| author | wenzelm | 
| Wed, 24 Oct 2007 19:21:40 +0200 | |
| changeset 25174 | d70d6dbc3a60 | 
| parent 24422 | c0b5ff9e9e4d | 
| child 25502 | 9200b36280c0 | 
| permissions | -rw-r--r-- | 
| 7219 | 1 | (* Title : PReal.thy | 
| 2 | ID : $Id$ | |
| 5078 | 3 | Author : Jacques D. Fleuriot | 
| 4 | Copyright : 1998 University of Cambridge | |
| 5 | Description : The positive reals as Dedekind sections of positive | |
| 14335 | 6 | rationals. Fundamentals of Abstract Analysis [Gleason- p. 121] | 
| 5078 | 7 | provides some of the definitions. | 
| 8 | *) | |
| 9 | ||
| 17428 | 10 | header {* Positive real numbers *}
 | 
| 11 | ||
| 15131 | 12 | theory PReal | 
| 15140 | 13 | imports Rational | 
| 15131 | 14 | begin | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 15 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 16 | text{*Could be generalized and moved to @{text Ring_and_Field}*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 17 | lemma add_eq_exists: "\<exists>x. a+x = (b::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 18 | by (rule_tac x="b-a" in exI, simp) | 
| 5078 | 19 | |
| 19765 | 20 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 21 | cut :: "rat set => bool" where | 
| 19765 | 22 |   "cut A = ({} \<subset> A &
 | 
| 23 |             A < {r. 0 < r} &
 | |
| 24 | (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 25 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 26 | lemma cut_of_rat: | 
| 20495 | 27 |   assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A")
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 28 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 29 |   from q have pos: "?A < {r. 0 < r}" by force
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 30 |   have nonempty: "{} \<subset> ?A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 31 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 32 |     show "{} \<subseteq> ?A" by simp
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 33 |     show "{} \<noteq> ?A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 34 |       by (force simp only: q eq_commute [of "{}"] interval_empty_iff)
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 35 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 36 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 37 | by (simp add: cut_def pos nonempty, | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 38 | blast dest: dense intro: order_less_trans) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 39 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 40 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 41 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 42 | typedef preal = "{A. cut A}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 43 | by (blast intro: cut_of_rat [OF zero_less_one]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 44 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 45 | instance preal :: "{ord, plus, minus, times, inverse, one}" ..
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 46 | |
| 19765 | 47 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 48 | preal_of_rat :: "rat => preal" where | 
| 20495 | 49 |   "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}"
 | 
| 5078 | 50 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 51 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 52 | psup :: "preal set => preal" where | 
| 20495 | 53 | "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 54 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 55 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 56 | add_set :: "[rat set,rat set] => rat set" where | 
| 19765 | 57 |   "add_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x + y}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 58 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 59 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 60 | diff_set :: "[rat set,rat set] => rat set" where | 
| 19765 | 61 |   "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 62 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 63 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 64 | mult_set :: "[rat set,rat set] => rat set" where | 
| 19765 | 65 |   "mult_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x * y}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 66 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 67 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 68 | inverse_set :: "rat set => rat set" where | 
| 19765 | 69 |   "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 70 | |
| 5078 | 71 | |
| 14335 | 72 | defs (overloaded) | 
| 5078 | 73 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 74 | preal_less_def: | 
| 20495 | 75 | "R < S == Rep_preal R < Rep_preal S" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 76 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 77 | preal_le_def: | 
| 20495 | 78 | "R \<le> S == Rep_preal R \<subseteq> Rep_preal S" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 79 | |
| 14335 | 80 | preal_add_def: | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 81 | "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 82 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 83 | preal_diff_def: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 84 | "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))" | 
| 5078 | 85 | |
| 14335 | 86 | preal_mult_def: | 
| 20495 | 87 | "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))" | 
| 5078 | 88 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 89 | preal_inverse_def: | 
| 20495 | 90 | "inverse R == Abs_preal (inverse_set (Rep_preal R))" | 
| 14335 | 91 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 92 | preal_one_def: | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 93 | "1 == preal_of_rat 1" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 94 | |
| 14335 | 95 | |
| 15413 | 96 | text{*Reduces equality on abstractions to equality on representatives*}
 | 
| 97 | declare Abs_preal_inject [simp] | |
| 20495 | 98 | declare Abs_preal_inverse [simp] | 
| 99 | ||
| 100 | lemma rat_mem_preal: "0 < q ==> {r::rat. 0 < r & r < q} \<in> preal"
 | |
| 101 | by (simp add: preal_def cut_of_rat) | |
| 14335 | 102 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 103 | lemma preal_nonempty: "A \<in> preal ==> \<exists>x\<in>A. 0 < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 104 | by (unfold preal_def cut_def, blast) | 
| 14335 | 105 | |
| 20495 | 106 | lemma preal_Ex_mem: "A \<in> preal \<Longrightarrow> \<exists>x. x \<in> A" | 
| 107 | by (drule preal_nonempty, fast) | |
| 108 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 109 | lemma preal_imp_psubset_positives: "A \<in> preal ==> A < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 110 | by (force simp add: preal_def cut_def) | 
| 14335 | 111 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 112 | lemma preal_exists_bound: "A \<in> preal ==> \<exists>x. 0 < x & x \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 113 | by (drule preal_imp_psubset_positives, auto) | 
| 14335 | 114 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 115 | lemma preal_exists_greater: "[| A \<in> preal; y \<in> A |] ==> \<exists>u \<in> A. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 116 | by (unfold preal_def cut_def, blast) | 
| 14335 | 117 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 118 | lemma preal_downwards_closed: "[| A \<in> preal; y \<in> A; 0 < z; z < y |] ==> z \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 119 | by (unfold preal_def cut_def, blast) | 
| 14335 | 120 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 121 | text{*Relaxing the final premise*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 122 | lemma preal_downwards_closed': | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 123 | "[| A \<in> preal; y \<in> A; 0 < z; z \<le> y |] ==> z \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 124 | apply (simp add: order_le_less) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 125 | apply (blast intro: preal_downwards_closed) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 126 | done | 
| 14335 | 127 | |
| 128 | text{*A positive fraction not in a positive real is an upper bound.
