| author | wenzelm | 
| Wed, 21 Dec 2016 22:27:38 +0100 | |
| changeset 64649 | d67c3094a0c2 | 
| parent 63901 | 4ce989e962e0 | 
| child 69587 | 53982d5ec0bb | 
| permissions | -rw-r--r-- | 
| 13163 | 1  | 
(* Title: ZF/func.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1991 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 60770 | 6  | 
section\<open>Functions, Function Spaces, Lambda-Abstraction\<close>  | 
| 13355 | 7  | 
|
| 16417 | 8  | 
theory func imports equalities Sum begin  | 
| 13163 | 9  | 
|
| 60770 | 10  | 
subsection\<open>The Pi Operator: Dependent Function Space\<close>  | 
| 13355 | 11  | 
|
| 46820 | 12  | 
lemma subset_Sigma_imp_relation: "r \<subseteq> Sigma(A,B) ==> relation(r)"  | 
| 13248 | 13  | 
by (simp add: relation_def, blast)  | 
14  | 
||
| 13221 | 15  | 
lemma relation_converse_converse [simp]:  | 
16  | 
"relation(r) ==> converse(converse(r)) = r"  | 
|
| 46953 | 17  | 
by (simp add: relation_def, blast)  | 
| 13221 | 18  | 
|
19  | 
lemma relation_restrict [simp]: "relation(restrict(r,A))"  | 
|
| 46953 | 20  | 
by (simp add: restrict_def relation_def, blast)  | 
| 13221 | 21  | 
|
| 13163 | 22  | 
lemma Pi_iff:  | 
| 46953 | 23  | 
"f \<in> Pi(A,B) \<longleftrightarrow> function(f) & f<=Sigma(A,B) & A<=domain(f)"  | 
| 13163 | 24  | 
by (unfold Pi_def, blast)  | 
25  | 
||
26  | 
(*For upward compatibility with the former definition*)  | 
|
27  | 
lemma Pi_iff_old:  | 
|
| 63901 | 28  | 
"f \<in> Pi(A,B) \<longleftrightarrow> f<=Sigma(A,B) & (\<forall>x\<in>A. \<exists>!y. <x,y>: f)"  | 
| 13163 | 29  | 
by (unfold Pi_def function_def, blast)  | 
30  | 
||
| 46953 | 31  | 
lemma fun_is_function: "f \<in> Pi(A,B) ==> function(f)"  | 
| 13163 | 32  | 
by (simp only: Pi_iff)  | 
33  | 
||
| 13219 | 34  | 
lemma function_imp_Pi:  | 
35  | 
"[|function(f); relation(f)|] ==> f \<in> domain(f) -> range(f)"  | 
|
| 46953 | 36  | 
by (simp add: Pi_iff relation_def, blast)  | 
| 13219 | 37  | 
|
| 46953 | 38  | 
lemma functionI:  | 
| 13172 | 39  | 
"[| !!x y y'. [| <x,y>:r; <x,y'>:r |] ==> y=y' |] ==> function(r)"  | 
| 46953 | 40  | 
by (simp add: function_def, blast)  | 
| 13172 | 41  | 
|
| 13163 | 42  | 
(*Functions are relations*)  | 
| 46953 | 43  | 
lemma fun_is_rel: "f \<in> Pi(A,B) ==> f \<subseteq> Sigma(A,B)"  | 
| 13163 | 44  | 
by (unfold Pi_def, blast)  | 
45  | 
||
46  | 
lemma Pi_cong:  | 
|
| 46953 | 47  | 
"[| A=A'; !!x. x \<in> A' ==> B(x)=B'(x) |] ==> Pi(A,B) = Pi(A',B')"  | 
| 13163 | 48  | 
by (simp add: Pi_def cong add: Sigma_cong)  | 
49  | 
||
50  | 
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause  | 
|
51  | 
flex-flex pairs and the "Check your prover" error. Most  | 
|
52  | 
Sigmas and Pis are abbreviated as * or -> *)  | 
|
53  | 
||
54  | 
(*Weakening one function type to another; see also Pi_type*)  | 
|
| 46953 | 55  | 
lemma fun_weaken_type: "[| f \<in> A->B; B<=D |] ==> f \<in> A->D"  | 
| 13163 | 56  | 
by (unfold Pi_def, best)  | 
57  | 
||
| 60770 | 58  | 
subsection\<open>Function Application\<close>  | 
| 13163 | 59  | 
|
| 46953 | 60  | 
lemma apply_equality2: "[| <a,b>: f; <a,c>: f; f \<in> Pi(A,B) |] ==> b=c"  | 
| 13163 | 61  | 
by (unfold Pi_def function_def, blast)  | 
62  | 
||
63  | 
lemma function_apply_equality: "[| <a,b>: f; function(f) |] ==> f`a = b"  | 
|
64  | 
by (unfold apply_def function_def, blast)  | 
|
65  | 
||
| 46953 | 66  | 
lemma apply_equality: "[| <a,b>: f; f \<in> Pi(A,B) |] ==> f`a = b"  | 
| 13163 | 67  | 
apply (unfold Pi_def)  | 
68  | 
apply (blast intro: function_apply_equality)  | 
|
69  | 
done  | 
|
70  | 
||
71  | 
(*Applying a function outside its domain yields 0*)  | 
|
| 46820 | 72  | 
lemma apply_0: "a \<notin> domain(f) ==> f`a = 0"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
73  | 
by (unfold apply_def, blast)  | 
| 13163 | 74  | 
|
