| 
298
 | 
     1  | 
(*  Title: 	HOLCF/dlist.ML
  | 
| 
 | 
     2  | 
    Author: 	Franz Regensburger
  | 
| 
 | 
     3  | 
    ID:         $ $
  | 
| 
 | 
     4  | 
    Copyright   1994 Technische Universitaet Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Lemmas for dlist.thy
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Dlist;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    12  | 
(* The isomorphisms dlist_rep_iso and dlist_abs_iso are strict             *)
  | 
| 
 | 
    13  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
val dlist_iso_strict= dlist_rep_iso RS (dlist_abs_iso RS 
  | 
| 
 | 
    16  | 
	(allI  RSN (2,allI RS iso_strict)));
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
val dlist_rews = [dlist_iso_strict RS conjunct1,
  | 
| 
 | 
    19  | 
		dlist_iso_strict RS conjunct2];
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    22  | 
(* Properties of dlist_copy                                                *)
  | 
| 
 | 
    23  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
val temp = prove_goalw Dlist.thy  [dlist_copy_def] "dlist_copy[f][UU]=UU"
  | 
| 
 | 
    26  | 
 (fn prems =>
  | 
| 
 | 
    27  | 
	[
  | 
| 
 | 
    28  | 
	(asm_simp_tac (HOLCF_ss addsimps 
  | 
| 
 | 
    29  | 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1)
  | 
| 
 | 
    30  | 
	]);
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
val dlist_copy = [temp];
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
val temp = prove_goalw Dlist.thy  [dlist_copy_def,dnil_def] 
  | 
| 
 | 
    36  | 
    "dlist_copy[f][dnil]=dnil"
  | 
| 
 | 
    37  | 
 (fn prems =>
  | 
| 
 | 
    38  | 
	[
  | 
| 
 | 
    39  | 
	(asm_simp_tac (HOLCF_ss addsimps 
  | 
| 
 | 
    40  | 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1)
  | 
| 
 | 
    41  | 
	]);
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
val dlist_copy = temp :: dlist_copy;
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
val temp = prove_goalw Dlist.thy  [dlist_copy_def,dcons_def] 
  | 
| 
 | 
    47  | 
	"xl~=UU ==> dlist_copy[f][dcons[x][xl]]= dcons[x][f[xl]]"
  | 
| 
 | 
    48  | 
 (fn prems =>
  | 
| 
 | 
    49  | 
	[
  | 
| 
 | 
    50  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
    51  | 
	(asm_simp_tac (HOLCF_ss addsimps 
  | 
| 
 | 
    52  | 
		(dlist_rews @ [dlist_abs_iso,dlist_rep_iso])) 1),
  | 
| 
 | 
    53  | 
	(res_inst_tac [("Q","x=UU")] classical2 1),
 | 
| 
 | 
    54  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
    55  | 
	(asm_simp_tac (HOLCF_ss addsimps [defined_spair]) 1)
  | 
| 
 | 
    56  | 
	]);
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
val dlist_copy = temp :: dlist_copy;
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
val dlist_rews =  dlist_copy @ dlist_rews; 
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    63  | 
(* Exhaustion and elimination for dlists                                   *)
  | 
| 
 | 
    64  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
val Exh_dlist = prove_goalw Dlist.thy [dcons_def,dnil_def]
  | 
| 
 | 
    67  | 
	"l = UU | l = dnil | (? x xl. x~=UU &xl~=UU & l = dcons[x][xl])"
  | 
| 
 | 
    68  | 
 (fn prems =>
  | 
| 
 | 
    69  | 
	[
  | 
| 
 | 
    70  | 
	(simp_tac HOLCF_ss  1),
  | 
| 
 | 
    71  | 
	(rtac (dlist_rep_iso RS subst) 1),
  | 
| 
 | 
    72  | 
	(res_inst_tac [("p","dlist_rep[l]")] ssumE 1),
 | 
| 
 | 
    73  | 
	(rtac disjI1 1),
  | 
| 
 | 
    74  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