 | |
| 129 | Gleason p. 122 - Remark (1)*} | |
| 130 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 131 | lemma not_in_preal_ub: | 
| 19765 | 132 | assumes A: "A \<in> preal" | 
| 133 | and notx: "x \<notin> A" | |
| 134 | and y: "y \<in> A" | |
| 135 | and pos: "0 < x" | |
| 136 | shows "y < x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 137 | proof (cases rule: linorder_cases) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 138 | assume "x<y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 139 | with notx show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 140 | by (simp add: preal_downwards_closed [OF A y] pos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 141 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 142 | assume "x=y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 143 | with notx and y show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 144 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 145 | assume "y<x" | 
| 20495 | 146 | thus ?thesis . | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 147 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 148 | |
| 20495 | 149 | text {* preal lemmas instantiated to @{term "Rep_preal X"} *}
 | 
| 150 | ||
| 151 | lemma mem_Rep_preal_Ex: "\<exists>x. x \<in> Rep_preal X" | |
| 152 | by (rule preal_Ex_mem [OF Rep_preal]) | |
| 153 | ||
| 154 | lemma Rep_preal_exists_bound: "\<exists>x>0. x \<notin> Rep_preal X" | |
| 155 | by (rule preal_exists_bound [OF Rep_preal]) | |
| 156 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 157 | lemmas not_in_Rep_preal_ub = not_in_preal_ub [OF Rep_preal] | 
| 14335 | 158 | |
| 159 | ||
| 20495 | 160 | |
| 161 | subsection{*@{term preal_of_prat}: the Injection from prat to preal*}
 | |
| 162 | ||
| 163 | lemma rat_less_set_mem_preal: "0 < y ==> {u::rat. 0 < u & u < y} \<in> preal"
 | |
| 164 | by (simp add: preal_def cut_of_rat) | |
| 165 | ||
| 166 | lemma rat_subset_imp_le: | |
| 167 |      "[|{u::rat. 0 < u & u < x} \<subseteq> {u. 0 < u & u < y}; 0<x|] ==> x \<le> y"
 | |
| 168 | apply (simp add: linorder_not_less [symmetric]) | |
| 169 | apply (blast dest: dense intro: order_less_trans) | |
| 170 | done | |
| 171 | ||
| 172 | lemma rat_set_eq_imp_eq: | |
| 173 |      "[|{u::rat. 0 < u & u < x} = {u. 0 < u & u < y};
 | |
| 174 | 0 < x; 0 < y|] ==> x = y" | |
| 175 | by (blast intro: rat_subset_imp_le order_antisym) | |
| 176 | ||
| 177 | ||
| 178 | ||
| 179 | subsection{*Properties of Ordering*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 180 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 181 | lemma preal_le_refl: "w \<le> (w::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 182 | by (simp add: preal_le_def) | 
| 14335 | 183 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 184 | lemma preal_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 185 | by (force simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 186 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 187 | lemma preal_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 188 | apply (simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 189 | apply (rule Rep_preal_inject [THEN iffD1], blast) | 
| 14335 | 190 | done | 
| 191 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 192 | (* Axiom 'order_less_le' of class 'order': *) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 193 | lemma preal_less_le: "((w::preal) < z) = (w \<le> z & w \<noteq> z)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 194 | by (simp add: preal_le_def preal_less_def Rep_preal_inject psubset_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 195 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 196 | instance preal :: order | 
| 14691 | 197 | by intro_classes | 
| 198 | (assumption | | |
| 199 | rule preal_le_refl preal_le_trans preal_le_anti_sym preal_less_le)+ | |
| 14335 | 200 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 201 | lemma preal_imp_pos: "[|A \<in> preal; r \<in> A|] ==> 0 < r" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 202 | by (insert preal_imp_psubset_positives, blast) | 
| 14335 | 203 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 204 | lemma preal_le_linear: "x <= y | y <= (x::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 205 | apply (auto simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 206 | apply (rule ccontr) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 207 | apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 208 | elim: order_less_asym) | 
| 14335 | 209 | done | 
| 210 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 211 | instance preal :: linorder | 
| 14691 | 212 | by intro_classes (rule preal_le_linear) | 
| 14335 | 213 | |
| 22483 | 214 | instance preal :: distrib_lattice | 
| 215 | "inf \<equiv> min" | |
| 216 | "sup \<equiv> max" | |
| 217 | by intro_classes | |
| 218 | (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1) | |
| 14335 | 219 | |
| 220 | ||
| 221 | subsection{*Properties of Addition*}
 | |
| 222 | ||
| 223 | lemma preal_add_commute: "(x::preal) + y = y + x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 224 | apply (unfold preal_add_def add_set_def) | 
| 14335 | 225 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 226 | apply (force simp add: add_commute) | 
| 14335 | 227 | done | 
| 228 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 229 | text{*Lemmas for proving that addition of two positive reals gives
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 230 | a positive real*} | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 231 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 232 | lemma empty_psubset_nonempty: "a \<in> A ==> {} \<subset> A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 233 | by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 234 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 235 | text{*Part 1 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 236 | lemma add_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 237 |      "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> add_set A B"
 | 
| 20495 | 238 | apply (drule preal_nonempty)+ | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 239 | apply (auto simp add: add_set_def) | 
| 14335 | 240 | done | 
| 241 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 242 | text{*Part 2 of Dedekind sections definition.  A structured version of
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 243 | this proof is @{text preal_not_mem_mult_set_Ex} below.*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 244 | lemma preal_not_mem_add_set_Ex: | 
| 20495 | 245 | "[|A \<in> preal; B \<in> preal|] ==> \<exists>q>0. q \<notin> add_set A B" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 246 | apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 247 | apply (rule_tac x = "x+xa" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 248 | apply (simp add: add_set_def, clarify) | 
| 20495 | 249 | apply (drule (3) not_in_preal_ub)+ | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 250 | apply (force dest: add_strict_mono) | 
| 14335 | 251 | done | 
| 252 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 253 | lemma add_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 254 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 255 | and B: "B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 256 |      shows "add_set A B < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 257 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 258 | from preal_imp_pos [OF A] preal_imp_pos [OF B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 259 |   show "add_set A B \<subseteq> {r. 0 < r}" by (force simp add: add_set_def) 
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 260 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 261 |   show "add_set A B \<noteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 262 | by (insert preal_not_mem_add_set_Ex [OF A B], blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 263 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 264 | |
| 14335 | 265 | text{*Part 3 of Dedekind sections definition*}
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 266 | lemma add_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 267 | "[|A \<in> preal; B \<in> preal; u \<in> add_set A B; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 268 | ==> z \<in> add_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 269 | proof (unfold add_set_def, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 270 | fix x::rat and y::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 271 | assume A: "A \<in> preal" | 
| 19765 | 272 | and B: "B \<in> preal" | 
| 273 | and [simp]: "0 < z" | |
| 274 | and zless: "z < x + y" | |
| 275 | and x: "x \<in> A" | |
| 276 | and y: "y \<in> B" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 277 | have xpos [simp]: "0<x" by (rule preal_imp_pos [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 278 | have ypos [simp]: "0<y" by (rule preal_imp_pos [OF B y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 279 | have xypos [simp]: "0 < x+y" by (simp add: pos_add_strict) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 280 | let ?f = "z/(x+y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 281 | have fless: "?f < 1" by (simp add: zless pos_divide_less_eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 282 | show "\<exists>x' \<in> A. \<exists>y'\<in>B. z = x' + y'" | 
| 20495 | 283 | proof (intro bexI) | 
| 284 | show "z = x*?f + y*?f" | |
| 285 | by (simp add: left_distrib [symmetric] divide_inverse mult_ac | |
| 286 | order_less_imp_not_eq2) | |
| 287 | next | |
| 288 | show "y * ?f \<in> B" | |
| 289 | proof (rule preal_downwards_closed [OF B y]) | |
| 290 | show "0 < y * ?f" | |
| 291 | by (simp add: divide_inverse zero_less_mult_iff) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 292 | next | 
| 20495 | 293 | show "y * ?f < y" | 
| 294 | by (insert mult_strict_left_mono [OF fless ypos], simp) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 295 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 296 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 297 | show "x * ?f \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 298 | proof (rule preal_downwards_closed [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 299 | show "0 < x * ?f" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 300 | by (simp add: divide_inverse zero_less_mult_iff) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 301 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 302 | show "x * ?f < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 303 | by (insert mult_strict_left_mono [OF fless xpos], simp) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 304 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 305 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 306 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 307 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 308 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 309 | lemma add_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 310 | "[|A \<in> preal; B \<in> preal; y \<in> add_set A B|] ==> \<exists>u \<in> add_set A B. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 311 | apply (auto simp add: add_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 312 | apply (frule preal_exists_greater [of A], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 313 | apply (rule_tac x="u + y" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 314 | apply (auto intro: add_strict_left_mono) | 
| 14335 | 315 | done | 
| 316 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 317 | lemma mem_add_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 318 | "[|A \<in> preal; B \<in> preal|] ==> add_set A B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 319 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 320 | apply (blast intro!: add_set_not_empty add_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 321 | add_set_lemma3 add_set_lemma4) | 
| 14335 | 322 | done | 
| 323 | ||