| 46953 | 75  | 
lemma Pi_memberD: "[| f \<in> Pi(A,B); c \<in> f |] ==> \<exists>x\<in>A. c = <x,f`x>"  | 
| 13163 | 76  | 
apply (frule fun_is_rel)  | 
77  | 
apply (blast dest: apply_equality)  | 
|
78  | 
done  | 
|
79  | 
||
| 46820 | 80  | 
lemma function_apply_Pair: "[| function(f); a \<in> domain(f)|] ==> <a,f`a>: f"  | 
| 46953 | 81  | 
apply (simp add: function_def, clarify)  | 
82  | 
apply (subgoal_tac "f`a = y", blast)  | 
|
83  | 
apply (simp add: apply_def, blast)  | 
|
| 13163 | 84  | 
done  | 
85  | 
||
| 46953 | 86  | 
lemma apply_Pair: "[| f \<in> Pi(A,B); a \<in> A |] ==> <a,f`a>: f"  | 
| 13163 | 87  | 
apply (simp add: Pi_iff)  | 
88  | 
apply (blast intro: function_apply_Pair)  | 
|
89  | 
done  | 
|
90  | 
||
| 27150 | 91  | 
(*Conclusion is flexible -- use rule_tac or else apply_funtype below!*)  | 
| 46953 | 92  | 
lemma apply_type [TC]: "[| f \<in> Pi(A,B); a \<in> A |] ==> f`a \<in> B(a)"  | 
| 13163 | 93  | 
by (blast intro: apply_Pair dest: fun_is_rel)  | 
94  | 
||
95  | 
(*This version is acceptable to the simplifier*)  | 
|
| 46953 | 96  | 
lemma apply_funtype: "[| f \<in> A->B; a \<in> A |] ==> f`a \<in> B"  | 
| 13163 | 97  | 
by (blast dest: apply_type)  | 
98  | 
||
| 46953 | 99  | 
lemma apply_iff: "f \<in> Pi(A,B) ==> <a,b>: f \<longleftrightarrow> a \<in> A & f`a = b"  | 
| 13163 | 100  | 
apply (frule fun_is_rel)  | 
101  | 
apply (blast intro!: apply_Pair apply_equality)  | 
|
102  | 
done  | 
|
103  | 
||
104  | 
(*Refining one Pi type to another*)  | 
|
| 46953 | 105  | 
lemma Pi_type: "[| f \<in> Pi(A,C); !!x. x \<in> A ==> f`x \<in> B(x) |] ==> f \<in> Pi(A,B)"  | 
| 13163 | 106  | 
apply (simp only: Pi_iff)  | 
107  | 
apply (blast dest: function_apply_equality)  | 
|
108  | 
done  | 
|
109  | 
||
110  | 
(*Such functions arise in non-standard datatypes, ZF/ex/Ntree for instance*)  | 
|
111  | 
lemma Pi_Collect_iff:  | 
|
| 46953 | 112  | 
     "(f \<in> Pi(A, %x. {y \<in> B(x). P(x,y)}))
 | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
113  | 
\<longleftrightarrow> f \<in> Pi(A,B) & (\<forall>x\<in>A. P(x, f`x))"  | 
| 13163 | 114  | 
by (blast intro: Pi_type dest: apply_type)  | 
115  | 
||
116  | 
lemma Pi_weaken_type:  | 
|
| 46953 | 117  | 
"[| f \<in> Pi(A,B); !!x. x \<in> A ==> B(x)<=C(x) |] ==> f \<in> Pi(A,C)"  | 
| 13163 | 118  | 
by (blast intro: Pi_type dest: apply_type)  | 
119  | 
||
120  | 
||
121  | 
(** Elimination of membership in a function **)  | 
|
122  | 
||
| 46953 | 123  | 
lemma domain_type: "[| <a,b> \<in> f; f \<in> Pi(A,B) |] ==> a \<in> A"  | 
| 13163 | 124  | 
by (blast dest: fun_is_rel)  | 
125  | 
||
| 46953 | 126  | 
lemma range_type: "[| <a,b> \<in> f; f \<in> Pi(A,B) |] ==> b \<in> B(a)"  | 
| 13163 | 127  | 
by (blast dest: fun_is_rel)  | 
128  | 
||
| 46953 | 129  | 
lemma Pair_mem_PiD: "[| <a,b>: f; f \<in> Pi(A,B) |] ==> a \<in> A & b \<in> B(a) & f`a = b"  | 
| 13163 | 130  | 
by (blast intro: domain_type range_type apply_equality)  | 
131  | 
||
| 60770 | 132  | 
subsection\<open>Lambda Abstraction\<close>  | 
| 13163 | 133  | 
|
| 46953 | 134  | 
lemma lamI: "a \<in> A ==> <a,b(a)> \<in> (\<lambda>x\<in>A. b(x))"  | 
| 13163 | 135  | 
apply (unfold lam_def)  | 
136  | 
apply (erule RepFunI)  | 
|
137  | 
done  | 
|
138  | 
||
139  | 
lemma lamE:  | 
|
| 46953 | 140  | 
"[| p: (\<lambda>x\<in>A. b(x)); !!x.[| x \<in> A; p=<x,b(x)> |] ==> P  | 
| 13163 | 141  | 
|] ==> P"  | 
142  | 
by (simp add: lam_def, blast)  | 
|
143  | 
||
| 46820 | 144  | 
lemma lamD: "[| <a,c>: (\<lambda>x\<in>A. b(x)) |] ==> c = b(a)"  | 
| 13163 | 145  | 
by (simp add: lam_def)  | 
146  | 
||
147  | 
lemma lam_type [TC]:  | 
|
| 46953 | 148  | 
"[| !!x. x \<in> A ==> b(x): B(x) |] ==> (\<lambda>x\<in>A. b(x)) \<in> Pi(A,B)"  | 
| 13163 | 149  | 
by (simp add: lam_def Pi_def function_def, blast)  | 