    75  | 
	(rtac disjI2 1),
  | 
| 
 | 
    76  | 
	(rtac disjI1 1),
  | 
| 
 | 
    77  | 
	(res_inst_tac [("p","x")] oneE 1),
 | 
| 
 | 
    78  | 
	(contr_tac 1),
  | 
| 
 | 
    79  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
    80  | 
	(rtac disjI2 1),
  | 
| 
 | 
    81  | 
	(rtac disjI2 1),
  | 
| 
 | 
    82  | 
	(res_inst_tac [("p","y")] sprodE 1),
 | 
| 
 | 
    83  | 
	(contr_tac 1),
  | 
| 
 | 
    84  | 
	(rtac exI 1),
  | 
| 
 | 
    85  | 
	(rtac exI 1),
  | 
| 
 | 
    86  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
    87  | 
	(fast_tac HOL_cs 1)
  | 
| 
 | 
    88  | 
	]);
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
val dlistE = prove_goal Dlist.thy 
  | 
| 
 | 
    92  | 
"[| l=UU ==> Q; l=dnil ==> Q;!!x xl.[|l=dcons[x][xl];x~=UU;xl~=UU|]==>Q|]==>Q"
  | 
| 
 | 
    93  | 
 (fn prems =>
  | 
| 
 | 
    94  | 
	[
  | 
| 
 | 
    95  | 
	(rtac (Exh_dlist RS disjE) 1),
  | 
| 
 | 
    96  | 
	(eresolve_tac prems 1),
  | 
| 
 | 
    97  | 
	(etac disjE 1),
  | 
| 
 | 
    98  | 
	(eresolve_tac prems 1),
  | 
| 
 | 
    99  | 
	(etac exE 1),
  | 
| 
 | 
   100  | 
	(etac exE 1),
  | 
| 
 | 
   101  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   102  | 
	(fast_tac HOL_cs 1),
  | 
| 
 | 
   103  | 
	(fast_tac HOL_cs 1),
  | 
| 
 | 
   104  | 
	(fast_tac HOL_cs 1)
  | 
| 
 | 
   105  | 
	]);
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   108  | 
(* Properties of dlist_when                                                *)
  | 
| 
 | 
   109  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
val temp = prove_goalw  Dlist.thy  [dlist_when_def] "dlist_when[f1][f2][UU]=UU"
  | 
| 
 | 
   112  | 
 (fn prems =>
  | 
| 
 | 
   113  | 
	[
  | 
| 
 | 
   114  | 
	(asm_simp_tac (HOLCF_ss addsimps [dlist_iso_strict]) 1)
  | 
| 
 | 
   115  | 
	]);
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
val dlist_when = [temp];
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
val temp = prove_goalw  Dlist.thy [dlist_when_def,dnil_def]
  | 
| 
 | 
   120  | 
 "dlist_when[f1][f2][dnil]= f1"
  | 
| 
 | 
   121  | 
 (fn prems =>
  | 
| 
 | 
   122  | 
	[
  | 
| 
 | 
   123  | 
	(asm_simp_tac (HOLCF_ss addsimps [dlist_abs_iso]) 1)
  | 
| 
 | 
   124  | 
	]);
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
val dlist_when = temp::dlist_when;
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
val temp = prove_goalw  Dlist.thy [dlist_when_def,dcons_def]
  | 
| 
 | 
   129  | 
 "[|x~=UU;xl~=UU|] ==> dlist_when[f1][f2][dcons[x][xl]]= f2[x][xl]"
  | 
| 
 | 
   130  | 
 (fn prems =>
  | 
| 
 | 
   131  | 
	[
  | 
| 
 | 
   132  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   133  | 
	(asm_simp_tac (HOLCF_ss addsimps [dlist_abs_iso,defined_spair]) 1)
  | 
| 
 | 
   134  | 
	]);
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
val dlist_when = temp::dlist_when;
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
val dlist_rews = dlist_when @ dlist_rews;
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   141  | 
(* Rewrites for  discriminators and  selectors                             *)
  | 
| 
 | 
   142  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
fun prover defs thm = prove_goalw Dlist.thy defs thm
  | 
| 
 | 
   145  | 
 (fn prems =>
  | 
| 
 | 
   146  | 
	[
  | 
| 
 | 
   147  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   148  | 
	]);
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
val dlist_discsel = [
  | 
| 
 | 
   151  | 
	prover [is_dnil_def] "is_dnil[UU]=UU",