| 324 | lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 325 | apply (simp add: preal_add_def mem_add_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 326 | apply (force simp add: add_set_def add_ac) | 
| 14335 | 327 | done | 
| 328 | ||
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 329 | instance preal :: ab_semigroup_add | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 330 | proof | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 331 | fix a b c :: preal | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 332 | show "(a + b) + c = a + (b + c)" by (rule preal_add_assoc) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 333 | show "a + b = b + a" by (rule preal_add_commute) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 334 | qed | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 335 | |
| 14335 | 336 | lemma preal_add_left_commute: "x + (y + z) = y + ((x + z)::preal)" | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 337 | by (rule add_left_commute) | 
| 14335 | 338 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 339 | text{* Positive Real addition is an AC operator *}
 | 
| 14335 | 340 | lemmas preal_add_ac = preal_add_assoc preal_add_commute preal_add_left_commute | 
| 341 | ||
| 342 | ||
| 343 | subsection{*Properties of Multiplication*}
 | |
| 344 | ||
| 345 | text{*Proofs essentially same as for addition*}
 | |
| 346 | ||
| 347 | lemma preal_mult_commute: "(x::preal) * y = y * x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 348 | apply (unfold preal_mult_def mult_set_def) | 
| 14335 | 349 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 350 | apply (force simp add: mult_commute) | 
| 14335 | 351 | done | 
| 352 | ||
| 15055 | 353 | text{*Multiplication of two positive reals gives a positive real.*}
 | 
| 14335 | 354 | |
| 355 | text{*Lemmas for proving positive reals multiplication set in @{typ preal}*}
 | |
| 356 | ||
| 357 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 358 | lemma mult_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 359 |      "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> mult_set A B"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 360 | apply (insert preal_nonempty [of A] preal_nonempty [of B]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 361 | apply (auto simp add: mult_set_def) | 
| 14335 | 362 | done | 
| 363 | ||
| 364 | text{*Part 2 of Dedekind sections definition*}
 | |
| 365 | lemma preal_not_mem_mult_set_Ex: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 366 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 367 | and B: "B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 368 | shows "\<exists>q. 0 < q & q \<notin> mult_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 369 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 370 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 371 | obtain x where [simp]: "0 < x" "x \<notin> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 372 | from preal_exists_bound [OF B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 373 | obtain y where [simp]: "0 < y" "y \<notin> B" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 374 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 375 | proof (intro exI conjI) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 376 | show "0 < x*y" by (simp add: mult_pos_pos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 377 | show "x * y \<notin> mult_set A B" | 
| 14377 | 378 | proof - | 
| 379 |       { fix u::rat and v::rat
 | |
| 14550 | 380 | assume "u \<in> A" and "v \<in> B" and "x*y = u*v" | 
| 381 | moreover | |
| 382 | with prems have "u<x" and "v<y" by (blast dest: not_in_preal_ub)+ | |
| 383 | moreover | |
| 384 | with prems have "0\<le>v" | |
| 385 | by (blast intro: preal_imp_pos [OF B] order_less_imp_le prems) | |
| 386 | moreover | |
| 387 | from calculation | |
| 388 | have "u*v < x*y" by (blast intro: mult_strict_mono prems) | |
| 389 | ultimately have False by force } | |
| 14377 | 390 | thus ?thesis by (auto simp add: mult_set_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 391 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 392 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 393 | qed | 
| 14335 | 394 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 395 | lemma mult_set_not_rat_set: | 
| 19765 | 396 | assumes A: "A \<in> preal" | 
| 397 | and B: "B \<in> preal" | |
| 398 |   shows "mult_set A B < {r. 0 < r}"
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 399 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 400 |   show "mult_set A B \<subseteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 401 | by (force simp add: mult_set_def | 
| 19765 | 402 | intro: preal_imp_pos [OF A] preal_imp_pos [OF B] mult_pos_pos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 403 |   show "mult_set A B \<noteq> {r. 0 < r}"
 | 
| 19765 | 404 | using preal_not_mem_mult_set_Ex [OF A B] by blast | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 405 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 406 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 407 | |
| 14335 | 408 | |
| 409 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 410 | lemma mult_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 411 | "[|A \<in> preal; B \<in> preal; u \<in> mult_set A B; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 412 | ==> z \<in> mult_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 413 | proof (unfold mult_set_def, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 414 | fix x::rat and y::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 415 | assume A: "A \<in> preal" | 
| 19765 | 416 | and B: "B \<in> preal" | 
| 417 | and [simp]: "0 < z" | |
| 418 | and zless: "z < x * y" | |
| 419 | and x: "x \<in> A" | |
| 420 | and y: "y \<in> B" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 421 | have [simp]: "0<y" by (rule preal_imp_pos [OF B y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 422 | show "\<exists>x' \<in> A. \<exists>y' \<in> B. z = x' * y'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 423 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 424 | show "\<exists>y'\<in>B. z = (z/y) * y'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 425 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 426 | show "z = (z/y)*y" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 427 | by (simp add: divide_inverse mult_commute [of y] mult_assoc | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 428 | order_less_imp_not_eq2) | 
| 23389 | 429 | show "y \<in> B" by fact | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 430 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 431 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 432 | show "z/y \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 433 | proof (rule preal_downwards_closed [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 434 | show "0 < z/y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 435 | by (simp add: zero_less_divide_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 436 | show "z/y < x" by (simp add: pos_divide_less_eq zless) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 437 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 438 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 439 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 440 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 441 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 442 | lemma mult_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 443 | "[|A \<in> preal; B \<in> preal; y \<in> mult_set A B|] ==> \<exists>u \<in> mult_set A B. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 444 | apply (auto simp add: mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 445 | apply (frule preal_exists_greater [of A], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 446 | apply (rule_tac x="u * y" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 447 | apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 448 | mult_strict_right_mono) | 
| 14335 | 449 | done | 
| 450 | ||
| 451 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 452 | lemma mem_mult_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 453 | "[|A \<in> preal; B \<in> preal|] ==> mult_set A B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 454 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 455 | apply (blast intro!: mult_set_not_empty mult_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 456 | mult_set_lemma3 mult_set_lemma4) | 
| 14335 | 457 | done | 
| 458 | ||
| 459 | lemma preal_mult_assoc: "((x::preal) * y) * z = x * (y * z)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 460 | apply (simp add: preal_mult_def mem_mult_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 461 | apply (force simp add: mult_set_def mult_ac) | 
| 14335 | 462 | done | 
| 463 | ||
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 464 | instance preal :: ab_semigroup_mult | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 465 | proof | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 466 | fix a b c :: preal | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 467 | show "(a * b) * c = a * (b * c)" by (rule preal_mult_assoc) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 468 | show "a * b = b * a" by (rule preal_mult_commute) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 469 | qed | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 470 | |
| 14335 | 471 | lemma preal_mult_left_commute: "x * (y * z) = y * ((x * z)::preal)" | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 472 | by (rule mult_left_commute) | 
| 14335 | 473 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 474 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 475 | text{* Positive Real multiplication is an AC operator *}
 | 
| 14335 | 476 | lemmas preal_mult_ac = | 
| 477 | preal_mult_assoc preal_mult_commute preal_mult_left_commute | |
| 478 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 479 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 480 | text{* Positive real 1 is the multiplicative identity element *}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 481 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 482 | lemma preal_mult_1: "(1::preal) * z = z" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 483 | unfolding preal_one_def | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 484 | proof (induct z) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 485 | fix A :: "rat set" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 486 | assume A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 487 |   have "{w. \<exists>u. 0 < u \<and> u < 1 & (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 488 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 489 | show "?lhs \<subseteq> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 490 | proof clarify | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 491 | fix x::rat and u::rat and v::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 492 | assume upos: "0<u" and "u<1" and v: "v \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 493 | have vpos: "0<v" by (rule preal_imp_pos [OF A v]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 494 | hence "u*v < 1*v" by (simp only: mult_strict_right_mono prems) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 495 | thus "u * v \<in> A" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 496 | by (force intro: preal_downwards_closed [OF A v] mult_pos_pos | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 497 | upos vpos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 498 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 499 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 500 | show "A \<subseteq> ?lhs" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 501 | proof clarify | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 502 | fix x::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 503 | assume x: "x \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 504 | have xpos: "0<x" by (rule preal_imp_pos [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 505 | from preal_exists_greater [OF A x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 506 | obtain v where v: "v \<in> A" and xlessv: "x < v" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 507 | have vpos: "0<v" by (rule preal_imp_pos [OF A v]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 508 | show "\<exists>u. 0 < u \<and> u < 1 \<and> (\<exists>v\<in>A. x = u * v)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 509 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 510 | show "0 < x/v" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 511 | by (simp add: zero_less_divide_iff xpos vpos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 512 | show "x / v < 1" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 513 | by (simp add: pos_divide_less_eq vpos xlessv) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 514 | show "\<exists>v'\<in>A. x = (x / v) * v'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 515 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 516 | show "x = (x/v)*v" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 517 | by (simp add: divide_inverse mult_assoc vpos | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 518 | order_less_imp_not_eq2) | 