150  | 
||
| 46953 | 151  | 
lemma lam_funtype: "(\<lambda>x\<in>A. b(x)) \<in> A -> {b(x). x \<in> A}"
 | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
152  | 
by (blast intro: lam_type)  | 
| 13163 | 153  | 
|
| 46820 | 154  | 
lemma function_lam: "function (\<lambda>x\<in>A. b(x))"  | 
| 46953 | 155  | 
by (simp add: function_def lam_def)  | 
| 13172 | 156  | 
|
| 46953 | 157  | 
lemma relation_lam: "relation (\<lambda>x\<in>A. b(x))"  | 
158  | 
by (simp add: relation_def lam_def)  | 
|
| 13172 | 159  | 
|
| 46820 | 160  | 
lemma beta_if [simp]: "(\<lambda>x\<in>A. b(x)) ` a = (if a \<in> A then b(a) else 0)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
161  | 
by (simp add: apply_def lam_def, blast)  | 
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13174 
diff
changeset
 | 
162  | 
|
| 46820 | 163  | 
lemma beta: "a \<in> A ==> (\<lambda>x\<in>A. b(x)) ` a = b(a)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
164  | 
by (simp add: apply_def lam_def, blast)  | 
| 13163 | 165  | 
|
| 46820 | 166  | 
lemma lam_empty [simp]: "(\<lambda>x\<in>0. b(x)) = 0"  | 
| 13163 | 167  | 
by (simp add: lam_def)  | 
168  | 
||
169  | 
lemma domain_lam [simp]: "domain(Lambda(A,b)) = A"  | 
|
170  | 
by (simp add: lam_def, blast)  | 
|
171  | 
||
172  | 
(*congruence rule for lambda abstraction*)  | 
|
173  | 
lemma lam_cong [cong]:  | 
|
| 46953 | 174  | 
"[| A=A'; !!x. x \<in> A' ==> b(x)=b'(x) |] ==> Lambda(A,b) = Lambda(A',b')"  | 
| 13163 | 175  | 
by (simp only: lam_def cong add: RepFun_cong)  | 
176  | 
||
177  | 
lemma lam_theI:  | 
|
| 63901 | 178  | 
"(!!x. x \<in> A ==> \<exists>!y. Q(x,y)) ==> \<exists>f. \<forall>x\<in>A. Q(x, f`x)"  | 
| 46820 | 179  | 
apply (rule_tac x = "\<lambda>x\<in>A. THE y. Q (x,y)" in exI)  | 
| 46953 | 180  | 
apply simp  | 
| 13163 | 181  | 
apply (blast intro: theI)  | 
182  | 
done  | 
|
183  | 
||
| 46953 | 184  | 
lemma lam_eqE: "[| (\<lambda>x\<in>A. f(x)) = (\<lambda>x\<in>A. g(x)); a \<in> A |] ==> f(a)=g(a)"  | 
| 13163 | 185  | 
by (fast intro!: lamI elim: equalityE lamE)  | 
186  | 
||
187  | 
||
188  | 
(*Empty function spaces*)  | 
|
189  | 
lemma Pi_empty1 [simp]: "Pi(0,A) = {0}"
 | 
|
190  | 
by (unfold Pi_def function_def, blast)  | 
|
191  | 
||
192  | 
(*The singleton function*)  | 
|
| 46820 | 193  | 
lemma singleton_fun [simp]: "{<a,b>} \<in> {a} -> {b}"
 | 
| 13163 | 194  | 
by (unfold Pi_def function_def, blast)  | 
195  | 
||
196  | 
lemma Pi_empty2 [simp]: "(A->0) = (if A=0 then {0} else 0)"
 | 
|
197  | 
by (unfold Pi_def function_def, force)  | 
|
198  | 
||
199  | 
lemma fun_space_empty_iff [iff]: "(A->X)=0 \<longleftrightarrow> X=0 & (A \<noteq> 0)"  | 
|
200  | 
apply auto  | 
|
201  | 
apply (fast intro!: equals0I intro: lam_type)  | 
|
202  | 
done  | 
|
203  | 
||
204  | 
||
| 60770 | 205  | 
subsection\<open>Extensionality\<close>  | 
| 13163 | 206  | 
|
207  | 
(*Semi-extensionality!*)  | 
|
208  | 
||
209  | 
lemma fun_subset:  | 
|
| 46953 | 210  | 
"[| f \<in> Pi(A,B); g \<in> Pi(C,D); A<=C;  | 
211  | 
!!x. x \<in> A ==> f`x = g`x |] ==> f<=g"  | 
|
| 13163 | 212  | 
by (force dest: Pi_memberD intro: apply_Pair)  | 
213  | 
||
214  | 
lemma fun_extension:  | 
|
| 46953 | 215  | 
"[| f \<in> Pi(A,B); g \<in> Pi(A,D);  | 
216  | 
!!x. x \<in> A ==> f`x = g`x |] ==> f=g"  | 
|
| 13163 | 217  | 
by (blast del: subsetI intro: subset_refl sym fun_subset)  | 
218  | 
||
| 46820 | 219  | 
lemma eta [simp]: "f \<in> Pi(A,B) ==> (\<lambda>x\<in>A. f`x) = f"  | 
| 13163 | 220  | 
apply (rule fun_extension)  | 
221  | 
apply (auto simp add: lam_type apply_type beta)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
lemma fun_extension_iff:  | 
|
| 46953 | 225  | 
"[| f \<in> Pi(A,B); g \<in> Pi(A,C) |] ==> (\<forall>a\<in>A. f`a = g`a) \<longleftrightarrow> f=g"  | 
| 13163 | 226  | 