  | 
| 
 | 
   152  | 
	prover [is_dcons_def] "is_dcons[UU]=UU",
  | 
| 
 | 
   153  | 
	prover [dhd_def] "dhd[UU]=UU",
  | 
| 
 | 
   154  | 
	prover [dtl_def] "dtl[UU]=UU"
  | 
| 
 | 
   155  | 
	];
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
fun prover defs thm = prove_goalw Dlist.thy defs thm
  | 
| 
 | 
   158  | 
 (fn prems =>
  | 
| 
 | 
   159  | 
	[
  | 
| 
 | 
   160  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   161  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   162  | 
	]);
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
val dlist_discsel = [
  | 
| 
 | 
   165  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   166  | 
  "is_dnil[dnil]=TT",
  | 
| 
 | 
   167  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   168  | 
  "[|x~=UU;xl~=UU|] ==> is_dnil[dcons[x][xl]]=FF",
  | 
| 
 | 
   169  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   170  | 
  "is_dcons[dnil]=FF",
  | 
| 
 | 
   171  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   172  | 
  "[|x~=UU;xl~=UU|] ==> is_dcons[dcons[x][xl]]=TT",
  | 
| 
 | 
   173  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   174  | 
  "dhd[dnil]=UU",
  | 
| 
 | 
   175  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   176  | 
  "[|x~=UU;xl~=UU|] ==> dhd[dcons[x][xl]]=x",
  | 
| 
 | 
   177  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   178  | 
  "dtl[dnil]=UU",
  | 
| 
 | 
   179  | 
prover [is_dnil_def,is_dcons_def,dhd_def,dtl_def]
  | 
| 
 | 
   180  | 
  "[|x~=UU;xl~=UU|] ==> dtl[dcons[x][xl]]=xl"] @ dlist_discsel;
  | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
val dlist_rews = dlist_discsel @ dlist_rews;
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   185  | 
(* Definedness and strictness                                              *)
  | 
| 
 | 
   186  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
fun prover contr thm = prove_goal Dlist.thy thm
  | 
| 
 | 
   189  | 
 (fn prems =>
  | 
| 
 | 
   190  | 
	[
  | 
| 
 | 
   191  | 
	(res_inst_tac [("P1",contr)] classical3 1),
 | 
| 
 | 
   192  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   193  | 
	(dtac sym 1),
  | 
| 
 | 
   194  | 
	(asm_simp_tac HOLCF_ss  1),
  | 
| 
 | 
   195  | 
	(simp_tac (HOLCF_ss addsimps (prems @ dlist_rews)) 1)
  | 
| 
 | 
   196  | 
	]);
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
val dlist_constrdef = [
  | 
| 
 | 
   200  | 
prover "is_dnil[UU] ~= UU" "dnil~=UU",
  | 
| 
 | 
   201  | 
prover "is_dcons[UU] ~= UU" "[|x~=UU;xl~=UU|] ==> dcons[x][xl]~=UU"
  | 
| 
 | 
   202  | 
 ];
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
fun prover defs thm = prove_goalw Dlist.thy defs thm
  | 
| 
 | 
   206  | 
 (fn prems =>
  | 
| 
 | 
   207  | 
	[
  | 
| 
 | 
   208  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   209  | 
	]);
  | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
val dlist_constrdef = [
  | 
| 
 | 
   212  | 
	prover [dcons_def] "dcons[UU][xl]=UU",
  | 
| 
 | 
   213  | 
	prover [dcons_def] "dcons[x][UU]=UU"
  | 
| 
 | 
   214  | 
	] @ dlist_constrdef;
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
val dlist_rews = dlist_constrdef @ dlist_rews;
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
  | 
| 
 | 
   219  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   220  | 
(* Distinctness wrt. << and =                                              *)
  | 
| 
 | 
   221  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