| 23389 | 519 | show "v \<in> A" by fact | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 520 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 521 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 522 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 523 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 524 | thus "preal_of_rat 1 * Abs_preal A = Abs_preal A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 525 | by (simp add: preal_of_rat_def preal_mult_def mult_set_def | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 526 | rat_mem_preal A) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 527 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 528 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 529 | instance preal :: comm_monoid_mult | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 530 | by intro_classes (rule preal_mult_1) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 531 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 532 | lemma preal_mult_1_right: "z * (1::preal) = z" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 533 | by (rule mult_1_right) | 
| 14335 | 534 | |
| 535 | ||
| 536 | subsection{*Distribution of Multiplication across Addition*}
 | |
| 537 | ||
| 538 | lemma mem_Rep_preal_add_iff: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 539 | "(z \<in> Rep_preal(R+S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x + y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 540 | apply (simp add: preal_add_def mem_add_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 541 | apply (simp add: add_set_def) | 
| 14335 | 542 | done | 
| 543 | ||
| 544 | lemma mem_Rep_preal_mult_iff: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 545 | "(z \<in> Rep_preal(R*S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x * y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 546 | apply (simp add: preal_mult_def mem_mult_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 547 | apply (simp add: mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 548 | done | 
| 14335 | 549 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 550 | lemma distrib_subset1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 551 | "Rep_preal (w * (x + y)) \<subseteq> Rep_preal (w * x + w * y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 552 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 553 | apply (force simp add: right_distrib) | 
| 14335 | 554 | done | 
| 555 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 556 | lemma preal_add_mult_distrib_mean: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 557 | assumes a: "a \<in> Rep_preal w" | 
| 19765 | 558 | and b: "b \<in> Rep_preal w" | 
| 559 | and d: "d \<in> Rep_preal x" | |
| 560 | and e: "e \<in> Rep_preal y" | |
| 561 | shows "\<exists>c \<in> Rep_preal w. a * d + b * e = c * (d + e)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 562 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 563 | let ?c = "(a*d + b*e)/(d+e)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 564 | have [simp]: "0<a" "0<b" "0<d" "0<e" "0<d+e" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 565 | by (blast intro: preal_imp_pos [OF Rep_preal] a b d e pos_add_strict)+ | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 566 | have cpos: "0 < ?c" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 567 | by (simp add: zero_less_divide_iff zero_less_mult_iff pos_add_strict) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 568 | show "a * d + b * e = ?c * (d + e)" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 569 | by (simp add: divide_inverse mult_assoc order_less_imp_not_eq2) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 570 | show "?c \<in> Rep_preal w" | 
| 20495 | 571 | proof (cases rule: linorder_le_cases) | 
| 572 | assume "a \<le> b" | |
| 573 | hence "?c \<le> b" | |
| 574 | by (simp add: pos_divide_le_eq right_distrib mult_right_mono | |
| 575 | order_less_imp_le) | |
| 576 | thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal b cpos]) | |
| 577 | next | |
| 578 | assume "b \<le> a" | |
| 579 | hence "?c \<le> a" | |
| 580 | by (simp add: pos_divide_le_eq right_distrib mult_right_mono | |
| 581 | order_less_imp_le) | |
| 582 | thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal a cpos]) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 583 | qed | 
| 20495 | 584 | qed | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 585 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 586 | lemma distrib_subset2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 587 | "Rep_preal (w * x + w * y) \<subseteq> Rep_preal (w * (x + y))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 588 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 589 | apply (drule_tac w=w and x=x and y=y in preal_add_mult_distrib_mean, auto) | 
| 14335 | 590 | done | 
| 591 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 592 | lemma preal_add_mult_distrib2: "(w * ((x::preal) + y)) = (w * x) + (w * y)" | 
| 15413 | 593 | apply (rule Rep_preal_inject [THEN iffD1]) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 594 | apply (rule equalityI [OF distrib_subset1 distrib_subset2]) | 
| 14335 | 595 | done | 
| 596 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 597 | lemma preal_add_mult_distrib: "(((x::preal) + y) * w) = (x * w) + (y * w)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 598 | by (simp add: preal_mult_commute preal_add_mult_distrib2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 599 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 600 | instance preal :: comm_semiring | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 601 | by intro_classes (rule preal_add_mult_distrib) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 602 | |
| 14335 | 603 | |
| 604 | subsection{*Existence of Inverse, a Positive Real*}
 | |
| 605 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 606 | lemma mem_inv_set_ex: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 607 | assumes A: "A \<in> preal" shows "\<exists>x y. 0 < x & x < y & inverse y \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 608 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 609 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 610 | obtain x where [simp]: "0<x" "x \<notin> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 611 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 612 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 613 | show "0 < inverse (x+1)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 614 | by (simp add: order_less_trans [OF _ less_add_one]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 615 | show "inverse(x+1) < inverse x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 616 | by (simp add: less_imp_inverse_less less_add_one) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 617 | show "inverse (inverse x) \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 618 | by (simp add: order_less_imp_not_eq2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 619 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 620 | qed | 
| 14335 | 621 | |
| 622 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 623 | lemma inverse_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 624 |      "A \<in> preal ==> {} \<subset> inverse_set A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 625 | apply (insert mem_inv_set_ex [of A]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 626 | apply (auto simp add: inverse_set_def) | 
| 14335 | 627 | done | 
| 628 | ||
| 629 | text{*Part 2 of Dedekind sections definition*}
 | |
| 630 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 631 | lemma preal_not_mem_inverse_set_Ex: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 632 | assumes A: "A \<in> preal" shows "\<exists>q. 0 < q & q \<notin> inverse_set A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 633 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 634 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 635 | obtain x where x: "x \<in> A" and xpos [simp]: "0<x" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 636 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 637 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 638 | show "0 < inverse x" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 639 | show "inverse x \<notin> inverse_set A" | 
| 14377 | 640 | proof - | 
| 641 |       { fix y::rat 
 | |
| 642 | assume ygt: "inverse x < y" | |
| 643 | have [simp]: "0 < y" by (simp add: order_less_trans [OF _ ygt]) | |
| 644 | have iyless: "inverse y < x" | |
| 645 | by (simp add: inverse_less_imp_less [of x] ygt) | |
| 646 | have "inverse y \<in> A" | |
| 647 | by (simp add: preal_downwards_closed [OF A x] iyless)} | |
| 648 | thus ?thesis by (auto simp add: inverse_set_def) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 649 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 650 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 651 | qed | 
| 14335 | 652 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 653 | lemma inverse_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 654 |    assumes A: "A \<in> preal"  shows "inverse_set A < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 655 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 656 |   show "inverse_set A \<subseteq> {r. 0 < r}"  by (force simp add: inverse_set_def)
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 657 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 658 |   show "inverse_set A \<noteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 659 | by (insert preal_not_mem_inverse_set_Ex [OF A], blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 660 | qed | 
| 14335 | 661 | |
| 662 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 663 | lemma inverse_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 664 | "[|A \<in> preal; u \<in> inverse_set A; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 665 | ==> z \<in> inverse_set A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 666 | apply (auto simp add: inverse_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 667 | apply (auto intro: order_less_trans) | 
| 14335 | 668 | done | 
| 669 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 670 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 671 | lemma inverse_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 672 | "[|A \<in> preal; y \<in> inverse_set A|] ==> \<exists>u \<in> inverse_set A. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 673 | apply (auto simp add: inverse_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 674 | apply (drule dense [of y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 675 | apply (blast intro: order_less_trans) | 
| 14335 | 676 | done | 