by (blast intro: fun_extension)  | 
227  | 
||
228  | 
(*thm by Mark Staples, proof by lcp*)  | 
|
| 46953 | 229  | 
lemma fun_subset_eq: "[| f \<in> Pi(A,B); g \<in> Pi(A,C) |] ==> f \<subseteq> g \<longleftrightarrow> (f = g)"  | 
| 13163 | 230  | 
by (blast dest: apply_Pair  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
27702 
diff
changeset
 | 
231  | 
intro: fun_extension apply_equality [symmetric])  | 
| 13163 | 232  | 
|
233  | 
||
234  | 
(*Every element of Pi(A,B) may be expressed as a lambda abstraction!*)  | 
|
235  | 
lemma Pi_lamE:  | 
|
| 46953 | 236  | 
assumes major: "f \<in> Pi(A,B)"  | 
| 46820 | 237  | 
and minor: "!!b. [| \<forall>x\<in>A. b(x):B(x); f = (\<lambda>x\<in>A. b(x)) |] ==> P"  | 
| 13163 | 238  | 
shows "P"  | 
239  | 
apply (rule minor)  | 
|
240  | 
apply (rule_tac [2] eta [symmetric])  | 
|
241  | 
apply (blast intro: major apply_type)+  | 
|
242  | 
done  | 
|
243  | 
||
244  | 
||
| 60770 | 245  | 
subsection\<open>Images of Functions\<close>  | 
| 13163 | 246  | 
|
| 46953 | 247  | 
lemma image_lam: "C \<subseteq> A ==> (\<lambda>x\<in>A. b(x)) `` C = {b(x). x \<in> C}"
 | 
| 13163 | 248  | 
by (unfold lam_def, blast)  | 
249  | 
||
| 13179 | 250  | 
lemma Repfun_function_if:  | 
| 46953 | 251  | 
"function(f)  | 
| 58860 | 252  | 
      ==> {f`x. x \<in> C} = (if C \<subseteq> domain(f) then f``C else cons(0,f``C))"
 | 
| 13179 | 253  | 
apply simp  | 
| 46953 | 254  | 
apply (intro conjI impI)  | 
255  | 
apply (blast dest: function_apply_equality intro: function_apply_Pair)  | 
|
| 13179 | 256  | 
apply (rule equalityI)  | 
| 46953 | 257  | 
apply (blast intro!: function_apply_Pair apply_0)  | 
258  | 
apply (blast dest: function_apply_equality intro: apply_0 [symmetric])  | 
|
| 13179 | 259  | 
done  | 
260  | 
||
| 46953 | 261  | 
(*For this lemma and the next, the right-hand side could equivalently  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13357 
diff
changeset
 | 
262  | 
  be written \<Union>x\<in>C. {f`x} *)
 | 
| 13174 | 263  | 
lemma image_function:  | 
| 58860 | 264  | 
     "[| function(f);  C \<subseteq> domain(f) |] ==> f``C = {f`x. x \<in> C}"
 | 
| 46953 | 265  | 
by (simp add: Repfun_function_if)  | 
| 13174 | 266  | 
|
| 46953 | 267  | 
lemma image_fun: "[| f \<in> Pi(A,B);  C \<subseteq> A |] ==> f``C = {f`x. x \<in> C}"
 | 
268  | 
apply (simp add: Pi_iff)  | 
|
269  | 
apply (blast intro: image_function)  | 
|
| 13163 | 270  | 
done  | 
271  | 
||
| 46953 | 272  | 
lemma image_eq_UN:  | 
| 14883 | 273  | 
  assumes f: "f \<in> Pi(A,B)" "C \<subseteq> A" shows "f``C = (\<Union>x\<in>C. {f ` x})"
 | 
| 46953 | 274  | 
by (auto simp add: image_fun [OF f])  | 
| 14883 | 275  | 
|
| 13163 | 276  | 
lemma Pi_image_cons:  | 
| 46953 | 277  | 
"[| f \<in> Pi(A,B); x \<in> A |] ==> f `` cons(x,y) = cons(f`x, f``y)"  | 
| 13163 | 278  | 
by (blast dest: apply_equality apply_Pair)  | 
279  | 
||
| 124 | 280  | 
|
| 60770 | 281  | 
subsection\<open>Properties of @{term "restrict(f,A)"}\<close>
 | 
| 13163 | 282  | 
|
| 46820 | 283  | 
lemma restrict_subset: "restrict(f,A) \<subseteq> f"  | 
| 13179 | 284  | 
by (unfold restrict_def, blast)  | 
| 13163 | 285  | 
|
286  | 
lemma function_restrictI:  | 
|
287  | 
"function(f) ==> function(restrict(f,A))"  | 
|
288  | 
by (unfold restrict_def function_def, blast)  | 
|
289  | 
||
| 46953 | 290  | 
lemma restrict_type2: "[| f \<in> Pi(C,B); A<=C |] ==> restrict(f,A) \<in> Pi(A,B)"  | 
| 13163 | 291  | 
by (simp add: Pi_iff function_def restrict_def, blast)  | 
292  | 
||
| 46820 | 293  | 
lemma restrict: "restrict(f,A) ` a = (if a \<in> A then f`a else 0)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
294  | 
by (simp add: apply_def restrict_def, blast)  | 
| 13163 | 295  | 
|
296  | 
lemma restrict_empty [simp]: "restrict(f,0) = 0"  | 
|
| 13179 | 297  | 