val temp = prove_goal Dlist.thy  "~dnil << dcons[x][xl]"
  | 
| 
 | 
   224  | 
 (fn prems =>
  | 
| 
 | 
   225  | 
	[
  | 
| 
 | 
   226  | 
	(res_inst_tac [("P1","TT << FF")] classical3 1),
 | 
| 
 | 
   227  | 
	(resolve_tac dist_less_tr 1),
  | 
| 
 | 
   228  | 
	(dres_inst_tac [("fo5","is_dnil")] monofun_cfun_arg 1),
 | 
| 
 | 
   229  | 
	(etac box_less 1),
  | 
| 
 | 
   230  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   231  | 
	(res_inst_tac [("Q","x=UU")] classical2 1),
 | 
| 
 | 
   232  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   233  | 
	(res_inst_tac [("Q","xl=UU")] classical2 1),
 | 
| 
 | 
   234  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   235  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   236  | 
	]);
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
val dlist_dist_less = [temp];
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
val temp = prove_goal Dlist.thy  "[|x~=UU;xl~=UU|]==>~dcons[x][xl] << dnil"
  | 
| 
 | 
   241  | 
 (fn prems =>
  | 
| 
 | 
   242  | 
	[
  | 
| 
 | 
   243  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   244  | 
	(res_inst_tac [("P1","TT << FF")] classical3 1),
 | 
| 
 | 
   245  | 
	(resolve_tac dist_less_tr 1),
  | 
| 
 | 
   246  | 
	(dres_inst_tac [("fo5","is_dcons")] monofun_cfun_arg 1),
 | 
| 
 | 
   247  | 
	(etac box_less 1),
  | 
| 
 | 
   248  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   249  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   250  | 
	]);
  | 
| 
 | 
   251  | 
  | 
| 
 | 
   252  | 
val dlist_dist_less = temp::dlist_dist_less;
  | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
val temp = prove_goal Dlist.thy  "dnil ~= dcons[x][xl]"
  | 
| 
 | 
   255  | 
 (fn prems =>
  | 
| 
 | 
   256  | 
	[
  | 
| 
 | 
   257  | 
	(res_inst_tac [("Q","x=UU")] classical2 1),
 | 
| 
 | 
   258  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   259  | 
	(res_inst_tac [("Q","xl=UU")] classical2 1),
 | 
| 
 | 
   260  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   261  | 
	(res_inst_tac [("P1","TT = FF")] classical3 1),
 | 
| 
 | 
   262  | 
	(resolve_tac dist_eq_tr 1),
  | 
| 
 | 
   263  | 
	(dres_inst_tac [("f","is_dnil")] cfun_arg_cong 1),
 | 
| 
 | 
   264  | 
	(etac box_equals 1),
  | 
| 
 | 
   265  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   266  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   267  | 
	]);
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
val dlist_dist_eq = [temp,temp RS not_sym];
  | 
| 
 | 
   270  | 
  | 
| 
 | 
   271  | 
val dlist_rews = dlist_dist_less @ dlist_dist_eq @ dlist_rews;
  | 
| 
 | 
   272  | 
  | 
| 
 | 
   273  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   274  | 
(* Invertibility                                                           *)
  | 
| 
 | 
   275  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
val temp = prove_goal Dlist.thy "[|x1~=UU; y1~=UU;x2~=UU; y2~=UU;\
  | 
| 
 | 
   278  | 
\ dcons[x1][x2] << dcons[y1][y2]|] ==> x1<< y1 & x2 << y2"
  | 
| 
 | 
   279  | 
 (fn prems =>
  | 
| 
 | 
   280  | 
	[
  | 
| 
 | 
   281  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   282  | 
	(rtac conjI 1),
  | 
| 
 | 
   283  | 
	(dres_inst_tac [("fo5","dlist_when[UU][LAM x l.x]")] monofun_cfun_arg 1),
 | 
| 
 | 
   284  | 
	(etac box_less 1),
  | 
| 
 | 
   285  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   286  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   287  | 
	(dres_inst_tac [("fo5","dlist_when[UU][LAM x l.l]")] monofun_cfun_arg 1),