| 677 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 678 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 679 | lemma mem_inverse_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 680 | "A \<in> preal ==> inverse_set A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 681 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 682 | apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 683 | inverse_set_lemma3 inverse_set_lemma4) | 
| 14335 | 684 | done | 
| 685 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 686 | |
| 14335 | 687 | subsection{*Gleason's Lemma 9-3.4, page 122*}
 | 
| 688 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 689 | lemma Gleason9_34_exists: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 690 | assumes A: "A \<in> preal" | 
| 19765 | 691 | and "\<forall>x\<in>A. x + u \<in> A" | 
| 692 | and "0 \<le> z" | |
| 693 | shows "\<exists>b\<in>A. b + (of_int z) * u \<in> A" | |
| 14369 | 694 | proof (cases z rule: int_cases) | 
| 695 | case (nonneg n) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 696 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 697 | proof (simp add: prems, induct n) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 698 | case 0 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 699 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 700 | show ?case by force | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 701 | case (Suc k) | 
| 15013 | 702 | from this obtain b where "b \<in> A" "b + of_nat k * u \<in> A" .. | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 703 | hence "b + of_int (int k)*u + u \<in> A" by (simp add: prems) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 704 | thus ?case by (force simp add: left_distrib add_ac prems) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 705 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 706 | next | 
| 14369 | 707 | case (neg n) | 
| 708 | with prems show ?thesis by simp | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 709 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 710 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 711 | lemma Gleason9_34_contra: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 712 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 713 | shows "[|\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A|] ==> False" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 714 | proof (induct u, induct y) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 715 | fix a::int and b::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 716 | fix c::int and d::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 717 | assume bpos [simp]: "0 < b" | 
| 19765 | 718 | and dpos [simp]: "0 < d" | 
| 719 | and closed: "\<forall>x\<in>A. x + (Fract c d) \<in> A" | |
| 720 | and upos: "0 < Fract c d" | |
| 721 | and ypos: "0 < Fract a b" | |
| 722 | and notin: "Fract a b \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 723 | have cpos [simp]: "0 < c" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 724 | by (simp add: zero_less_Fract_iff [OF dpos, symmetric] upos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 725 | have apos [simp]: "0 < a" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 726 | by (simp add: zero_less_Fract_iff [OF bpos, symmetric] ypos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 727 | let ?k = "a*d" | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 728 | have frle: "Fract a b \<le> Fract ?k 1 * (Fract c d)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 729 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 730 | have "?thesis = ((a * d * b * d) \<le> c * b * (a * d * b * d))" | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 731 | by (simp add: mult_rat le_rat order_less_imp_not_eq2 mult_ac) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 732 | moreover | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 733 | have "(1 * (a * d * b * d)) \<le> c * b * (a * d * b * d)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 734 | by (rule mult_mono, | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 735 | simp_all add: int_one_le_iff_zero_less zero_less_mult_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 736 | order_less_imp_le) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 737 | ultimately | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 738 | show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 739 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 740 | have k: "0 \<le> ?k" by (simp add: order_less_imp_le zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 741 | from Gleason9_34_exists [OF A closed k] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 742 | obtain z where z: "z \<in> A" | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 743 | and mem: "z + of_int ?k * Fract c d \<in> A" .. | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 744 | have less: "z + of_int ?k * Fract c d < Fract a b" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 745 | by (rule not_in_preal_ub [OF A notin mem ypos]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 746 | have "0<z" by (rule preal_imp_pos [OF A z]) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 747 | with frle and less show False by (simp add: Fract_of_int_eq) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 748 | qed | 
| 14335 | 749 | |
| 750 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 751 | lemma Gleason9_34: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 752 | assumes A: "A \<in> preal" | 
| 19765 | 753 | and upos: "0 < u" | 
| 754 | shows "\<exists>r \<in> A. r + u \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 755 | proof (rule ccontr, simp) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 756 | assume closed: "\<forall>r\<in>A. r + u \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 757 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 758 | obtain y where y: "y \<notin> A" and ypos: "0 < y" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 759 | show False | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 760 | by (rule Gleason9_34_contra [OF A closed upos ypos y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 761 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 762 | |
| 14335 | 763 | |
| 764 | ||
| 765 | subsection{*Gleason's Lemma 9-3.6*}
 | |
| 766 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 767 | lemma lemma_gleason9_36: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 768 | assumes A: "A \<in> preal" | 
| 19765 | 769 | and x: "1 < x" | 
| 770 | shows "\<exists>r \<in> A. r*x \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 771 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 772 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 773 | obtain y where y: "y \<in> A" and ypos: "0<y" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 774 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 775 | proof (rule classical) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 776 | assume "~(\<exists>r\<in>A. r * x \<notin> A)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 777 | with y have ymem: "y * x \<in> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 778 | from ypos mult_strict_left_mono [OF x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 779 | have yless: "y < y*x" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 780 | let ?d = "y*x - y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 781 | from yless have dpos: "0 < ?d" and eq: "y + ?d = y*x" by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 782 | from Gleason9_34 [OF A dpos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 783 | obtain r where r: "r\<in>A" and notin: "r + ?d \<notin> A" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 784 | have rpos: "0<r" by (rule preal_imp_pos [OF A r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 785 | with dpos have rdpos: "0 < r + ?d" by arith | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 786 | have "~ (r + ?d \<le> y + ?d)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 787 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 788 | assume le: "r + ?d \<le> y + ?d" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 789 | from ymem have yd: "y + ?d \<in> A" by (simp add: eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 790 | have "r + ?d \<in> A" by (rule preal_downwards_closed' [OF A yd rdpos le]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 791 | with notin show False by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 792 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 793 | hence "y < r" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 794 | with ypos have dless: "?d < (r * ?d)/y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 795 | by (simp add: pos_less_divide_eq mult_commute [of ?d] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 796 | mult_strict_right_mono dpos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 797 | have "r + ?d < r*x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 798 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 799 | have "r + ?d < r + (r * ?d)/y" by (simp add: dless) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 800 | also with ypos have "... = (r/y) * (y + ?d)" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 801 | by (simp only: right_distrib divide_inverse mult_ac, simp) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 802 | also have "... = r*x" using ypos | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15140diff
changeset | 803 | by (simp add: times_divide_eq_left) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 804 | finally show "r + ?d < r*x" . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 805 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 806 | with r notin rdpos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 807 | show "\<exists>r\<in>A. r * x \<notin> A" by (blast dest: preal_downwards_closed [OF A]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 808 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 809 | qed | 
| 14335 | 810 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 811 | subsection{*Existence of Inverse: Part 2*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 812 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 813 | lemma mem_Rep_preal_inverse_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 814 | "(z \<in> Rep_preal(inverse R)) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 815 | (0 < z \<and> (\<exists>y. z < y \<and> inverse y \<notin> Rep_preal R))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 816 | apply (simp add: preal_inverse_def mem_inverse_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 817 | apply (simp add: inverse_set_def) | 
| 14335 | 818 | done | 
| 819 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 820 | lemma Rep_preal_of_rat: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 821 |      "0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x \<and> x < q}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 822 | by (simp add: preal_of_rat_def rat_mem_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 823 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 824 | lemma subset_inverse_mult_lemma: | 
| 19765 | 825 | assumes xpos: "0 < x" and xless: "x < 1" | 
| 826 | shows "\<exists>r u y. 0 < r & r < y & inverse y \<notin> Rep_preal R & | |
