| author | wenzelm | 
| Fri, 07 Dec 2007 22:19:45 +0100 | |
| changeset 25577 | d739f48ef40c | 
| parent 23394 | 474ff28210c0 | 
| child 25594 | 43c718438f9f | 
| permissions | -rw-r--r-- | 
| 20809 | 1 | (* Title: HOL/Infnite_Set.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Stephan Merz | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Infinite Sets and Related Concepts *}
 | |
| 7 | ||
| 8 | theory Infinite_Set | |
| 21256 | 9 | imports Main | 
| 20809 | 10 | begin | 
| 11 | ||
| 12 | subsection "Infinite Sets" | |
| 13 | ||
| 14 | text {*
 | |
| 15 | Some elementary facts about infinite sets, mostly by Stefan Merz. | |
| 16 | Beware! Because "infinite" merely abbreviates a negation, these | |
| 17 |   lemmas may not work well with @{text "blast"}.
 | |
| 18 | *} | |
| 19 | ||
| 20 | abbreviation | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 21 | infinite :: "'a set \<Rightarrow> bool" where | 
| 20809 | 22 | "infinite S == \<not> finite S" | 
| 23 | ||
| 24 | text {*
 | |
| 25 | Infinite sets are non-empty, and if we remove some elements from an | |
| 26 | infinite set, the result is still infinite. | |
| 27 | *} | |
| 28 | ||
| 29 | lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
 | |
| 30 | by auto | |
| 31 | ||
| 32 | lemma infinite_remove: | |
| 33 |   "infinite S \<Longrightarrow> infinite (S - {a})"
 | |
| 34 | by simp | |
| 35 | ||
| 36 | lemma Diff_infinite_finite: | |
| 37 | assumes T: "finite T" and S: "infinite S" | |
| 38 | shows "infinite (S - T)" | |
| 39 | using T | |
| 40 | proof induct | |
| 41 | from S | |
| 42 |   show "infinite (S - {})" by auto
 | |
| 43 | next | |
| 44 | fix T x | |
| 45 | assume ih: "infinite (S - T)" | |
| 46 |   have "S - (insert x T) = (S - T) - {x}"
 | |
| 47 | by (rule Diff_insert) | |
| 48 | with ih | |
| 49 | show "infinite (S - (insert x T))" | |
| 50 | by (simp add: infinite_remove) | |
| 51 | qed | |
| 52 | ||
| 53 | lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)" | |
| 54 | by simp | |
| 55 | ||
| 56 | lemma infinite_super: | |
| 57 | assumes T: "S \<subseteq> T" and S: "infinite S" | |
| 58 | shows "infinite T" | |
| 59 | proof | |
| 60 | assume "finite T" | |
| 61 | with T have "finite S" by (simp add: finite_subset) | |
| 62 | with S show False by simp | |
| 63 | qed | |
| 64 | ||
| 65 | text {*
 | |
| 66 | As a concrete example, we prove that the set of natural numbers is | |
| 67 | infinite. | |
| 68 | *} | |
| 69 | ||
| 70 | lemma finite_nat_bounded: | |
| 71 | assumes S: "finite (S::nat set)" | |
| 72 |   shows "\<exists>k. S \<subseteq> {..<k}"  (is "\<exists>k. ?bounded S k")
 | |
| 73 | using S | |
| 74 | proof induct | |
| 75 |   have "?bounded {} 0" by simp
 | |
| 76 |   then show "\<exists>k. ?bounded {} k" ..
 | |
| 77 | next | |
| 78 | fix S x | |
| 79 | assume "\<exists>k. ?bounded S k" | |
| 80 | then obtain k where k: "?bounded S k" .. | |
| 81 | show "\<exists>k. ?bounded (insert x S) k" | |
| 82 | proof (cases "x < k") | |
| 83 | case True | |
| 84 | with k show ?thesis by auto | |
| 85 | next | |
| 86 | case False | |
| 87 | with k have "?bounded S (Suc x)" by auto | |
| 88 | then show ?thesis by auto | |
| 89 | qed | |
| 90 | qed | |
| 91 | ||
| 92 | lemma finite_nat_iff_bounded: | |
| 93 |   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})"  (is "?lhs = ?rhs")
 | |
| 94 | proof | |
| 95 | assume ?lhs | |
| 96 | then show ?rhs by (rule finite_nat_bounded) | |
| 97 | next | |
| 98 | assume ?rhs | |
| 99 |   then obtain k where "S \<subseteq> {..<k}" ..