 | 
| 
 | 
   288  | 
	(etac box_less 1),
  | 
| 
 | 
   289  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   290  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1)
  | 
| 
 | 
   291  | 
	]);
  | 
| 
 | 
   292  | 
  | 
| 
 | 
   293  | 
val dlist_invert =[temp];
  | 
| 
 | 
   294  | 
  | 
| 
 | 
   295  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   296  | 
(* Injectivity                                                             *)
  | 
| 
 | 
   297  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
val temp = prove_goal Dlist.thy "[|x1~=UU; y1~=UU;x2~=UU; y2~=UU;\
  | 
| 
 | 
   300  | 
\ dcons[x1][x2] = dcons[y1][y2]|] ==> x1= y1 & x2 = y2"
  | 
| 
 | 
   301  | 
 (fn prems =>
  | 
| 
 | 
   302  | 
	[
  | 
| 
 | 
   303  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   304  | 
	(rtac conjI 1),
  | 
| 
 | 
   305  | 
	(dres_inst_tac [("f","dlist_when[UU][LAM x l.x]")] cfun_arg_cong 1),
 | 
| 
 | 
   306  | 
	(etac box_equals 1),
  | 
| 
 | 
   307  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   308  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   309  | 
	(dres_inst_tac [("f","dlist_when[UU][LAM x l.l]")] cfun_arg_cong 1),
 | 
| 
 | 
   310  | 
	(etac box_equals 1),
  | 
| 
 | 
   311  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1),
  | 
| 
 | 
   312  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_when) 1)
  | 
| 
 | 
   313  | 
	]);
  | 
| 
 | 
   314  | 
  | 
| 
 | 
   315  | 
val dlist_inject = [temp];
  | 
| 
 | 
   316  | 
 
  | 
| 
 | 
   317  | 
  | 
| 
 | 
   318  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   319  | 
(* definedness for  discriminators and  selectors                          *)
  | 
| 
 | 
   320  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   321  | 
  | 
| 
 | 
   322  | 
fun prover thm = prove_goal Dlist.thy thm
  | 
| 
 | 
   323  | 
 (fn prems =>
  | 
| 
 | 
   324  | 
	[
  | 
| 
 | 
   325  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   326  | 
	(rtac dlistE 1),
  | 
| 
 | 
   327  | 
	(contr_tac 1),
  | 
| 
 | 
   328  | 
	(REPEAT (asm_simp_tac (HOLCF_ss addsimps dlist_discsel) 1))
  | 
| 
 | 
   329  | 
	]);
  | 
| 
 | 
   330  | 
  | 
| 
 | 
   331  | 
val dlist_discsel_def = 
  | 
| 
 | 
   332  | 
	[
  | 
| 
 | 
   333  | 
	prover "l~=UU ==> is_dnil[l]~=UU", 
  | 
| 
 | 
   334  | 
	prover "l~=UU ==> is_dcons[l]~=UU" 
  | 
| 
 | 
   335  | 
	];
  | 
| 
 | 
   336  | 
  | 
| 
 | 
   337  | 
val dlist_rews = dlist_discsel_def @ dlist_rews;
  | 
| 
 | 
   338  | 
  | 
| 
 | 
   339  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   340  | 
(* enhance the simplifier                                                  *)
  | 
| 
 | 
   341  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   342  | 
  | 
| 
 | 
   343  | 
val dhd2 = prove_goal Dlist.thy "xl~=UU ==> dhd[dcons[x][xl]]=x"
  | 
| 
 | 
   344  | 
 (fn prems =>
  | 
| 
 | 
   345  | 
	[
  | 
| 
 | 
   346  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   347  | 
	(res_inst_tac [("Q","x=UU")] classical2 1),
 | 
| 
 | 
   348  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   349  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   350  | 
	]);
  | 
| 
 | 
   351  | 
  | 
| 
 | 
   352  | 
val dtl2 = prove_goal Dlist.thy "x~=UU ==> dtl[dcons[x][xl]]=xl"
  | 
| 
 | 
   353  | 
 (fn prems =>
  | 
| 
 | 
   354  | 
	[
  | 
| 
 | 
   355  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   356  | 
	(res_inst_tac [("Q","xl=UU")] classical2 1),