| 827 | u \<in> Rep_preal R & x = r * u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 828 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 829 | from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 830 | from lemma_gleason9_36 [OF Rep_preal this] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 831 | obtain r where r: "r \<in> Rep_preal R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 832 | and notin: "r * (inverse x) \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 833 | have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 834 | from preal_exists_greater [OF Rep_preal r] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 835 | obtain u where u: "u \<in> Rep_preal R" and rless: "r < u" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 836 | have upos: "0<u" by (rule preal_imp_pos [OF Rep_preal u]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 837 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 838 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 839 | show "0 < x/u" using xpos upos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 840 | by (simp add: zero_less_divide_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 841 | show "x/u < x/r" using xpos upos rpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 842 | by (simp add: divide_inverse mult_less_cancel_left rless) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 843 | show "inverse (x / r) \<notin> Rep_preal R" using notin | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 844 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 845 | show "u \<in> Rep_preal R" by (rule u) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 846 | show "x = x / u * u" using upos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 847 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 848 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 849 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 850 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 851 | lemma subset_inverse_mult: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 852 | "Rep_preal(preal_of_rat 1) \<subseteq> Rep_preal(inverse R * R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 853 | apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 854 | mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 855 | apply (blast dest: subset_inverse_mult_lemma) | 
| 14335 | 856 | done | 
| 857 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 858 | lemma inverse_mult_subset_lemma: | 
| 19765 | 859 | assumes rpos: "0 < r" | 
| 860 | and rless: "r < y" | |
| 861 | and notin: "inverse y \<notin> Rep_preal R" | |
| 862 | and q: "q \<in> Rep_preal R" | |
| 863 | shows "r*q < 1" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 864 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 865 | have "q < inverse y" using rpos rless | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 866 | by (simp add: not_in_preal_ub [OF Rep_preal notin] q) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 867 | hence "r * q < r/y" using rpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 868 | by (simp add: divide_inverse mult_less_cancel_left) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 869 | also have "... \<le> 1" using rpos rless | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 870 | by (simp add: pos_divide_le_eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 871 | finally show ?thesis . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 872 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 873 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 874 | lemma inverse_mult_subset: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 875 | "Rep_preal(inverse R * R) \<subseteq> Rep_preal(preal_of_rat 1)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 876 | apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 877 | mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 878 | apply (simp add: zero_less_mult_iff preal_imp_pos [OF Rep_preal]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 879 | apply (blast intro: inverse_mult_subset_lemma) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 880 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 881 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 882 | lemma preal_mult_inverse: "inverse R * R = (1::preal)" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 883 | unfolding preal_one_def | 
| 15413 | 884 | apply (rule Rep_preal_inject [THEN iffD1]) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 885 | apply (rule equalityI [OF inverse_mult_subset subset_inverse_mult]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 886 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 887 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 888 | lemma preal_mult_inverse_right: "R * inverse R = (1::preal)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 889 | apply (rule preal_mult_commute [THEN subst]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 890 | apply (rule preal_mult_inverse) | 
| 14335 | 891 | done | 
| 892 | ||
| 893 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 894 | text{*Theorems needing @{text Gleason9_34}*}
 | 
| 14335 | 895 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 896 | lemma Rep_preal_self_subset: "Rep_preal (R) \<subseteq> Rep_preal(R + S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 897 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 898 | fix r | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 899 | assume r: "r \<in> Rep_preal R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 900 | have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 901 | from mem_Rep_preal_Ex | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 902 | obtain y where y: "y \<in> Rep_preal S" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 903 | have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 904 | have ry: "r+y \<in> Rep_preal(R + S)" using r y | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 905 | by (auto simp add: mem_Rep_preal_add_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 906 | show "r \<in> Rep_preal(R + S)" using r ypos rpos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 907 | by (simp add: preal_downwards_closed [OF Rep_preal ry]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 908 | qed | 
| 14335 | 909 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 910 | lemma Rep_preal_sum_not_subset: "~ Rep_preal (R + S) \<subseteq> Rep_preal(R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 911 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 912 | from mem_Rep_preal_Ex | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 913 | obtain y where y: "y \<in> Rep_preal S" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 914 | have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 915 | from Gleason9_34 [OF Rep_preal ypos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 916 | obtain r where r: "r \<in> Rep_preal R" and notin: "r + y \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 917 | have "r + y \<in> Rep_preal (R + S)" using r y | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 918 | by (auto simp add: mem_Rep_preal_add_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 919 | thus ?thesis using notin by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 920 | qed | 
| 14335 | 921 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 922 | lemma Rep_preal_sum_not_eq: "Rep_preal (R + S) \<noteq> Rep_preal(R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 923 | by (insert Rep_preal_sum_not_subset, blast) | 
| 14335 | 924 | |
| 925 | text{*at last, Gleason prop. 9-3.5(iii) page 123*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 926 | lemma preal_self_less_add_left: "(R::preal) < R + S" | 
| 14335 | 927 | apply (unfold preal_less_def psubset_def) | 
| 928 | apply (simp add: Rep_preal_self_subset Rep_preal_sum_not_eq [THEN not_sym]) | |
| 929 | done | |
| 930 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 931 | lemma preal_self_less_add_right: "(R::preal) < S + R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 932 | by (simp add: preal_add_commute preal_self_less_add_left) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 933 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 934 | lemma preal_not_eq_self: "x \<noteq> x + (y::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 935 | by (insert preal_self_less_add_left [of x y], auto) | 
| 14335 | 936 | |
| 937 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 938 | subsection{*Subtraction for Positive Reals*}
 | 
| 14335 | 939 | |
| 22710 | 940 | text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> \<exists>D. A + D =
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 941 | B"}. We define the claimed @{term D} and show that it is a positive real*}
 | 
| 14335 | 942 | |
| 943 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 944 | lemma diff_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 945 |      "R < S ==> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 946 | apply (auto simp add: preal_less_def diff_set_def elim!: equalityE) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 947 | apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 948 | apply (drule preal_imp_pos [OF Rep_preal], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 949 | apply (cut_tac a=x and b=u in add_eq_exists, force) | 
| 14335 | 950 | done | 
| 951 | ||
| 952 | text{*Part 2 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 953 | lemma diff_set_nonempty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 954 | "\<exists>q. 0 < q & q \<notin> diff_set (Rep_preal S) (Rep_preal R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 955 | apply (cut_tac X = S in Rep_preal_exists_bound) | 
| 14335 | 956 | apply (erule exE) | 
| 957 | apply (rule_tac x = x in exI, auto) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 958 | apply (simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 959 | apply (auto dest: Rep_preal [THEN preal_downwards_closed]) | 
| 14335 | 960 | done | 
| 961 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 962 | lemma diff_set_not_rat_set: | 
| 19765 | 963 |   "diff_set (Rep_preal S) (Rep_preal R) < {r. 0 < r}" (is "?lhs < ?rhs")
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 964 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 965 | show "?lhs \<subseteq> ?rhs" by (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 966 | show "?lhs \<noteq> ?rhs" using diff_set_nonempty by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 967 | qed | 
| 14335 | 968 | |
| 969 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 970 | lemma diff_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 971 | "[|R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 972 | ==> z \<in> diff_set (Rep_preal S) (Rep_preal R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 973 | apply (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 974 | apply (rule_tac x=x in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 975 | apply (drule Rep_preal [THEN preal_downwards_closed], auto) | 
| 14335 | 976 | done | 
| 977 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 978 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 979 | lemma diff_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 980 | "[|R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 981 | ==> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 982 | apply (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 983 | apply (drule Rep_preal [THEN preal_exists_greater], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 984 | apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 985 | apply (rule_tac x="y+xa" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 986 | apply (auto simp add: add_ac) | 
| 14335 | 987 | done | 
| 988 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 989 | lemma mem_diff_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 990 | "R < S ==> diff_set (Rep_preal S) (Rep_preal R) \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 991 | apply (unfold preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 992 | apply (blast intro!: diff_set_not_empty diff_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 993 | diff_set_lemma3 diff_set_lemma4) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 994 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 995 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 996 | lemma mem_Rep_preal_diff_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 997 | "R < S ==> | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 998 | (z \<in> Rep_preal(S-R)) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 999 | (\<exists>x. 0 < x & 0 < z & x \<notin> Rep_preal R & x + z \<in> Rep_preal S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1000 | apply (simp add: preal_diff_def mem_diff_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1001 | apply (force simp add: diff_set_def) | 
