| author | wenzelm | 
| Fri, 07 Dec 2007 22:19:45 +0100 | |
| changeset 25577 | d739f48ef40c | 
| parent 23464 | bc2563c37b1a | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 13505 | 1 | (* Title: ZF/Constructible/Reflection.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | *) | |
| 5 | ||
| 13223 | 6 | header {* The Reflection Theorem*}
 | 
| 7 | ||
| 16417 | 8 | theory Reflection imports Normal begin | 
| 13223 | 9 | |
| 10 | lemma all_iff_not_ex_not: "(\<forall>x. P(x)) <-> (~ (\<exists>x. ~ P(x)))"; | |
| 11 | by blast | |
| 12 | ||
| 13 | lemma ball_iff_not_bex_not: "(\<forall>x\<in>A. P(x)) <-> (~ (\<exists>x\<in>A. ~ P(x)))"; | |
| 14 | by blast | |
| 15 | ||
| 16 | text{*From the notes of A. S. Kechris, page 6, and from 
 | |
| 17 |       Andrzej Mostowski, \emph{Constructible Sets with Applications},
 | |
| 18 | North-Holland, 1969, page 23.*} | |
| 19 | ||
| 20 | ||
| 21 | subsection{*Basic Definitions*}
 | |
| 22 | ||
| 23 | text{*First part: the cumulative hierarchy defining the class @{text M}.  
 | |
| 24 | To avoid handling multiple arguments, we assume that @{text "Mset(l)"} is
 | |
| 25 | closed under ordered pairing provided @{text l} is limit.  Possibly this
 | |
| 26 | could be avoided: the induction hypothesis @{term Cl_reflects} 
 | |
| 27 | (in locale @{text ex_reflection}) could be weakened to
 | |
| 28 | @{term "\<forall>y\<in>Mset(a). \<forall>z\<in>Mset(a). P(<y,z>) <-> Q(a,<y,z>)"}, removing most
 | |
| 29 | uses of @{term Pair_in_Mset}.  But there isn't much point in doing so, since 
 | |
| 30 | ultimately the @{text ex_reflection} proof is packaged up using the
 | |
| 31 | predicate @{text Reflects}.
 | |
| 32 | *} | |
| 13428 | 33 | locale reflection = | 
| 13223 | 34 | fixes Mset and M and Reflects | 
| 35 | assumes Mset_mono_le : "mono_le_subset(Mset)" | |
| 36 | and Mset_cont : "cont_Ord(Mset)" | |
| 37 | and Pair_in_Mset : "[| x \<in> Mset(a); y \<in> Mset(a); Limit(a) |] | |
| 38 | ==> <x,y> \<in> Mset(a)" | |
| 13563 | 39 | defines "M(x) == \<exists>a. Ord(a) & x \<in> Mset(a)" | 
| 40 | and "Reflects(Cl,P,Q) == Closed_Unbounded(Cl) & | |
| 13223 | 41 | (\<forall>a. Cl(a) --> (\<forall>x\<in>Mset(a). P(x) <-> Q(a,x)))" | 
| 42 |   fixes F0 --{*ordinal for a specific value @{term y}*}
 | |
| 43 |   fixes FF --{*sup over the whole level, @{term "y\<in>Mset(a)"}*}
 | |
| 44 |   fixes ClEx --{*Reflecting ordinals for the formula @{term "\<exists>z. P"}*}
 | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
13634diff
changeset | 45 | defines "F0(P,y) == \<mu> b. (\<exists>z. M(z) & P(<y,z>)) --> | 
| 13223 | 46 | (\<exists>z\<in>Mset(b). P(<y,z>))" | 
| 47 | and "FF(P) == \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)" | |
| 13563 | 48 | and "ClEx(P,a) == Limit(a) & normalize(FF(P),a) = a" | 
| 13223 | 49 | |
| 50 | lemma (in reflection) Mset_mono: "i\<le>j ==> Mset(i) <= Mset(j)" | |
| 51 | apply (insert Mset_mono_le) | |
| 52 | apply (simp add: mono_le_subset_def leI) | |
| 53 | done | |
| 54 | ||