 | 
| 
 | 
   357  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   358  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   359  | 
	]);
  | 
| 
 | 
   360  | 
  | 
| 
 | 
   361  | 
val dlist_rews = dhd2 :: dtl2 :: dlist_rews;
  | 
| 
 | 
   362  | 
  | 
| 
 | 
   363  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   364  | 
(* Properties dlist_take                                                   *)
  | 
| 
 | 
   365  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   366  | 
  | 
| 
 | 
   367  | 
val temp = prove_goalw Dlist.thy [dlist_take_def] "dlist_take(n)[UU]=UU"
  | 
| 
 | 
   368  | 
 (fn prems =>
  | 
| 
 | 
   369  | 
	[
  | 
| 
 | 
   370  | 
	(res_inst_tac [("n","n")] natE 1),
 | 
| 
 | 
   371  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   372  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   373  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   374  | 
	]);
  | 
| 
 | 
   375  | 
  | 
| 
 | 
   376  | 
val dlist_take = [temp];
  | 
| 
 | 
   377  | 
  | 
| 
 | 
   378  | 
val temp = prove_goalw Dlist.thy [dlist_take_def] "dlist_take(0)[xs]=UU"
  | 
| 
 | 
   379  | 
 (fn prems =>
  | 
| 
 | 
   380  | 
	[
  | 
| 
 | 
   381  | 
	(asm_simp_tac iterate_ss 1)
  | 
| 
 | 
   382  | 
	]);
  | 
| 
 | 
   383  | 
  | 
| 
 | 
   384  | 
val dlist_take = temp::dlist_take;
  | 
| 
 | 
   385  | 
  | 
| 
 | 
   386  | 
val temp = prove_goalw Dlist.thy [dlist_take_def]
  | 
| 
 | 
   387  | 
	"dlist_take(Suc(n))[dnil]=dnil"
  | 
| 
 | 
   388  | 
 (fn prems =>
  | 
| 
 | 
   389  | 
	[
  | 
| 
 | 
   390  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   391  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   392  | 
	]);
  | 
| 
 | 
   393  | 
  | 
| 
 | 
   394  | 
val dlist_take = temp::dlist_take;
  | 
| 
 | 
   395  | 
  | 
| 
 | 
   396  | 
val temp = prove_goalw Dlist.thy [dlist_take_def]
  | 
| 
 | 
   397  | 
  "dlist_take(Suc(n))[dcons[x][xl]]=dcons[x][dlist_take(n)[xl]]"
  | 
| 
 | 
   398  | 
 (fn prems =>
  | 
| 
 | 
   399  | 
	[
  | 
| 
 | 
   400  | 
	(res_inst_tac [("Q","x=UU")] classical2 1),
 | 
| 
 | 
   401  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   402  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   403  | 
	(res_inst_tac [("Q","xl=UU")] classical2 1),
 | 
| 
 | 
   404  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   405  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   406  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   407  | 
	(res_inst_tac [("n","n")] natE 1),
 | 
| 
 | 
   408  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   409  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   410  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   411  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   412  | 
	(asm_simp_tac iterate_ss 1),
  | 
| 
 | 
   413  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   414  | 
	]);
  | 
| 
 | 
   415  | 
  | 
| 
 | 
   416  | 
val dlist_take = temp::dlist_take;
  | 
| 
 | 
   417  | 
  | 
| 
 | 
   418  | 
val dlist_rews = dlist_take @ dlist_rews;
  | 
| 
 | 
   419  | 
  | 
| 
 | 
   420  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   421  | 
(* take lemma for dlists                                                  *)
  | 
| 
 | 
   422  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   423  | 
  | 
| 
 | 
   424  | 
fun prover reach defs thm  = prove_goalw Dlist.thy defs thm
  | 
| 
 | 
   425  | 
 (fn prems =>
  | 
| 
 | 
   426  | 