 | |
| 100 | then show "finite S" | |
| 101 | by (rule finite_subset) simp | |
| 102 | qed | |
| 103 | ||
| 104 | lemma finite_nat_iff_bounded_le: | |
| 105 |   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})"  (is "?lhs = ?rhs")
 | |
| 106 | proof | |
| 107 | assume ?lhs | |
| 108 |   then obtain k where "S \<subseteq> {..<k}"
 | |
| 109 | by (blast dest: finite_nat_bounded) | |
| 110 |   then have "S \<subseteq> {..k}" by auto
 | |
| 111 | then show ?rhs .. | |
| 112 | next | |
| 113 | assume ?rhs | |
| 114 |   then obtain k where "S \<subseteq> {..k}" ..
 | |
| 115 | then show "finite S" | |
| 116 | by (rule finite_subset) simp | |
| 117 | qed | |
| 118 | ||
| 119 | lemma infinite_nat_iff_unbounded: | |
| 120 | "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)" | |
| 121 | (is "?lhs = ?rhs") | |
| 122 | proof | |
| 123 | assume ?lhs | |
| 124 | show ?rhs | |
| 125 | proof (rule ccontr) | |
| 126 | assume "\<not> ?rhs" | |
| 127 | then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast | |
| 128 |     then have "S \<subseteq> {..m}"
 | |
| 129 | by (auto simp add: sym [OF linorder_not_less]) | |
| 130 | with `?lhs` show False | |
| 131 | by (simp add: finite_nat_iff_bounded_le) | |
| 132 | qed | |
| 133 | next | |
| 134 | assume ?rhs | |
| 135 | show ?lhs | |
| 136 | proof | |
| 137 | assume "finite S" | |
| 138 |     then obtain m where "S \<subseteq> {..m}"
 | |
| 139 | by (auto simp add: finite_nat_iff_bounded_le) | |
| 140 | then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto | |
| 141 | with `?rhs` show False by blast | |
| 142 | qed | |
| 143 | qed | |
| 144 | ||
| 145 | lemma infinite_nat_iff_unbounded_le: | |
| 146 | "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)" | |
| 147 | (is "?lhs = ?rhs") | |
| 148 | proof | |
| 149 | assume ?lhs | |
| 150 | show ?rhs | |
| 151 | proof | |
| 152 | fix m | |
| 153 | from `?lhs` obtain n where "m<n \<and> n\<in>S" | |
| 154 | by (auto simp add: infinite_nat_iff_unbounded) | |
| 155 | then have "m\<le>n \<and> n\<in>S" by simp | |
| 156 | then show "\<exists>n. m \<le> n \<and> n \<in> S" .. | |
| 157 | qed | |
| 158 | next | |
| 159 | assume ?rhs | |
| 160 | show ?lhs | |
| 161 | proof (auto simp add: infinite_nat_iff_unbounded) | |
| 162 | fix m | |
| 163 | from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S" | |
| 164 | by blast | |
| 165 | then have "m<n \<and> n\<in>S" by simp | |
| 166 | then show "\<exists>n. m < n \<and> n \<in> S" .. | |
| 167 | qed | |
| 168 | qed | |
| 169 | ||
| 170 | text {*
 | |
| 171 | For a set of natural numbers to be infinite, it is enough to know | |
| 172 |   that for any number larger than some @{text k}, there is some larger
 | |
| 173 | number that is an element of the set. | |
| 174 | *} | |
| 175 | ||
| 176 | lemma unbounded_k_infinite: | |
| 177 | assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)" | |
| 178 | shows "infinite (S::nat set)" | |
| 179 | proof - | |
| 180 |   {
 | |
| 181 | fix m have "\<exists>n. m<n \<and> n\<in>S" | |
| 182 | proof (cases "k<m") | |
| 183 | case True | |
| 184 | with k show ?thesis by blast | |
| 185 | next | |
| 186 | case False | |
| 187 | from k obtain n where "Suc k < n \<and> n\<in>S" by auto | |
| 188 | with False have "m<n \<and> n\<in>S" by auto | |
| 189 | then show ?thesis .. | |
| 190 | qed | |
| 191 | } | |
| 192 | then show ?thesis | |
| 193 | by (auto simp add: infinite_nat_iff_unbounded) | |
| 194 | qed | |
| 195 | ||
| 196 | lemma nat_infinite [simp]: "infinite (UNIV :: nat set)" | |
| 197 | by (auto simp add: infinite_nat_iff_unbounded) | |
| 198 | ||
| 199 | lemma nat_not_finite [elim]: "finite (UNIV::nat set) \<Longrightarrow> R" | |
| 200 | by simp | |
| 201 | ||
| 202 | text {*
 | |
| 203 | Every infinite set contains a countable subset. More precisely we | |
| 204 |   show that a set @{text S} is infinite if and only if there exists an
 | |
| 205 |   injective function from the naturals into @{text S}.