| 13434 | 55 | text{*Awkward: we need a version of @{text ClEx_def} as an equality
 | 
| 56 | at the level of classes, which do not really exist*} | |
| 57 | lemma (in reflection) ClEx_eq: | |
| 13563 | 58 | "ClEx(P) == \<lambda>a. Limit(a) & normalize(FF(P),a) = a" | 
| 13434 | 59 | by (simp add: ClEx_def [symmetric]) | 
| 60 | ||
| 61 | ||
| 13223 | 62 | subsection{*Easy Cases of the Reflection Theorem*}
 | 
| 63 | ||
| 64 | theorem (in reflection) Triv_reflection [intro]: | |
| 65 | "Reflects(Ord, P, \<lambda>a x. P(x))" | |
| 66 | by (simp add: Reflects_def) | |
| 67 | ||
| 68 | theorem (in reflection) Not_reflection [intro]: | |
| 69 | "Reflects(Cl,P,Q) ==> Reflects(Cl, \<lambda>x. ~P(x), \<lambda>a x. ~Q(a,x))" | |
| 13268 | 70 | by (simp add: Reflects_def) | 
| 13223 | 71 | |
| 72 | theorem (in reflection) And_reflection [intro]: | |
| 73 | "[| Reflects(Cl,P,Q); Reflects(C',P',Q') |] | |
| 13563 | 74 | ==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) & P'(x), | 
| 75 | \<lambda>a x. Q(a,x) & Q'(a,x))" | |
| 13223 | 76 | by (simp add: Reflects_def Closed_Unbounded_Int, blast) | 
| 77 | ||
| 78 | theorem (in reflection) Or_reflection [intro]: | |
| 79 | "[| Reflects(Cl,P,Q); Reflects(C',P',Q') |] | |
| 13563 | 80 | ==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) | P'(x), | 
| 81 | \<lambda>a x. Q(a,x) | Q'(a,x))" | |
| 13223 | 82 | by (simp add: Reflects_def Closed_Unbounded_Int, blast) | 
| 83 | ||
| 84 | theorem (in reflection) Imp_reflection [intro]: | |
| 85 | "[| Reflects(Cl,P,Q); Reflects(C',P',Q') |] | |
| 13563 | 86 | ==> Reflects(\<lambda>a. Cl(a) & C'(a), | 
| 13223 | 87 | \<lambda>x. P(x) --> P'(x), | 
| 88 | \<lambda>a x. Q(a,x) --> Q'(a,x))" | |
| 89 | by (simp add: Reflects_def Closed_Unbounded_Int, blast) | |
| 90 | ||
| 91 | theorem (in reflection) Iff_reflection [intro]: | |
| 92 | "[| Reflects(Cl,P,Q); Reflects(C',P',Q') |] | |
| 13563 | 93 | ==> Reflects(\<lambda>a. Cl(a) & C'(a), | 
| 13223 | 94 | \<lambda>x. P(x) <-> P'(x), | 
| 95 | \<lambda>a x. Q(a,x) <-> Q'(a,x))" | |
| 96 | by (simp add: Reflects_def Closed_Unbounded_Int, blast) | |
| 97 | ||
| 98 | subsection{*Reflection for Existential Quantifiers*}
 | |
| 99 | ||
| 100 | lemma (in reflection) F0_works: | |
| 101 | "[| y\<in>Mset(a); Ord(a); M(z); P(<y,z>) |] ==> \<exists>z\<in>Mset(F0(P,y)). P(<y,z>)" | |
| 102 | apply (unfold F0_def M_def, clarify) | |
| 103 | apply (rule LeastI2) | |
| 104 | apply (blast intro: Mset_mono [THEN subsetD]) | |
| 105 | apply (blast intro: lt_Ord2, blast) | |
| 106 | done | |
| 107 | ||
| 108 | lemma (in reflection) Ord_F0 [intro,simp]: "Ord(F0(P,y))" | |
| 109 | by (simp add: F0_def) | |
| 110 | ||
| 111 | lemma (in reflection) Ord_FF [intro,simp]: "Ord(FF(P,y))" | |
| 112 | by (simp add: FF_def) | |
| 113 | ||
| 114 | lemma (in reflection) cont_Ord_FF: "cont_Ord(FF(P))" | |
| 115 | apply (insert Mset_cont) | |
| 116 | apply (simp add: cont_Ord_def FF_def, blast) | |
| 117 | done | |
| 118 | ||
