wf_mdecl_def wf_mhead_def subcls1) |
|
217 |
apply (auto simp add: name_defs distinct_classes distinct_fields) |
|
218 |
done |
|
219 |
moreover |
|
220 |
have "wf_cdecl ?mb E (test_name, test_class)" |
|
221 |
apply (auto elim!: notin_rtrancl |
|
222 |
simp add: wf_cdecl_def wf_fdecl_def test_class_def |
|
223 |
wf_mdecl_def wf_mhead_def subcls1) |
|
224 |
apply (auto simp add: name_defs distinct_classes distinct_fields) |
|
225 |
done |
|
226 |
ultimately |
|
227 |
show ?thesis by (simp add: wf_prog_def E_def SystemClasses_def) |
|
228 |
qed |
|
229 |
||
230 |
section "Welltypings" |
|
231 |
text {* |
|
232 |
We show welltypings of the methods @{term append_name} in class @{term list_name}, |
|
233 |
and @{term makelist_name} in class @{term test_name}: |
|
234 |
*} |
|
235 |
lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def |
|
236 |
declare appInvoke [simp del] |
|
237 |
||
238 |
constdefs |
|
239 |
phi_append :: method_type ("\<phi>\<^sub>a") |
|
240 |
"\<phi>\<^sub>a \<equiv> map (\<lambda>(x,y). Some (x, map OK y)) [ |
|
241 |
( [], [Class list_name, Class list_name]), |
|
242 |
( [Class list_name], [Class list_name, Class list_name]), |
|
243 |
( [Class list_name], [Class list_name, Class list_name]), |
|
244 |
( [Class list_name, Class list_name], [Class list_name, Class list_name]), |
|
245 |
([NT, Class list_name, Class list_name], [Class list_name, Class list_name]), |
|
246 |
( [Class list_name], [Class list_name, Class list_name]), |
|
247 |
( [Class list_name, Class list_name], [Class list_name, Class list_name]), |
|
248 |
( [PrimT Void], [Class list_name, Class list_name]), |
|
249 |
( [Class Object], [Class list_name, Class list_name]), |
|
250 |
( [], [Class list_name, Class list_name]), |
|
251 |
( [Class list_name], [Class list_name, Class list_name]), |
|
252 |
( [Class list_name, Class list_name], [Class list_name, Class list_name]), |
|
253 |
( [], [Class list_name, Class list_name]), |
|
254 |
( [PrimT Void], [Class list_name, Class list_name])]" |
|
255 |
||
256 |
lemma wt_append [simp]: |
|
257 |
"wt_method E list_name [Class list_name] (PrimT Void) 3 0 append_ins |
|
258 |
[(Suc 0, 2, 8, Xcpt NullPointer)] \<phi>\<^sub>a" |
|
259 |
apply (simp add: wt_method_def append_ins_def phi_append_def |
|
260 |
wt_start_def wt_instr_def) |
|
261 |
apply clarify |
|
262 |
apply (elim pc_end pc_next pc_0) |
|
263 |
apply simp |
|
264 |
apply (fastsimp simp add: match_exception_entry_def sup_state_conv subcls1) |
|
265 |
apply simp |
|
266 |
apply simp |
|
267 |
apply (fastsimp simp add: sup_state_conv subcls1) |
|
268 |
apply simp |
|
269 |
apply (simp add: app_def xcpt_app_def) |
|
270 |
apply simp |
|
271 |
apply simp |
|
272 |
apply simp |
|
273 |
apply (simp add: match_exception_entry_def) |
|
274 |
apply (simp add: match_exception_entry_def) |
|
275 |
apply simp |
|
276 |
apply simp |
|
277 |
done |
|
278 |
||
13006 | 279 |
text {* Some abbreviations for readability *} |
12951 | 280 |
syntax |
281 |
list :: ty |
|
282 |
test :: ty |
|
283 |
translations |
|
284 |
"list" == "Class list_name" |
|
285 |
"test" == "Class test_name" |
|
286 |
||
287 |
constdefs |
|
288 |
phi_makelist :: method_type ("\<phi>\<^sub>m") |
|
289 |
"\<phi>\<^sub>m \<equiv> map (\<lambda>(x,y). Some (x, y)) [ |
|
290 |
( [], [OK test, Err , Err ]), |
|
291 |
( [list], [OK test, Err , Err ]), |
|
292 |
( [list, list], [OK test, Err , Err ]), |
|
293 |
( [list], [OK list, Err , Err ]), |