 | |
| 206 | *} | |
| 207 | ||
| 208 | lemma range_inj_infinite: | |
| 209 | "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)" | |
| 210 | proof | |
| 211 | assume "inj f" | |
| 212 | and "finite (range f)" | |
| 213 | then have "finite (UNIV::nat set)" | |
| 214 | by (auto intro: finite_imageD simp del: nat_infinite) | |
| 215 | then show False by simp | |
| 216 | qed | |
| 217 | ||
| 22226 | 218 | lemma int_infinite [simp]: | 
| 219 | shows "infinite (UNIV::int set)" | |
| 220 | proof - | |
| 221 | from inj_int have "infinite (range int)" by (rule range_inj_infinite) | |
| 222 | moreover | |
| 223 | have "range int \<subseteq> (UNIV::int set)" by simp | |
| 224 | ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super) | |
| 225 | qed | |
| 226 | ||
| 20809 | 227 | text {*
 | 
| 228 | The ``only if'' direction is harder because it requires the | |
| 229 | construction of a sequence of pairwise different elements of an | |
| 230 |   infinite set @{text S}. The idea is to construct a sequence of
 | |
| 231 |   non-empty and infinite subsets of @{text S} obtained by successively
 | |
| 232 |   removing elements of @{text S}.
 | |
| 233 | *} | |
| 234 | ||
| 235 | lemma linorder_injI: | |
| 236 | assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y" | |
| 237 | shows "inj f" | |
| 238 | proof (rule inj_onI) | |
| 239 | fix x y | |
| 240 | assume f_eq: "f x = f y" | |
| 241 | show "x = y" | |
| 242 | proof (rule linorder_cases) | |
| 243 | assume "x < y" | |
| 244 | with hyp have "f x \<noteq> f y" by blast | |
| 245 | with f_eq show ?thesis by simp | |
| 246 | next | |
| 247 | assume "x = y" | |
| 248 | then show ?thesis . | |
| 249 | next | |
| 250 | assume "y < x" | |
| 251 | with hyp have "f y \<noteq> f x" by blast | |
| 252 | with f_eq show ?thesis by simp | |
| 253 | qed | |
| 254 | qed | |
| 255 | ||
| 256 | lemma infinite_countable_subset: | |
| 257 | assumes inf: "infinite (S::'a set)" | |
| 258 | shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S" | |
| 259 | proof - | |
| 260 |   def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | |
| 261 | def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)" | |
| 262 | have Sseq_inf: "\<And>n. infinite (Sseq n)" | |
| 263 | proof - | |
| 264 | fix n | |
| 265 | show "infinite (Sseq n)" | |
| 266 | proof (induct n) | |
| 267 | from inf show "infinite (Sseq 0)" | |
| 268 | by (simp add: Sseq_def) | |
| 269 | next | |
| 270 | fix n | |
| 271 | assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))" | |
| 272 | by (simp add: Sseq_def infinite_remove) | |
| 273 | qed | |
| 274 | qed | |
| 275 | have Sseq_S: "\<And>n. Sseq n \<subseteq> S" | |
| 276 | proof - | |
| 277 | fix n | |
| 278 | show "Sseq n \<subseteq> S" | |
| 279 | by (induct n) (auto simp add: Sseq_def) | |
| 280 | qed | |
| 281 | have Sseq_pick: "\<And>n. pick n \<in> Sseq n" | |
| 282 | proof - | |
| 283 | fix n | |
| 284 | show "pick n \<in> Sseq n" | |
| 285 | proof (unfold pick_def, rule someI_ex) | |
| 286 | from Sseq_inf have "infinite (Sseq n)" . | |
| 287 |       then have "Sseq n \<noteq> {}" by auto
 | |
| 288 | then show "\<exists>x. x \<in> Sseq n" by auto | |
| 289 | qed | |
| 290 | qed | |
| 291 | with Sseq_S have rng: "range pick \<subseteq> S" | |
| 292 | by auto | |
| 293 | have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)" | |
| 294 | proof - | |
| 295 | fix n m | |
| 296 | show "pick n \<notin> Sseq (n + Suc m)" | |
| 297 | by (induct m) (auto simp add: Sseq_def pick_def) | |
| 298 | qed | |
| 299 | have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)" | |
| 300 | proof - | |
| 301 | fix n m | |
| 302 | from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" . | |
| 303 | moreover from pick_Sseq_gt | |
| 304 | have "pick n \<notin> Sseq (n + Suc m)" . | |
| 305 | ultimately show "pick n \<noteq> pick (n + Suc m)" | |
| 306 | by auto | |
| 307 | qed | |
| 308 | have inj: "inj pick" | |
| 309 | proof (rule linorder_injI) | |
| 310 | fix i j :: nat | |
| 311 | assume "i < j" | |
| 312 | show "pick i \<noteq> pick j" | |