by (unfold restrict_def, simp)  | 
| 13163 | 298  | 
|
| 13172 | 299  | 
lemma restrict_iff: "z \<in> restrict(r,A) \<longleftrightarrow> z \<in> r & (\<exists>x\<in>A. \<exists>y. z = \<langle>x, y\<rangle>)"  | 
| 46953 | 300  | 
by (simp add: restrict_def)  | 
| 13172 | 301  | 
|
| 13163 | 302  | 
lemma restrict_restrict [simp]:  | 
| 46820 | 303  | 
"restrict(restrict(r,A),B) = restrict(r, A \<inter> B)"  | 
| 13163 | 304  | 
by (unfold restrict_def, blast)  | 
305  | 
||
| 46820 | 306  | 
lemma domain_restrict [simp]: "domain(restrict(f,C)) = domain(f) \<inter> C"  | 
| 13163 | 307  | 
apply (unfold restrict_def)  | 
308  | 
apply (auto simp add: domain_def)  | 
|
309  | 
done  | 
|
310  | 
||
| 46820 | 311  | 
lemma restrict_idem: "f \<subseteq> Sigma(A,B) ==> restrict(f,A) = f"  | 
| 13163 | 312  | 
by (simp add: restrict_def, blast)  | 
313  | 
||
| 13248 | 314  | 
|
315  | 
(*converse probably holds too*)  | 
|
316  | 
lemma domain_restrict_idem:  | 
|
| 46820 | 317  | 
"[| domain(r) \<subseteq> A; relation(r) |] ==> restrict(r,A) = r"  | 
| 13248 | 318  | 
by (simp add: restrict_def relation_def, blast)  | 
319  | 
||
| 46820 | 320  | 
lemma domain_restrict_lam [simp]: "domain(restrict(Lambda(A,f),C)) = A \<inter> C"  | 
| 13248 | 321  | 
apply (unfold restrict_def lam_def)  | 
322  | 
apply (rule equalityI)  | 
|
323  | 
apply (auto simp add: domain_iff)  | 
|
324  | 
done  | 
|
325  | 
||
| 46820 | 326  | 
lemma restrict_if [simp]: "restrict(f,A) ` a = (if a \<in> A then f`a else 0)"  | 
| 13163 | 327  | 
by (simp add: restrict apply_0)  | 
328  | 
||
329  | 
lemma restrict_lam_eq:  | 
|
| 46820 | 330  | 
"A<=C ==> restrict(\<lambda>x\<in>C. b(x), A) = (\<lambda>x\<in>A. b(x))"  | 
| 13163 | 331  | 
by (unfold restrict_def lam_def, auto)  | 
332  | 
||
333  | 
lemma fun_cons_restrict_eq:  | 
|
| 46820 | 334  | 
"f \<in> cons(a, b) -> B ==> f = cons(<a, f ` a>, restrict(f, b))"  | 
| 13163 | 335  | 
apply (rule equalityI)  | 
| 13248 | 336  | 
prefer 2 apply (blast intro: apply_Pair restrict_subset [THEN subsetD])  | 
| 13163 | 337  | 
apply (auto dest!: Pi_memberD simp add: restrict_def lam_def)  | 
338  | 
done  | 
|
339  | 
||
340  | 
||
| 60770 | 341  | 
subsection\<open>Unions of Functions\<close>  | 
| 13163 | 342  | 
|
343  | 
(** The Union of a set of COMPATIBLE functions is a function **)  | 
|
344  | 
||
345  | 
lemma function_Union:  | 
|
| 46820 | 346  | 
"[| \<forall>x\<in>S. function(x);  | 
347  | 
\<forall>x\<in>S. \<forall>y\<in>S. x<=y | y<=x |]  | 
|
348  | 
==> function(\<Union>(S))"  | 
|
| 46953 | 349  | 
by (unfold function_def, blast)  | 
| 13163 | 350  | 
|
351  | 
lemma fun_Union:  | 
|
| 46953 | 352  | 
"[| \<forall>f\<in>S. \<exists>C D. f \<in> C->D;  | 
| 46820 | 353  | 
\<forall>f\<in>S. \<forall>y\<in>S. f<=y | y<=f |] ==>  | 
354  | 
\<Union>(S) \<in> domain(\<Union>(S)) -> range(\<Union>(S))"  | 
|
| 13163 | 355  | 
apply (unfold Pi_def)  | 
356  | 
apply (blast intro!: rel_Union function_Union)  | 
|
357  | 
done  | 
|
358  | 
||
| 13174 | 359  | 
lemma gen_relation_Union [rule_format]:  | 
| 46820 | 360  | 
"\<forall>f\<in>F. relation(f) \<Longrightarrow> relation(\<Union>(F))"  | 
| 46953 | 361  | 
by (simp add: relation_def)  | 
| 13174 | 362  | 
|
| 13163 | 363  | 
|
364  | 
(** The Union of 2 disjoint functions is a function **)  | 
|
365  | 
||
366  | 
lemmas Un_rls = Un_subset_iff SUM_Un_distrib1 prod_Un_distrib2  | 
|
367  | 
subset_trans [OF _ Un_upper1]  | 
|
368  | 
subset_trans [OF _ Un_upper2]  | 
|
369  | 
||
370  | 
lemma fun_disjoint_Un:  | 
|
| 46953 | 371  | 
"[| f \<in> A->B; g \<in> C->D; A \<inter> C = 0 |]  | 
| 46820 | 372  | 
==> (f \<union> g) \<in> (A \<union> C) -> (B \<union> D)"  | 
| 13163 | 373  | 
(*Prove the product and domain subgoals using distributive laws*)  | 
374  | 
apply (simp add: Pi_iff extension Un_rls)  | 