| 14335 | 1002 | done | 
| 1003 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1004 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1005 | text{*proving that @{term "R + D \<le> S"}*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1006 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1007 | lemma less_add_left_lemma: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1008 | assumes Rless: "R < S" | 
| 19765 | 1009 | and a: "a \<in> Rep_preal R" | 
| 1010 | and cb: "c + b \<in> Rep_preal S" | |
| 1011 | and "c \<notin> Rep_preal R" | |
| 1012 | and "0 < b" | |
| 1013 | and "0 < c" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1014 | shows "a + b \<in> Rep_preal S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1015 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1016 | have "0<a" by (rule preal_imp_pos [OF Rep_preal a]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1017 | moreover | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1018 | have "a < c" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1019 | by (blast intro: not_in_Rep_preal_ub ) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1020 | ultimately show ?thesis using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1021 | by (simp add: preal_downwards_closed [OF Rep_preal cb]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1022 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1023 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1024 | lemma less_add_left_le1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1025 | "R < (S::preal) ==> R + (S-R) \<le> S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1026 | apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1027 | mem_Rep_preal_diff_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1028 | apply (blast intro: less_add_left_lemma) | 
| 14335 | 1029 | done | 
| 1030 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1031 | subsection{*proving that @{term "S \<le> R + D"} --- trickier*}
 | 
| 14335 | 1032 | |
| 1033 | lemma lemma_sum_mem_Rep_preal_ex: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1034 | "x \<in> Rep_preal S ==> \<exists>e. 0 < e & x + e \<in> Rep_preal S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1035 | apply (drule Rep_preal [THEN preal_exists_greater], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1036 | apply (cut_tac a=x and b=u in add_eq_exists, auto) | 
| 14335 | 1037 | done | 
| 1038 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1039 | lemma less_add_left_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1040 | assumes Rless: "R < S" | 
| 19765 | 1041 | and x: "x \<in> Rep_preal S" | 
| 1042 | and xnot: "x \<notin> Rep_preal R" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1043 | shows "\<exists>u v z. 0 < v & 0 < z & u \<in> Rep_preal R & z \<notin> Rep_preal R & | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1044 | z + v \<in> Rep_preal S & x = u + v" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1045 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1046 | have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1047 | from lemma_sum_mem_Rep_preal_ex [OF x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1048 | obtain e where epos: "0 < e" and xe: "x + e \<in> Rep_preal S" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1049 | from Gleason9_34 [OF Rep_preal epos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1050 | obtain r where r: "r \<in> Rep_preal R" and notin: "r + e \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1051 | with x xnot xpos have rless: "r < x" by (blast intro: not_in_Rep_preal_ub) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1052 | from add_eq_exists [of r x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1053 | obtain y where eq: "x = r+y" by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1054 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1055 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1056 | show "r \<in> Rep_preal R" by (rule r) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1057 | show "r + e \<notin> Rep_preal R" by (rule notin) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1058 | show "r + e + y \<in> Rep_preal S" using xe eq by (simp add: add_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1059 | show "x = r + y" by (simp add: eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1060 | show "0 < r + e" using epos preal_imp_pos [OF Rep_preal r] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1061 | by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1062 | show "0 < y" using rless eq by arith | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1063 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1064 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1065 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1066 | lemma less_add_left_le2: "R < (S::preal) ==> S \<le> R + (S-R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1067 | apply (auto simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1068 | apply (case_tac "x \<in> Rep_preal R") | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1069 | apply (cut_tac Rep_preal_self_subset [of R], force) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1070 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1071 | apply (blast dest: less_add_left_lemma2) | 
| 14335 | 1072 | done | 
| 1073 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1074 | lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1075 | by (blast intro: preal_le_anti_sym [OF less_add_left_le1 less_add_left_le2]) | 
| 14335 | 1076 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1077 | lemma less_add_left_Ex: "R < (S::preal) ==> \<exists>D. R + D = S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1078 | by (fast dest: less_add_left) | 
| 14335 | 1079 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1080 | lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1081 | apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc) | 
| 14335 | 1082 | apply (rule_tac y1 = D in preal_add_commute [THEN subst]) | 
| 1083 | apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric]) | |
| 1084 | done | |
| 1085 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1086 | lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1087 | by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T]) | 
| 14335 | 1088 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1089 | lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1090 | apply (insert linorder_less_linear [of R S], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1091 | apply (drule_tac R = S and T = T in preal_add_less2_mono1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1092 | apply (blast dest: order_less_trans) | 
| 14335 | 1093 | done | 
| 1094 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1095 | lemma preal_add_left_less_cancel: "T + R < T + S ==> R < (S::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1096 | by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T]) | 
| 14335 | 1097 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1098 | lemma preal_add_less_cancel_right: "((R::preal) + T < S + T) = (R < S)" | 
| 14335 | 1099 | by (blast intro: preal_add_less2_mono1 preal_add_right_less_cancel) | 
| 1100 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1101 | lemma preal_add_less_cancel_left: "(T + (R::preal) < T + S) = (R < S)" | 
| 14335 | 1102 | by (blast intro: preal_add_less2_mono2 preal_add_left_less_cancel) | 
| 1103 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1104 | lemma preal_add_le_cancel_right: "((R::preal) + T \<le> S + T) = (R \<le> S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1105 | by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_right) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1106 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1107 | lemma preal_add_le_cancel_left: "(T + (R::preal) \<le> T + S) = (R \<le> S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1108 | by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_left) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1109 | |
| 14335 | 1110 | lemma preal_add_less_mono: | 
| 1111 | "[| x1 < y1; x2 < y2 |] ==> x1 + x2 < y1 + (y2::preal)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1112 | apply (auto dest!: less_add_left_Ex simp add: preal_add_ac) | 
| 14335 | 1113 | apply (rule preal_add_assoc [THEN subst]) | 
| 1114 | apply (rule preal_self_less_add_right) | |
| 1115 | done | |
| 1116 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1117 | lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1118 | apply (insert linorder_less_linear [of R S], safe) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1119 | apply (drule_tac [!] T = T in preal_add_less2_mono1, auto) | 
| 14335 | 1120 | done | 
| 1121 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1122 | lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)" | 
| 14335 | 1123 | by (auto intro: preal_add_right_cancel simp add: preal_add_commute) | 
| 1124 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1125 | lemma preal_add_left_cancel_iff: "(C + A = C + B) = ((A::preal) = B)" | 
| 14335 | 1126 | by (fast intro: preal_add_left_cancel) | 
| 1127 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1128 | lemma preal_add_right_cancel_iff: "(A + C = B + C) = ((A::preal) = B)" | 
| 14335 | 1129 | by (fast intro: preal_add_right_cancel) | 
| 1130 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1131 | lemmas preal_cancels = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1132 | preal_add_less_cancel_right preal_add_less_cancel_left | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1133 | preal_add_le_cancel_right preal_add_le_cancel_left | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1134 | preal_add_left_cancel_iff preal_add_right_cancel_iff | 
| 14335 | 1135 | |
| 23285 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1136 | instance preal :: ordered_cancel_ab_semigroup_add | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1137 | proof | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1138 | fix a b c :: preal | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1139 | show "a + b = a + c \<Longrightarrow> b = c" by (rule preal_add_left_cancel) | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 1140 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" by (simp only: preal_add_le_cancel_left) | 
| 23285 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1141 | qed | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1142 | |
| 14335 | 1143 | |
| 1144 | subsection{*Completeness of type @{typ preal}*}
 | |
| 1145 | ||
| 1146 | text{*Prove that supremum is a cut*}
 | |
| 1147 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1148 | text{*Part 1 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1149 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1150 | lemma preal_sup_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1151 |      "P \<noteq> {} ==> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1152 | apply auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1153 | apply (cut_tac X = x in mem_Rep_preal_Ex, auto) | 
| 14335 | 1154 | done | 
| 1155 | ||
| 1156 | ||
| 1157 | text{*Part 2 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1158 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1159 | lemma preal_sup_not_exists: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1160 | "\<forall>X \<in> P. X \<le> Y ==> \<exists>q. 0 < q & q \<notin> (\<Union>X \<in> P. Rep_preal(X))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1161 | apply (cut_tac X = Y in Rep_preal_exists_bound) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1162 | apply (auto simp add: preal_le_def) | 
| 14335 | 1163 | done | 