|
294 |
( [PrimT Integer, list], [OK list, Err , Err ]), |
|
295 |
( [], [OK list, Err , Err ]), |
|
296 |
( [list], [OK list, Err , Err ]), |
|
297 |
( [list, list], [OK list, Err , Err ]), |
|
298 |
( [list], [OK list, OK list, Err ]), |
|
299 |
( [PrimT Integer, list], [OK list, OK list, Err ]), |
|
300 |
( [], [OK list, OK list, Err ]), |
|
301 |
( [list], [OK list, OK list, Err ]), |
|
302 |
( [list, list], [OK list, OK list, Err ]), |
|
303 |
( [list], [OK list, OK list, OK list]), |
|
304 |
( [PrimT Integer, list], [OK list, OK list, OK list]), |
|
305 |
( [], [OK list, OK list, OK list]), |
|
306 |
( [list], [OK list, OK list, OK list]), |
|
307 |
( [list, list], [OK list, OK list, OK list]), |
|
308 |
( [PrimT Void], [OK list, OK list, OK list]), |
|
309 |
( [list, PrimT Void], [OK list, OK list, OK list]), |
|
310 |
( [list, list, PrimT Void], [OK list, OK list, OK list]), |
|
311 |
( [PrimT Void, PrimT Void], [OK list, OK list, OK list]), |
|
312 |
( [PrimT Void, PrimT Void, PrimT Void], [OK list, OK list, OK list])]" |
|
313 |
||
314 |
lemma wt_makelist [simp]: |
|
315 |
"wt_method E test_name [] (PrimT Void) 3 2 make_list_ins [] \<phi>\<^sub>m" |
|
316 |
apply (simp add: wt_method_def make_list_ins_def phi_makelist_def) |
|
13043
ad1828b479b7
renamed nat_number_of to nat_number (avoid clash with separate theorem);
wenzelm
parents:
13006
diff
changeset
|
317 |
apply (simp add: wt_start_def nat_number) |
12951 | 318 |
apply (simp add: wt_instr_def) |
319 |
apply clarify |
|
320 |
apply (elim pc_end pc_next pc_0) |
|
321 |
apply (simp add: match_exception_entry_def) |
|
322 |
apply simp |
|
323 |
apply simp |
|
324 |
apply simp |
|
325 |
apply (simp add: match_exception_entry_def) |
|
326 |
apply (simp add: match_exception_entry_def) |
|
327 |
apply simp |
|
328 |
apply simp |
|
329 |
apply simp |
|
330 |
apply (simp add: match_exception_entry_def) |
|
331 |
apply (simp add: match_exception_entry_def) |
|
332 |
apply simp |
|
333 |
apply simp |
|
334 |
apply simp |
|
335 |
apply (simp add: match_exception_entry_def) |
|
336 |
apply (simp add: match_exception_entry_def) |
|
337 |
apply simp |
|
338 |
apply (simp add: app_def xcpt_app_def) |
|
339 |
apply simp |
|
340 |
apply simp |
|
341 |
apply (simp add: app_def xcpt_app_def) |
|
342 |
apply simp |
|
343 |
apply simp |
|
344 |
done |
|
345 |
||
346 |
text {* The whole program is welltyped: *} |
|
347 |
constdefs |
|
348 |
Phi :: prog_type ("\<Phi>") |
|
349 |
"\<Phi> C sig \<equiv> if C = test_name \<and> sig = (makelist_name, []) then \<phi>\<^sub>m else |
|
350 |
if C = list_name \<and> sig = (append_name, [Class list_name]) then \<phi>\<^sub>a else []" |
|
351 |
||
352 |
lemma wf_prog: |
|
353 |
"wt_jvm_prog E \<Phi>" |
|
354 |
apply (unfold wt_jvm_prog_def) |
|
355 |
apply (rule wf_mb'E [OF wf_struct]) |
|
356 |
apply (simp add: E_def) |
|
357 |
apply clarify |
|
358 |
apply (fold E_def) |
|
359 |
apply (simp add: system_defs class_defs Phi_def) |
|
360 |
apply auto |
|
361 |
done |
|
362 |
||
363 |
||
364 |
section "Conformance" |
|
365 |
text {* Execution of the program will be typesafe, because its |
|
366 |
start state conforms to the welltyping: *} |
|
367 |
||
13052 | 368 |
lemma "E,\<Phi> \<turnstile>JVM start_state E test_name makelist_name \<surd>" |
369 |
apply (rule BV_correct_initial) |
|
370 |
apply (rule wf_prog) |
|
371 |
apply simp |
|
372 |
apply simp |
|
12951 | 373 |
done |
374 |
||
13006 | 375 |
end |