|
375  | 
apply (unfold function_def, blast)  | 
|
376  | 
done  | 
|
377  | 
||
| 46820 | 378  | 
lemma fun_disjoint_apply1: "a \<notin> domain(g) ==> (f \<union> g)`a = f`a"  | 
| 46953 | 379  | 
by (simp add: apply_def, blast)  | 
| 13163 | 380  | 
|
| 46820 | 381  | 
lemma fun_disjoint_apply2: "c \<notin> domain(f) ==> (f \<union> g)`c = g`c"  | 
| 46953 | 382  | 
by (simp add: apply_def, blast)  | 
| 13163 | 383  | 
|
| 60770 | 384  | 
subsection\<open>Domain and Range of a Function or Relation\<close>  | 
| 13163 | 385  | 
|
| 46820 | 386  | 
lemma domain_of_fun: "f \<in> Pi(A,B) ==> domain(f)=A"  | 
| 13163 | 387  | 
by (unfold Pi_def, blast)  | 
388  | 
||
| 46953 | 389  | 
lemma apply_rangeI: "[| f \<in> Pi(A,B); a \<in> A |] ==> f`a \<in> range(f)"  | 
| 13163 | 390  | 
by (erule apply_Pair [THEN rangeI], assumption)  | 
391  | 
||
| 46820 | 392  | 
lemma range_of_fun: "f \<in> Pi(A,B) ==> f \<in> A->range(f)"  | 
| 13163 | 393  | 
by (blast intro: Pi_type apply_rangeI)  | 
394  | 
||
| 60770 | 395  | 
subsection\<open>Extensions of Functions\<close>  | 
| 13163 | 396  | 
|
397  | 
lemma fun_extend:  | 
|
| 46953 | 398  | 
"[| f \<in> A->B; c\<notin>A |] ==> cons(<c,b>,f) \<in> cons(c,A) -> cons(b,B)"  | 
| 13163 | 399  | 
apply (frule singleton_fun [THEN fun_disjoint_Un], blast)  | 
| 46953 | 400  | 
apply (simp add: cons_eq)  | 
| 13163 | 401  | 
done  | 
402  | 
||
403  | 
lemma fun_extend3:  | 
|
| 46953 | 404  | 
"[| f \<in> A->B; c\<notin>A; b \<in> B |] ==> cons(<c,b>,f) \<in> cons(c,A) -> B"  | 
| 13163 | 405  | 
by (blast intro: fun_extend [THEN fun_weaken_type])  | 
406  | 
||
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
407  | 
lemma extend_apply:  | 
| 46820 | 408  | 
"c \<notin> domain(f) ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"  | 
| 46953 | 409  | 
by (auto simp add: apply_def)  | 
| 13163 | 410  | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
411  | 
lemma fun_extend_apply [simp]:  | 
| 46953 | 412  | 
"[| f \<in> A->B; c\<notin>A |] ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"  | 
413  | 
apply (rule extend_apply)  | 
|
414  | 
apply (simp add: Pi_def, blast)  | 
|
| 13163 | 415  | 
done  | 
416  | 
||
417  | 
lemmas singleton_apply = apply_equality [OF singletonI singleton_fun, simp]  | 
|
418  | 
||
419  | 
(*For Finite.ML. Inclusion of right into left is easy*)  | 
|
420  | 
lemma cons_fun_eq:  | 
|
| 46820 | 421  | 
     "c \<notin> A ==> cons(c,A) -> B = (\<Union>f \<in> A->B. \<Union>b\<in>B. {cons(<c,b>, f)})"
 | 
| 13163 | 422  | 
apply (rule equalityI)  | 
423  | 
apply (safe elim!: fun_extend3)  | 
|
424  | 
(*Inclusion of left into right*)  | 
|
| 46820 | 425  | 
apply (subgoal_tac "restrict (x, A) \<in> A -> B")  | 
| 13163 | 426  | 
prefer 2 apply (blast intro: restrict_type2)  | 
427  | 
apply (rule UN_I, assumption)  | 
|
| 46953 | 428  | 
apply (rule apply_funtype [THEN UN_I])  | 
| 13163 | 429  | 
apply assumption  | 
| 46953 | 430  | 
apply (rule consI1)  | 
| 13163 | 431  | 
apply (simp (no_asm))  | 
| 46953 | 432  | 
apply (rule fun_extension)  | 
| 13163 | 433  | 
apply assumption  | 
| 46953 | 434  | 
apply (blast intro: fun_extend)  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
435  | 
apply (erule consE, simp_all)  | 
| 13163 | 436  | 
done  | 
437  | 
||
| 13269 | 438  | 
lemma succ_fun_eq: "succ(n) -> B = (\<Union>f \<in> n->B. \<Union>b\<in>B. {cons(<n,b>, f)})"
 | 
439  | 
by (simp add: succ_def mem_not_refl cons_fun_eq)  | 
|
440  | 
||
| 13355 | 441  | 
|
| 60770 | 442  | 
subsection\<open>Function Updates\<close>  | 
| 13355 | 443  | 
|
| 24893 | 444  | 
definition  | 
445  | 
update :: "[i,i,i] => i" where  | 
|
| 46820 | 446  | 
"update(f,a,b) == \<lambda>x\<in>cons(a, domain(f)). if(x=a, b, f`x)"  | 
| 13355 | 447  | 
|
| 
41229