| 313 | proof | |
| 314 | assume eq: "pick i = pick j" | |
| 315 | from `i < j` obtain k where "j = i + Suc k" | |
| 316 | by (auto simp add: less_iff_Suc_add) | |
| 317 | with pick_pick have "pick i \<noteq> pick j" by simp | |
| 318 | with eq show False by simp | |
| 319 | qed | |
| 320 | qed | |
| 321 | from rng inj show ?thesis by auto | |
| 322 | qed | |
| 323 | ||
| 324 | lemma infinite_iff_countable_subset: | |
| 325 | "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)" | |
| 326 | by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super) | |
| 327 | ||
| 328 | text {*
 | |
| 329 | For any function with infinite domain and finite range there is some | |
| 330 | element that is the image of infinitely many domain elements. In | |
| 331 | particular, any infinite sequence of elements from a finite set | |
| 332 | contains some element that occurs infinitely often. | |
| 333 | *} | |
| 334 | ||
| 335 | lemma inf_img_fin_dom: | |
| 336 | assumes img: "finite (f`A)" and dom: "infinite A" | |
| 337 |   shows "\<exists>y \<in> f`A. infinite (f -` {y})"
 | |
| 338 | proof (rule ccontr) | |
| 339 | assume "\<not> ?thesis" | |
| 340 |   with img have "finite (UN y:f`A. f -` {y})" by (blast intro: finite_UN_I)
 | |
| 341 |   moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
 | |
| 342 | moreover note dom | |
| 343 | ultimately show False by (simp add: infinite_super) | |
| 344 | qed | |
| 345 | ||
| 346 | lemma inf_img_fin_domE: | |
| 347 | assumes "finite (f`A)" and "infinite A" | |
| 348 |   obtains y where "y \<in> f`A" and "infinite (f -` {y})"
 | |
| 23394 | 349 | using assms by (blast dest: inf_img_fin_dom) | 
| 20809 | 350 | |
| 351 | ||
| 352 | subsection "Infinitely Many and Almost All" | |
| 353 | ||
| 354 | text {*
 | |
| 355 | We often need to reason about the existence of infinitely many | |
| 356 | (resp., all but finitely many) objects satisfying some predicate, so | |
| 357 | we introduce corresponding binders and their proof rules. | |
| 358 | *} | |
| 359 | ||
| 360 | definition | |
| 22432 
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
 berghofe parents: 
22226diff
changeset | 361 |   Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "INFM " 10) where
 | 
| 20809 | 362 |   "Inf_many P = infinite {x. P x}"
 | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 363 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 364 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 365 |   Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "MOST " 10) where
 | 
| 22432 
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
 berghofe parents: 
22226diff
changeset | 366 | "Alm_all P = (\<not> (INFM x. \<not> P x))" | 
| 20809 | 367 | |
| 21210 | 368 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 369 | Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and | 
| 20809 | 370 | Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) | 
| 371 | ||
| 21210 | 372 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 373 | Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and | 
| 20809 | 374 | Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) | 
| 375 | ||
| 376 | lemma INF_EX: | |
| 377 | "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)" | |
| 378 | unfolding Inf_many_def | |
| 379 | proof (rule ccontr) | |
| 380 |   assume inf: "infinite {x. P x}"
 | |
| 381 |   assume "\<not> ?thesis" then have "{x. P x} = {}" by simp
 | |
| 382 |   then have "finite {x. P x}" by simp
 | |
| 383 | with inf show False by simp | |
| 384 | qed | |
| 385 | ||
| 386 | lemma MOST_iff_finiteNeg: "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
 | |
| 387 | by (simp add: Alm_all_def Inf_many_def) | |
| 388 | ||
| 389 | lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x" | |
| 390 | by (simp add: MOST_iff_finiteNeg) | |
| 391 | ||
| 392 | lemma INF_mono: | |
| 393 | assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x" | |
| 394 | shows "\<exists>\<^sub>\<infinity>x. Q x" | |
| 395 | proof - | |
| 396 |   from inf have "infinite {x. P x}" unfolding Inf_many_def .