	[
  | 
| 
 | 
   427  | 
	(res_inst_tac [("t","l1")] (reach RS subst) 1),
 | 
| 
 | 
   428  | 
	(res_inst_tac [("t","l2")] (reach RS subst) 1),
 | 
| 
 | 
   429  | 
	(rtac (fix_def2 RS ssubst) 1),
  | 
| 
 | 
   430  | 
	(rtac (contlub_cfun_fun RS ssubst) 1),
  | 
| 
 | 
   431  | 
	(rtac is_chain_iterate 1),
  | 
| 
 | 
   432  | 
	(rtac (contlub_cfun_fun RS ssubst) 1),
  | 
| 
 | 
   433  | 
	(rtac is_chain_iterate 1),
  | 
| 
 | 
   434  | 
	(rtac lub_equal 1),
  | 
| 
 | 
   435  | 
	(rtac (is_chain_iterate RS ch2ch_fappL) 1),
  | 
| 
 | 
   436  | 
	(rtac (is_chain_iterate RS ch2ch_fappL) 1),
  | 
| 
 | 
   437  | 
	(rtac allI 1),
  | 
| 
 | 
   438  | 
	(resolve_tac prems 1)
  | 
| 
 | 
   439  | 
	]);
  | 
| 
 | 
   440  | 
  | 
| 
 | 
   441  | 
val dlist_take_lemma = prover dlist_reach  [dlist_take_def]
  | 
| 
 | 
   442  | 
	"(!!n.dlist_take(n)[l1]=dlist_take(n)[l2]) ==> l1=l2";
  | 
| 
 | 
   443  | 
  | 
| 
 | 
   444  | 
  | 
| 
 | 
   445  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   446  | 
(* Co -induction for dlists                                               *)
  | 
| 
 | 
   447  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   448  | 
  | 
| 
 | 
   449  | 
val dlist_coind_lemma = prove_goalw Dlist.thy [dlist_bisim_def] 
  | 
| 
 | 
   450  | 
"dlist_bisim(R) ==> ! p q.R(p,q) --> dlist_take(n)[p]=dlist_take(n)[q]"
  | 
| 
 | 
   451  | 
 (fn prems =>
  | 
| 
 | 
   452  | 
	[
  | 
| 
 | 
   453  | 
	(cut_facts_tac prems 1),
  | 
| 
 | 
   454  | 
	(nat_ind_tac "n" 1),
  | 
| 
 | 
   455  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   456  | 
	(strip_tac 1),
  | 
| 
 | 
   457  | 
	((etac allE 1) THEN (etac allE 1) THEN (etac (mp RS disjE) 1)),
  | 
| 
 | 
   458  | 
	(atac 1),
  | 
| 
 | 
   459  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   460  | 
	(etac disjE 1),
  | 
| 
 | 
   461  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   462  | 
	(etac exE 1),
  | 
| 
 | 
   463  | 
	(etac exE 1),
  | 
| 
 | 
   464  | 
	(etac exE 1),
  | 
| 
 | 
   465  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   466  | 
	(REPEAT (etac conjE 1)),
  | 
| 
 | 
   467  | 
	(rtac cfun_arg_cong 1),
  | 
| 
 | 
   468  | 
	(fast_tac HOL_cs 1)
  | 
| 
 | 
   469  | 
	]);
  | 
| 
 | 
   470  | 
  | 
| 
 | 
   471  | 
val dlist_coind = prove_goal Dlist.thy "[|dlist_bisim(R);R(p,q)|] ==> p = q"
  | 
| 
 | 
   472  | 
 (fn prems =>
  | 
| 
 | 
   473  | 
	[
  | 
| 
 | 
   474  | 
	(rtac dlist_take_lemma 1),
  | 
| 
 | 
   475  | 
	(rtac (dlist_coind_lemma RS spec RS spec RS mp) 1),
  | 
| 
 | 
   476  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   477  | 
	(resolve_tac prems 1)
  | 
| 
 | 
   478  | 
	]);
  | 
| 
 | 
   479  | 
  | 
| 
 | 
   480  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   481  | 
(* structural induction                                                    *)
  | 
| 
 | 
   482  | 
(* ------------------------------------------------------------------------*)
  | 
| 
 | 
   483  | 
  | 
| 
 | 
   484  | 
val dlist_finite_ind = prove_goal Dlist.thy
  | 
| 
 | 
   485  | 
"[|P(UU);P(dnil);\
  | 
| 
 | 
   486  | 
\  !! x l1.[|x~=UU;l1~=UU;P(l1)|] ==> P(dcons[x][l1])\
  | 
| 
 | 
   487  | 
\  |] ==> !l.P(dlist_take(n)[l])"
  | 
| 
 | 
   488  | 
 (fn prems =>
  | 
| 
 | 
   489  | 
	[
  | 
| 
 | 
   490  | 
	(nat_ind_tac "n" 1),
  | 
| 
 | 
   491  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   492  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   493  | 