 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 
wenzelm 
parents: 
32960 
diff
changeset
 | 
448  | 
nonterminal updbinds and updbind  | 
| 13355 | 449  | 
|
450  | 
syntax  | 
|
451  | 
||
452  | 
(* Let expressions *)  | 
|
453  | 
||
454  | 
  "_updbind"    :: "[i, i] => updbind"               ("(2_ :=/ _)")
 | 
|
455  | 
  ""            :: "updbind => updbinds"             ("_")
 | 
|
456  | 
  "_updbinds"   :: "[updbind, updbinds] => updbinds" ("_,/ _")
 | 
|
457  | 
  "_Update"     :: "[i, updbinds] => i"              ("_/'((_)')" [900,0] 900)
 | 
|
458  | 
||
459  | 
translations  | 
|
460  | 
"_Update (f, _updbinds(b,bs))" == "_Update (_Update(f,b), bs)"  | 
|
| 24893 | 461  | 
"f(x:=y)" == "CONST update(f,x,y)"  | 
| 13355 | 462  | 
|
463  | 
||
464  | 
lemma update_apply [simp]: "f(x:=y) ` z = (if z=x then y else f`z)"  | 
|
465  | 
apply (simp add: update_def)  | 
|
| 46953 | 466  | 
apply (case_tac "z \<in> domain(f)")  | 
| 13355 | 467  | 
apply (simp_all add: apply_0)  | 
468  | 
done  | 
|
469  | 
||
| 46953 | 470  | 
lemma update_idem: "[| f`x = y; f \<in> Pi(A,B); x \<in> A |] ==> f(x:=y) = f"  | 
| 13355 | 471  | 
apply (unfold update_def)  | 
472  | 
apply (simp add: domain_of_fun cons_absorb)  | 
|
473  | 
apply (rule fun_extension)  | 
|
474  | 
apply (best intro: apply_type if_type lam_type, assumption, simp)  | 
|
475  | 
done  | 
|
476  | 
||
477  | 
||
| 46953 | 478  | 
(* [| f \<in> Pi(A, B); x \<in> A |] ==> f(x := f`x) = f *)  | 
| 13355 | 479  | 
declare refl [THEN update_idem, simp]  | 
480  | 
||
481  | 
lemma domain_update [simp]: "domain(f(x:=y)) = cons(x, domain(f))"  | 
|
482  | 
by (unfold update_def, simp)  | 
|
483  | 
||
| 46953 | 484  | 
lemma update_type: "[| f \<in> Pi(A,B); x \<in> A; y \<in> B(x) |] ==> f(x:=y) \<in> Pi(A, B)"  | 
| 13355 | 485  | 
apply (unfold update_def)  | 
486  | 
apply (simp add: domain_of_fun cons_absorb apply_funtype lam_type)  | 
|
487  | 
done  | 
|
488  | 
||
489  | 
||
| 60770 | 490  | 
subsection\<open>Monotonicity Theorems\<close>  | 
| 13357 | 491  | 
|
| 60770 | 492  | 
subsubsection\<open>Replacement in its Various Forms\<close>  | 
| 13357 | 493  | 
|
494  | 
(*Not easy to express monotonicity in P, since any "bigger" predicate  | 
|
495  | 
would have to be single-valued*)  | 
|
| 46820 | 496  | 
lemma Replace_mono: "A<=B ==> Replace(A,P) \<subseteq> Replace(B,P)"  | 
| 13357 | 497  | 
by (blast elim!: ReplaceE)  | 
498  | 
||
| 46953 | 499  | 
lemma RepFun_mono: "A<=B ==> {f(x). x \<in> A} \<subseteq> {f(x). x \<in> B}"
 | 
| 13357 | 500  | 
by blast  | 
501  | 
||
| 46820 | 502  | 
lemma Pow_mono: "A<=B ==> Pow(A) \<subseteq> Pow(B)"  | 
| 13357 | 503  | 
by blast  | 
504  | 
||
| 46820 | 505  | 
lemma Union_mono: "A<=B ==> \<Union>(A) \<subseteq> \<Union>(B)"  | 
| 13357 | 506  | 
by blast  | 
507  | 
||
508  | 
lemma UN_mono:  | 
|
| 46953 | 509  | 
"[| A<=C; !!x. x \<in> A ==> B(x)<=D(x) |] ==> (\<Union>x\<in>A. B(x)) \<subseteq> (\<Union>x\<in>C. D(x))"  | 
510  | 
by blast  | 
|
| 13357 | 511  | 
|
512  | 
(*Intersection is ANTI-monotonic. There are TWO premises! *)  | 
|
| 46820 | 513  | 
lemma Inter_anti_mono: "[| A<=B; A\<noteq>0 |] ==> \<Inter>(B) \<subseteq> \<Inter>(A)"  | 
| 13357 | 514  | 
by blast  | 
515  | 
||
| 46820 | 516  | 
lemma cons_mono: "C<=D ==> cons(a,C) \<subseteq> cons(a,D)"  | 
| 13357 | 517  | 
by blast  | 
518  | 
||
| 46820 | 519  | 
lemma Un_mono: "[| A<=C; B<=D |] ==> A \<union> B \<subseteq> C \<union> D"  | 
| 13357 | 520  | 
by blast  | 
521  | 
||
| 46820 | 522  | 
lemma Int_mono: "[| A<=C; B<=D |] ==> A \<inter> B \<subseteq> C \<inter> D"  | 
| 13357 | 523  | 
by blast  | 
524  | 
||
| 46820 | 525  | 
lemma Diff_mono: "[| A<=C; D<=B |] ==> A-B \<subseteq> C-D"  | 
| 13357 | 526  | 
by blast  | 
527  | 
||
| 60770 | 528  | 