| 119 | text{*Recall that @{term F0} depends upon @{term "y\<in>Mset(a)"}, 
 | |
| 120 | while @{term FF} depends only upon @{term a}. *}
 | |
| 121 | lemma (in reflection) FF_works: | |
| 122 | "[| M(z); y\<in>Mset(a); P(<y,z>); Ord(a) |] ==> \<exists>z\<in>Mset(FF(P,a)). P(<y,z>)" | |
| 123 | apply (simp add: FF_def) | |
| 124 | apply (simp_all add: cont_Ord_Union [of concl: Mset] | |
| 125 | Mset_cont Mset_mono_le not_emptyI Ord_F0) | |
| 126 | apply (blast intro: F0_works) | |
| 127 | done | |
| 128 | ||
| 129 | lemma (in reflection) FFN_works: | |
| 130 | "[| M(z); y\<in>Mset(a); P(<y,z>); Ord(a) |] | |
| 131 | ==> \<exists>z\<in>Mset(normalize(FF(P),a)). P(<y,z>)" | |
| 132 | apply (drule FF_works [of concl: P], assumption+) | |
| 133 | apply (blast intro: cont_Ord_FF le_normalize [THEN Mset_mono, THEN subsetD]) | |
| 134 | done | |
| 135 | ||
| 136 | ||
| 137 | text{*Locale for the induction hypothesis*}
 | |
| 138 | ||
| 13428 | 139 | locale ex_reflection = reflection + | 
| 13223 | 140 | fixes P --"the original formula" | 
| 141 | fixes Q --"the reflected formula" | |
| 142 | fixes Cl --"the class of reflecting ordinals" | |
| 143 | assumes Cl_reflects: "[| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x)" | |
| 144 | ||
| 145 | lemma (in ex_reflection) ClEx_downward: | |
| 146 | "[| M(z); y\<in>Mset(a); P(<y,z>); Cl(a); ClEx(P,a) |] | |
| 147 | ==> \<exists>z\<in>Mset(a). Q(a,<y,z>)" | |
| 148 | apply (simp add: ClEx_def, clarify) | |
| 149 | apply (frule Limit_is_Ord) | |
| 150 | apply (frule FFN_works [of concl: P], assumption+) | |
| 151 | apply (drule Cl_reflects, assumption+) | |
| 152 | apply (auto simp add: Limit_is_Ord Pair_in_Mset) | |
| 153 | done | |
| 154 | ||
| 155 | lemma (in ex_reflection) ClEx_upward: | |
| 156 | "[| z\<in>Mset(a); y\<in>Mset(a); Q(a,<y,z>); Cl(a); ClEx(P,a) |] | |
| 13563 | 157 | ==> \<exists>z. M(z) & P(<y,z>)" | 
| 13223 | 158 | apply (simp add: ClEx_def M_def) | 
| 159 | apply (blast dest: Cl_reflects | |
| 160 | intro: Limit_is_Ord Pair_in_Mset) | |
| 161 | done | |
| 162 | ||
| 163 | text{*Class @{text ClEx} indeed consists of reflecting ordinals...*}
 | |
| 164 | lemma (in ex_reflection) ZF_ClEx_iff: | |
| 165 | "[| y\<in>Mset(a); Cl(a); ClEx(P,a) |] | |
| 13563 | 166 | ==> (\<exists>z. M(z) & P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))" | 
| 13223 | 167 | by (blast intro: dest: ClEx_downward ClEx_upward) | 
| 168 | ||
| 169 | text{*...and it is closed and unbounded*}
 | |
| 170 | lemma (in ex_reflection) ZF_Closed_Unbounded_ClEx: | |
| 171 | "Closed_Unbounded(ClEx(P))" | |
| 13434 | 172 | apply (simp add: ClEx_eq) | 
| 13223 | 173 | apply (fast intro: Closed_Unbounded_Int Normal_imp_fp_Closed_Unbounded | 
| 174 | Closed_Unbounded_Limit Normal_normalize) | |
| 175 | done | |
| 176 | ||
| 177 | text{*The same two theorems, exported to locale @{text reflection}.*}
 | |
| 178 | ||
| 179 | text{*Class @{text ClEx} indeed consists of reflecting ordinals...*}
 | |
| 180 | lemma (in reflection) ClEx_iff: | |