	(rtac allI 1),
  | 
| 
 | 
   494  | 
	(res_inst_tac [("l","l")] dlistE 1),
 | 
| 
 | 
   495  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   496  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   497  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   498  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   499  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   500  | 
	(res_inst_tac [("Q","dlist_take(n1)[xl]=UU")] classical2 1),
 | 
| 
 | 
   501  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   502  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   503  | 
	(resolve_tac prems 1),
  | 
| 
 | 
   504  | 
	(atac 1),
  | 
| 
 | 
   505  | 
	(atac 1),
  | 
| 
 | 
   506  | 
	(etac spec 1)
  | 
| 
 | 
   507  | 
	]);
  | 
| 
 | 
   508  | 
  | 
| 
 | 
   509  | 
val dlist_all_finite_lemma1 = prove_goal Dlist.thy
  | 
| 
 | 
   510  | 
"!l.dlist_take(n)[l]=UU |dlist_take(n)[l]=l"
  | 
| 
 | 
   511  | 
 (fn prems =>
  | 
| 
 | 
   512  | 
	[
  | 
| 
 | 
   513  | 
	(nat_ind_tac "n" 1),
  | 
| 
 | 
   514  | 
	(simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   515  | 
	(rtac allI 1),
  | 
| 
 | 
   516  | 
	(res_inst_tac [("l","l")] dlistE 1),
 | 
| 
 | 
   517  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   518  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   519  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   520  | 
	(eres_inst_tac [("x","xl")] allE 1),
 | 
| 
 | 
   521  | 
	(etac disjE 1),
  | 
| 
 | 
   522  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   523  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1)
  | 
| 
 | 
   524  | 
	]);
  | 
| 
 | 
   525  | 
  | 
| 
 | 
   526  | 
val dlist_all_finite_lemma2 = prove_goal Dlist.thy "? n.dlist_take(n)[l]=l"
  | 
| 
 | 
   527  | 
 (fn prems =>
  | 
| 
 | 
   528  | 
	[
  | 
| 
 | 
   529  | 
	(res_inst_tac [("Q","l=UU")] classical2 1),
 | 
| 
 | 
   530  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   531  | 
	(subgoal_tac "(!n.dlist_take(n)[l]=UU) |(? n.dlist_take(n)[l]=l)" 1),
  | 
| 
 | 
   532  | 
	(etac disjE 1),
  | 
| 
 | 
   533  | 
	(eres_inst_tac [("P","l=UU")] notE 1),
 | 
| 
 | 
   534  | 
	(rtac dlist_take_lemma 1),
  | 
| 
 | 
   535  | 
	(asm_simp_tac (HOLCF_ss addsimps dlist_rews) 1),
  | 
| 
 | 
   536  | 
	(atac 1),
  | 
| 
 | 
   537  | 
	(subgoal_tac "!n.!l.dlist_take(n)[l]=UU |dlist_take(n)[l]=l" 1),
  | 
| 
 | 
   538  | 
	(fast_tac HOL_cs 1),
  | 
| 
 | 
   539  | 
	(rtac allI 1),
  | 
| 
 | 
   540  | 
	(rtac dlist_all_finite_lemma1 1)
  | 
| 
 | 
   541  | 
	]);
  | 
| 
 | 
   542  | 
  | 
| 
 | 
   543  | 
val dlist_all_finite= prove_goalw Dlist.thy [dlist_finite_def] "dlist_finite(l)"
  | 
| 
 | 
   544  | 
 (fn prems =>
  | 
| 
 | 
   545  | 
	[
  | 
| 
 | 
   546  | 
	(rtac  dlist_all_finite_lemma2 1)
  | 
| 
 | 
   547  | 
	]);
  | 
| 
 | 
   548  | 
  | 
| 
 | 
   549  | 
val dlist_ind = prove_goal Dlist.thy
  | 
| 
 | 
   550  | 
"[|P(UU);P(dnil);\
  | 
| 
 | 
   551  | 
\  !! x l1.[|x~=UU;l1~=UU;P(l1)|] ==> P(dcons[x][l1])|] ==> P(l)"
  | 
| 
 | 
   552  | 
 (fn prems =>
  | 
| 
 | 
   553  | 
	[
  | 
| 
 | 
   554  | 
	(rtac (dlist_all_finite_lemma2 RS exE) 1),
  | 
| 
 | 
   555  | 
	(etac subst 1),
  | 
| 
 | 
   556  | 
	(rtac (dlist_finite_ind RS spec) 1),
  | 
| 
 | 
   557  | 
	(REPEAT (resolve_tac prems 1)),
  | 
| 
 | 
   558  | 
	(REPEAT (atac 1))
  | 
| 
 | 
   559  | 
	]);
  | 
| 
 | 
   560  | 
  | 
| 
 | 
   561  | 
  | 
| 
 | 
   562  | 
  | 
| 
 | 
   563  | 
  |