subsubsection\<open>Standard Products, Sums and Function Spaces\<close>  | 
| 13357 | 529  | 
|
530  | 
lemma Sigma_mono [rule_format]:  | 
|
| 46953 | 531  | 
"[| A<=C; !!x. x \<in> A \<longrightarrow> B(x) \<subseteq> D(x) |] ==> Sigma(A,B) \<subseteq> Sigma(C,D)"  | 
| 13357 | 532  | 
by blast  | 
533  | 
||
| 46820 | 534  | 
lemma sum_mono: "[| A<=C; B<=D |] ==> A+B \<subseteq> C+D"  | 
| 13357 | 535  | 
by (unfold sum_def, blast)  | 
536  | 
||
537  | 
(*Note that B->A and C->A are typically disjoint!*)  | 
|
| 46820 | 538  | 
lemma Pi_mono: "B<=C ==> A->B \<subseteq> A->C"  | 
| 13357 | 539  | 
by (blast intro: lam_type elim: Pi_lamE)  | 
540  | 
||
| 46820 | 541  | 
lemma lam_mono: "A<=B ==> Lambda(A,c) \<subseteq> Lambda(B,c)"  | 
| 13357 | 542  | 
apply (unfold lam_def)  | 
543  | 
apply (erule RepFun_mono)  | 
|
544  | 
done  | 
|
545  | 
||
| 60770 | 546  | 
subsubsection\<open>Converse, Domain, Range, Field\<close>  | 
| 13357 | 547  | 
|
| 46820 | 548  | 
lemma converse_mono: "r<=s ==> converse(r) \<subseteq> converse(s)"  | 
| 13357 | 549  | 
by blast  | 
550  | 
||
551  | 
lemma domain_mono: "r<=s ==> domain(r)<=domain(s)"  | 
|
552  | 
by blast  | 
|
553  | 
||
554  | 
lemmas domain_rel_subset = subset_trans [OF domain_mono domain_subset]  | 
|
555  | 
||
556  | 
lemma range_mono: "r<=s ==> range(r)<=range(s)"  | 
|
557  | 
by blast  | 
|
558  | 
||
559  | 
lemmas range_rel_subset = subset_trans [OF range_mono range_subset]  | 
|
560  | 
||
561  | 
lemma field_mono: "r<=s ==> field(r)<=field(s)"  | 
|
562  | 
by blast  | 
|
563  | 
||
| 46820 | 564  | 
lemma field_rel_subset: "r \<subseteq> A*A ==> field(r) \<subseteq> A"  | 
| 13357 | 565  | 
by (erule field_mono [THEN subset_trans], blast)  | 
566  | 
||
567  | 
||
| 60770 | 568  | 
subsubsection\<open>Images\<close>  | 
| 13357 | 569  | 
|
570  | 
lemma image_pair_mono:  | 
|
| 46820 | 571  | 
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r``A \<subseteq> s``B"  | 
| 46953 | 572  | 
by blast  | 
| 13357 | 573  | 
|
574  | 
lemma vimage_pair_mono:  | 
|
| 46820 | 575  | 
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r-``A \<subseteq> s-``B"  | 
| 46953 | 576  | 
by blast  | 
| 13357 | 577  | 
|
| 46820 | 578  | 
lemma image_mono: "[| r<=s; A<=B |] ==> r``A \<subseteq> s``B"  | 
| 13357 | 579  | 
by blast  | 
580  | 
||
| 46820 | 581  | 
lemma vimage_mono: "[| r<=s; A<=B |] ==> r-``A \<subseteq> s-``B"  | 
| 13357 | 582  | 
by blast  | 
583  | 
||
584  | 
lemma Collect_mono:  | 
|
| 46953 | 585  | 
"[| A<=B; !!x. x \<in> A ==> P(x) \<longrightarrow> Q(x) |] ==> Collect(A,P) \<subseteq> Collect(B,Q)"  | 
| 13357 | 586  | 
by blast  | 
587  | 
||
588  | 
(*Used in intr_elim.ML and in individual datatype definitions*)  | 
|
| 46953 | 589  | 
lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono  | 
| 13357 | 590  | 
Collect_mono Part_mono in_mono  | 
591  | 
||
| 27702 | 592  | 
(* Useful with simp; contributed by Clemens Ballarin. *)  | 
593  | 
||
594  | 
lemma bex_image_simp:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
595  | 
"[| f \<in> Pi(X, Y); A \<subseteq> X |] ==> (\<exists>x\<in>f``A. P(x)) \<longleftrightarrow> (\<exists>x\<in>A. P(f`x))"  | 
| 27702 | 596  | 
apply safe  | 
597  | 
apply rule  | 
|
598  | 
prefer 2 apply assumption  | 
|
599  | 
apply (simp add: apply_equality)  | 
|
600  | 
apply (blast intro: apply_Pair)  | 
|
601  | 
done  | 
|
602  | 
||
603  | 
lemma ball_image_simp:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
604  | 
"[| f \<in> Pi(X, Y); A \<subseteq> X |] ==> (\<forall>x\<in>f``A. P(x)) \<longleftrightarrow> (\<forall>x\<in>A. P(f`x))"  | 
| 27702 | 605  | 
apply safe  | 
606  | 
apply (blast intro: apply_Pair)  | 
|
607  | 
apply (drule bspec) apply assumption  | 
|
608  | 
apply (simp add: apply_equality)  | 
|
609  | 
done  | 
|
610  | 
||
| 13163 | 611  | 
end  |