| 181 | "[| y\<in>Mset(a); Cl(a); ClEx(P,a); | |
| 182 | !!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x) |] | |
| 13563 | 183 | ==> (\<exists>z. M(z) & P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))" | 
| 13223 | 184 | apply (unfold ClEx_def FF_def F0_def M_def) | 
| 13428 | 185 | apply (rule ex_reflection.ZF_ClEx_iff | 
| 186 | [OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro, | |
| 187 | of Mset Cl]) | |
| 188 | apply (simp_all add: Mset_mono_le Mset_cont Pair_in_Mset) | |
| 13223 | 189 | done | 
| 190 | ||
| 13434 | 191 | (*Alternative proof, less unfolding: | 
| 192 | apply (rule Reflection.ZF_ClEx_iff [of Mset _ _ Cl, folded M_def]) | |
| 193 | apply (fold ClEx_def FF_def F0_def) | |
| 194 | apply (rule ex_reflection.intro, assumption) | |
| 195 | apply (simp add: ex_reflection_axioms.intro, assumption+) | |
| 196 | *) | |
| 197 | ||
| 13223 | 198 | lemma (in reflection) Closed_Unbounded_ClEx: | 
| 199 | "(!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x)) | |
| 200 | ==> Closed_Unbounded(ClEx(P))" | |
| 13434 | 201 | apply (unfold ClEx_eq FF_def F0_def M_def) | 
| 21232 | 202 | apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl]) | 
| 23464 | 203 | apply (rule ex_reflection.intro, rule reflection_axioms) | 
| 13434 | 204 | apply (blast intro: ex_reflection_axioms.intro) | 
| 13223 | 205 | done | 
| 206 | ||
| 13292 | 207 | subsection{*Packaging the Quantifier Reflection Rules*}
 | 
| 208 | ||
| 13223 | 209 | lemma (in reflection) Ex_reflection_0: | 
| 210 | "Reflects(Cl,P0,Q0) | |
| 13563 | 211 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(P0,a), | 
| 212 | \<lambda>x. \<exists>z. M(z) & P0(<x,z>), | |
| 13223 | 213 | \<lambda>a x. \<exists>z\<in>Mset(a). Q0(a,<x,z>))" | 
| 214 | apply (simp add: Reflects_def) | |
| 215 | apply (intro conjI Closed_Unbounded_Int) | |
| 216 | apply blast | |
| 13382 | 217 | apply (rule Closed_Unbounded_ClEx [of Cl P0 Q0], blast, clarify) | 
| 13223 | 218 | apply (rule_tac Cl=Cl in ClEx_iff, assumption+, blast) | 
| 219 | done | |
| 220 | ||
| 221 | lemma (in reflection) All_reflection_0: | |
| 222 | "Reflects(Cl,P0,Q0) | |
| 13563 | 223 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x.~P0(x), a), | 
| 13223 | 224 | \<lambda>x. \<forall>z. M(z) --> P0(<x,z>), | 
| 225 | \<lambda>a x. \<forall>z\<in>Mset(a). Q0(a,<x,z>))" | |
| 226 | apply (simp only: all_iff_not_ex_not ball_iff_not_bex_not) | |
| 227 | apply (rule Not_reflection, drule Not_reflection, simp) | |
| 228 | apply (erule Ex_reflection_0) | |
| 229 | done | |
| 230 | ||
| 231 | theorem (in reflection) Ex_reflection [intro]: | |
| 232 | "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))) | |
| 13563 | 233 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a), | 
| 234 | \<lambda>x. \<exists>z. M(z) & P(x,z), | |
| 13223 | 235 | \<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))" | 
| 236 | by (rule Ex_reflection_0 [of _ " \<lambda>x. P(fst(x),snd(x))" | |
| 237 | "\<lambda>a x. Q(a,fst(x),snd(x))", simplified]) | |