 | |
| 397 |   moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
 | |
| 398 | ultimately show ?thesis | |
| 399 | by (simp add: Inf_many_def infinite_super) | |
| 400 | qed | |
| 401 | ||
| 402 | lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" | |
| 403 | unfolding Alm_all_def by (blast intro: INF_mono) | |
| 404 | ||
| 405 | lemma INF_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)" | |
| 406 | by (simp add: Inf_many_def infinite_nat_iff_unbounded) | |
| 407 | ||
| 408 | lemma INF_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)" | |
| 409 | by (simp add: Inf_many_def infinite_nat_iff_unbounded_le) | |
| 410 | ||
| 411 | lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)" | |
| 412 | by (simp add: Alm_all_def INF_nat) | |
| 413 | ||
| 414 | lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)" | |
| 415 | by (simp add: Alm_all_def INF_nat_le) | |
| 416 | ||
| 417 | ||
| 418 | subsection "Enumeration of an Infinite Set" | |
| 419 | ||
| 420 | text {*
 | |
| 421 | The set's element type must be wellordered (e.g. the natural numbers). | |
| 422 | *} | |
| 423 | ||
| 424 | consts | |
| 425 | enumerate :: "'a::wellorder set => (nat => 'a::wellorder)" | |
| 426 | primrec | |
| 427 | enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)" | |
| 428 |   enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
 | |
| 429 | ||
| 430 | lemma enumerate_Suc': | |
| 431 |     "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
 | |
| 432 | by simp | |
| 433 | ||
| 434 | lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S" | |
| 435 | apply (induct n arbitrary: S) | |
| 436 | apply (fastsimp intro: LeastI dest!: infinite_imp_nonempty) | |
| 437 | apply (fastsimp iff: finite_Diff_singleton) | |
| 438 | done | |
| 439 | ||
| 440 | declare enumerate_0 [simp del] enumerate_Suc [simp del] | |
| 441 | ||
| 442 | lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)" | |
| 443 | apply (induct n arbitrary: S) | |
| 444 | apply (rule order_le_neq_trans) | |
| 445 | apply (simp add: enumerate_0 Least_le enumerate_in_set) | |
| 446 | apply (simp only: enumerate_Suc') | |
| 447 |    apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
 | |
| 448 | apply (blast intro: sym) | |
| 449 | apply (simp add: enumerate_in_set del: Diff_iff) | |
| 450 | apply (simp add: enumerate_Suc') | |
| 451 | done | |
| 452 | ||
| 453 | lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n" | |
| 454 | apply (erule less_Suc_induct) | |
| 455 | apply (auto intro: enumerate_step) | |
| 456 | done | |
| 457 | ||
| 458 | ||
| 459 | subsection "Miscellaneous" | |
| 460 | ||
| 461 | text {*
 | |
| 462 | A few trivial lemmas about sets that contain at most one element. | |
| 463 | These simplify the reasoning about deterministic automata. | |
| 464 | *} | |
| 465 | ||
| 466 | definition | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 467 | atmost_one :: "'a set \<Rightarrow> bool" where | 
| 20809 | 468 | "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)" | 
| 469 | ||
| 470 | lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
 | |
| 471 | by (simp add: atmost_one_def) | |
| 472 | ||
| 473 | lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
 | |
| 474 | by (simp add: atmost_one_def) | |
| 475 | ||
| 476 | lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x" | |
| 477 | by (simp add: atmost_one_def) | |
| 478 | ||
| 479 | end |