| 1164 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1165 | lemma preal_sup_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1166 |      "\<forall>X \<in> P. X \<le> Y ==> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1167 | apply (drule preal_sup_not_exists) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1168 | apply (blast intro: preal_imp_pos [OF Rep_preal]) | 
| 14335 | 1169 | done | 
| 1170 | ||
| 1171 | text{*Part 3 of Dedekind sections definition*}
 | |
| 1172 | lemma preal_sup_set_lemma3: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1173 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u|]
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1174 | ==> z \<in> (\<Union>X \<in> P. Rep_preal(X))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1175 | by (auto elim: Rep_preal [THEN preal_downwards_closed]) | 
| 14335 | 1176 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1177 | text{*Part 4 of Dedekind sections definition*}
 | 
| 14335 | 1178 | lemma preal_sup_set_lemma4: | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1179 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X)) |]
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1180 | ==> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1181 | by (blast dest: Rep_preal [THEN preal_exists_greater]) | 
| 14335 | 1182 | |
| 1183 | lemma preal_sup: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1184 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y|] ==> (\<Union>X \<in> P. Rep_preal(X)) \<in> preal"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1185 | apply (unfold preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1186 | apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1187 | preal_sup_set_lemma3 preal_sup_set_lemma4) | 
| 14335 | 1188 | done | 
| 1189 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1190 | lemma preal_psup_le: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1191 | "[| \<forall>X \<in> P. X \<le> Y; x \<in> P |] ==> x \<le> psup P" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1192 | apply (simp (no_asm_simp) add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1193 | apply (subgoal_tac "P \<noteq> {}") 
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1194 | apply (auto simp add: psup_def preal_sup) | 
| 14335 | 1195 | done | 
| 1196 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1197 | lemma psup_le_ub: "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> psup P \<le> Y"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1198 | apply (simp (no_asm_simp) add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1199 | apply (simp add: psup_def preal_sup) | 
| 14335 | 1200 | apply (auto simp add: preal_le_def) | 
| 1201 | done | |
| 1202 | ||
| 1203 | text{*Supremum property*}
 | |
| 1204 | lemma preal_complete: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1205 |      "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1206 | apply (simp add: preal_less_def psup_def preal_sup) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1207 | apply (auto simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1208 | apply (rename_tac U) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1209 | apply (cut_tac x = U and y = Z in linorder_less_linear) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1210 | apply (auto simp add: preal_less_def) | 
| 14335 | 1211 | done | 
| 1212 | ||
| 1213 | ||
| 20495 | 1214 | subsection{*The Embedding from @{typ rat} into @{typ preal}*}
 | 
| 14335 | 1215 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1216 | lemma preal_of_rat_add_lemma1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1217 | "[|x < y + z; 0 < x; 0 < y|] ==> x * y * inverse (y + z) < (y::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1218 | apply (frule_tac c = "y * inverse (y + z) " in mult_strict_right_mono) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1219 | apply (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1220 | apply (simp add: mult_ac) | 
| 14335 | 1221 | done | 
| 1222 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1223 | lemma preal_of_rat_add_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1224 | assumes "u < x + y" | 
| 19765 | 1225 | and "0 < x" | 
| 1226 | and "0 < y" | |
| 1227 | and "0 < u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1228 | shows "\<exists>v w::rat. w < y & 0 < v & v < x & 0 < w & u = v + w" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1229 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1230 | show "u * x * inverse(x+y) < x" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1231 | by (simp add: preal_of_rat_add_lemma1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1232 | show "u * y * inverse(x+y) < y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1233 | by (simp add: preal_of_rat_add_lemma1 add_commute [of x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1234 | show "0 < u * x * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1235 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1236 | show "0 < u * y * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1237 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1238 | show "u = u * x * inverse (x + y) + u * y * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1239 | by (simp add: left_distrib [symmetric] right_distrib [symmetric] mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1240 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1241 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1242 | lemma preal_of_rat_add: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1243 | "[| 0 < x; 0 < y|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1244 | ==> preal_of_rat ((x::rat) + y) = preal_of_rat x + preal_of_rat y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1245 | apply (unfold preal_of_rat_def preal_add_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1246 | apply (simp add: rat_mem_preal) | 
| 14335 | 1247 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1248 | apply (auto simp add: add_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1249 | apply (blast dest: preal_of_rat_add_lemma2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1250 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1251 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1252 | lemma preal_of_rat_mult_lemma1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1253 | "[|x < y; 0 < x; 0 < z|] ==> x * z * inverse y < (z::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1254 | apply (frule_tac c = "z * inverse y" in mult_strict_right_mono) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1255 | apply (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1256 | apply (subgoal_tac "y * (z * inverse y) = z * (y * inverse y)") | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1257 | apply (simp_all add: mult_ac) | 
| 14335 | 1258 | done | 
| 1259 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1260 | lemma preal_of_rat_mult_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1261 | assumes xless: "x < y * z" | 
| 19765 | 1262 | and xpos: "0 < x" | 
| 1263 | and ypos: "0 < y" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1264 | shows "x * z * inverse y * inverse z < (z::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1265 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1266 | have "0 < y * z" using prems by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1267 | hence zpos: "0 < z" using prems by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1268 | have "x * z * inverse y * inverse z = x * inverse y * (z * inverse z)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1269 | by (simp add: mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1270 | also have "... = x/y" using zpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 1271 | by (simp add: divide_inverse) | 
| 23389 | 1272 | also from xless have "... < z" | 
| 1273 | by (simp add: pos_divide_less_eq [OF ypos] mult_commute) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1274 | finally show ?thesis . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1275 | qed | 
| 14335 | 1276 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1277 | lemma preal_of_rat_mult_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1278 | assumes uless: "u < x * y" | 
| 19765 | 1279 | and "0 < x" | 
| 1280 | and "0 < y" | |
| 1281 | and "0 < u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1282 | shows "\<exists>v w::rat. v < x & w < y & 0 < v & 0 < w & u = v * w" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1283 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1284 | from dense [OF uless] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1285 | obtain r where "u < r" "r < x * y" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1286 | thus ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1287 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1288 | show "u * x * inverse r < x" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1289 | by (simp add: preal_of_rat_mult_lemma1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1290 | show "r * y * inverse x * inverse y < y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1291 | by (simp add: preal_of_rat_mult_lemma2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1292 | show "0 < u * x * inverse r" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1293 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1294 | show "0 < r * y * inverse x * inverse y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1295 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1296 | have "u * x * inverse r * (r * y * inverse x * inverse y) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1297 | u * (r * inverse r) * (x * inverse x) * (y * inverse y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1298 | by (simp only: mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1299 | thus "u = u * x * inverse r * (r * y * inverse x * inverse y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1300 | by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1301 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1302 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1303 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1304 | lemma preal_of_rat_mult: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1305 | "[| 0 < x; 0 < y|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1306 | ==> preal_of_rat ((x::rat) * y) = preal_of_rat x * preal_of_rat y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1307 | apply (unfold preal_of_rat_def preal_mult_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1308 | apply (simp add: rat_mem_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1309 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1310 | apply (auto simp add: zero_less_mult_iff mult_strict_mono mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1311 | apply (blast dest: preal_of_rat_mult_lemma3) | 
| 14335 | 1312 | done | 
| 1313 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1314 | lemma preal_of_rat_less_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1315 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x < preal_of_rat y) = (x < y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1316 | by (force simp add: preal_of_rat_def preal_less_def rat_mem_preal) | 
| 14335 | 1317 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1318 | lemma preal_of_rat_le_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1319 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x \<le> preal_of_rat y) = (x \<le> y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1320 | by (simp add: preal_of_rat_less_iff linorder_not_less [symmetric]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1321 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1322 | lemma preal_of_rat_eq_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1323 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x = preal_of_rat y) = (x = y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1324 | by (simp add: preal_of_rat_le_iff order_eq_iff) | 
| 14335 | 1325 | |
| 5078 | 1326 | end |