| 238 | ||
| 239 | theorem (in reflection) All_reflection [intro]: | |
| 240 | "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))) | |
| 13563 | 241 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a), | 
| 13223 | 242 | \<lambda>x. \<forall>z. M(z) --> P(x,z), | 
| 243 | \<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))" | |
| 244 | by (rule All_reflection_0 [of _ "\<lambda>x. P(fst(x),snd(x))" | |
| 245 | "\<lambda>a x. Q(a,fst(x),snd(x))", simplified]) | |
| 246 | ||
| 13292 | 247 | text{*And again, this time using class-bounded quantifiers*}
 | 
| 248 | ||
| 249 | theorem (in reflection) Rex_reflection [intro]: | |
| 250 | "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))) | |
| 13563 | 251 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a), | 
| 13292 | 252 | \<lambda>x. \<exists>z[M]. P(x,z), | 
| 253 | \<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))" | |
| 254 | by (unfold rex_def, blast) | |
| 255 | ||
| 256 | theorem (in reflection) Rall_reflection [intro]: | |
| 257 | "Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))) | |
| 13563 | 258 | ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a), | 
| 13292 | 259 | \<lambda>x. \<forall>z[M]. P(x,z), | 
| 260 | \<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))" | |
| 261 | by (unfold rall_def, blast) | |
| 262 | ||
| 263 | ||
| 13223 | 264 | text{*No point considering bounded quantifiers, where reflection is trivial.*}
 | 
| 265 | ||
| 266 | ||
| 267 | subsection{*Simple Examples of Reflection*}
 | |
| 268 | ||
| 269 | text{*Example 1: reflecting a simple formula.  The reflecting class is first
 | |
| 270 | given as the variable @{text ?Cl} and later retrieved from the final 
 | |
| 271 | proof state.*} | |
| 272 | lemma (in reflection) | |
| 273 | "Reflects(?Cl, | |
| 13563 | 274 | \<lambda>x. \<exists>y. M(y) & x \<in> y, | 
| 13223 | 275 | \<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)" | 
| 276 | by fast | |
| 277 | ||
| 278 | text{*Problem here: there needs to be a conjunction (class intersection)
 | |
| 279 | in the class of reflecting ordinals.  The @{term "Ord(a)"} is redundant,
 | |
| 280 | though harmless.*} | |
| 281 | lemma (in reflection) | |
| 13563 | 282 | "Reflects(\<lambda>a. Ord(a) & ClEx(\<lambda>x. fst(x) \<in> snd(x), a), | 
| 283 | \<lambda>x. \<exists>y. M(y) & x \<in> y, | |
| 13223 | 284 | \<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)" | 
| 285 | by fast | |
| 286 | ||
| 287 | ||
| 288 | text{*Example 2*}
 | |
| 289 | lemma (in reflection) | |
| 290 | "Reflects(?Cl, | |
| 13563 | 291 | \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y), | 
| 13223 | 292 | \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)" | 
| 293 | by fast | |
| 294 | ||
| 295 | text{*Example 2'.  We give the reflecting class explicitly. *}
 | |
| 296 | lemma (in reflection) | |
| 297 | "Reflects | |
| 13563 | 298 | (\<lambda>a. (Ord(a) & | 
| 299 | ClEx(\<lambda>x. ~ (snd(x) \<subseteq> fst(fst(x)) --> snd(x) \<in> snd(fst(x))), a)) & | |
| 13223 | 300 | ClEx(\<lambda>x. \<forall>z. M(z) --> z \<subseteq> fst(x) --> z \<in> snd(x), a), | 
| 13563 | 301 | \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y), | 
| 13223 | 302 | \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)" | 
| 303 | by fast | |
| 304 | ||
| 305 | text{*Example 2''.  We expand the subset relation.*}
 | |
| 306 | lemma (in reflection) | |
| 307 | "Reflects(?Cl, | |
| 13563 | 308 | \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> (\<forall>w. M(w) --> w\<in>z --> w\<in>x) --> z\<in>y), | 
| 13223 | 309 | \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z --> w\<in>x) --> z\<in>y)" | 
| 310 | by fast | |
| 311 | ||
| 312 | text{*Example 2'''.  Single-step version, to reveal the reflecting class.*}
 | |
| 313 | lemma (in reflection) | |
| 314 | "Reflects(?Cl, | |
| 13563 | 315 | \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y), | 
| 13223 | 316 | \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)" | 
| 317 | apply (rule Ex_reflection) | |
| 318 | txt{*
 | |
| 319 | @{goals[display,indent=0,margin=60]}
 | |
| 320 | *} | |
| 321 | apply (rule All_reflection) | |
| 322 | txt{*
 | |
| 323 | @{goals[display,indent=0,margin=60]}
 | |
| 324 | *} | |
| 325 | apply (rule Triv_reflection) | |
| 326 | txt{*
 | |
| 327 | @{goals[display,indent=0,margin=60]}
 | |
| 328 | *} | |
| 329 | done | |
| 330 | ||
| 331 | text{*Example 3.  Warning: the following examples make sense only
 | |
| 332 | if @{term P} is quantifier-free, since it is not being relativized.*}
 | |
| 333 | lemma (in reflection) | |
| 334 | "Reflects(?Cl, | |
| 13563 | 335 | \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<in> y <-> z \<in> x & P(z)), | 
| 336 | \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y <-> z \<in> x & P(z))" | |
| 13223 | 337 | by fast | 
| 338 | ||
| 339 | text{*Example 3'*}
 | |
| 340 | lemma (in reflection) | |
| 341 | "Reflects(?Cl, | |
| 13563 | 342 | \<lambda>x. \<exists>y. M(y) & y = Collect(x,P), | 
| 13223 | 343 | \<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))"; | 
| 344 | by fast | |
| 345 | ||
| 346 | text{*Example 3''*}
 | |
| 347 | lemma (in reflection) | |
| 348 | "Reflects(?Cl, | |
| 13563 | 349 | \<lambda>x. \<exists>y. M(y) & y = Replace(x,P), | 
| 13223 | 350 | \<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))"; | 
| 351 | by fast | |
| 352 | ||
| 353 | text{*Example 4: Axiom of Choice.  Possibly wrong, since @{text \<Pi>} needs
 | |
| 354 | to be relativized.*} | |
| 355 | lemma (in reflection) | |
| 356 | "Reflects(?Cl, | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
13634diff
changeset | 357 | \<lambda>A. 0\<notin>A --> (\<exists>f. M(f) & f \<in> (\<Pi> X \<in> A. X)), | 
| 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
13634diff
changeset | 358 | \<lambda>a A. 0\<notin>A --> (\<exists>f\<in>Mset(a). f \<in> (\<Pi> X \<in> A. X)))" | 
| 13223 | 359 | by fast | 
| 360 | ||
| 361 | end | |
| 362 |