| 
12173
 | 
     1  | 
(*  Title:      ZF/Induct/Mutil.thy
  | 
| 
12088
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1996  University of Cambridge
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
12173
 | 
     7  | 
header {* The Mutilated Chess Board Problem, formalized inductively *}
 | 
| 
 | 
     8  | 
  | 
| 
16417
 | 
     9  | 
theory Mutil imports Main begin
  | 
| 
12173
 | 
    10  | 
  | 
| 
 | 
    11  | 
text {*
 | 
| 
 | 
    12  | 
  Originator is Max Black, according to J A Robinson.  Popularized as
  | 
| 
 | 
    13  | 
  the Mutilated Checkerboard Problem by J McCarthy.
  | 
| 
 | 
    14  | 
*}
  | 
| 
 | 
    15  | 
  | 
| 
12088
 | 
    16  | 
consts
  | 
| 
12173
 | 
    17  | 
  domino :: i
  | 
| 
 | 
    18  | 
  tiling :: "i => i"
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
inductive
  | 
| 
 | 
    21  | 
  domains "domino" \<subseteq> "Pow(nat \<times> nat)"
  | 
| 
 | 
    22  | 
  intros
  | 
| 
 | 
    23  | 
    horiz: "[| i \<in> nat;  j \<in> nat |] ==> {<i,j>, <i,succ(j)>} \<in> domino"
 | 
| 
 | 
    24  | 
    vertl: "[| i \<in> nat;  j \<in> nat |] ==> {<i,j>, <succ(i),j>} \<in> domino"
 | 
| 
 | 
    25  | 
  type_intros empty_subsetI cons_subsetI PowI SigmaI nat_succI
  | 
| 
12088
 | 
    26  | 
  | 
| 
 | 
    27  | 
inductive
  | 
| 
12173
 | 
    28  | 
  domains "tiling(A)" \<subseteq> "Pow(Union(A))"
  | 
| 
 | 
    29  | 
  intros
  | 
| 
 | 
    30  | 
    empty: "0 \<in> tiling(A)"
  | 
| 
 | 
    31  | 
    Un: "[| a \<in> A;  t \<in> tiling(A);  a Int t = 0 |] ==> a Un t \<in> tiling(A)"
  | 
| 
 | 
    32  | 
  type_intros empty_subsetI Union_upper Un_least PowI
  | 
| 
 | 
    33  | 
  type_elims PowD [elim_format]
  | 
| 
 | 
    34  | 
  | 
| 
24893
 | 
    35  | 
definition
  | 
| 
 | 
    36  | 
  evnodd :: "[i, i] => i"  where
  | 
| 
12173
 | 
    37  | 
  "evnodd(A,b) == {z \<in> A. \<exists>i j. z = <i,j> \<and> (i #+ j) mod 2 = b}"
 | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
  | 
| 
12185
 | 
    40  | 
subsection {* Basic properties of evnodd *}
 | 
| 
12173
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma evnodd_iff: "<i,j>: evnodd(A,b) <-> <i,j>: A & (i#+j) mod 2 = b"
  | 
| 
 | 
    43  | 
  by (unfold evnodd_def) blast
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma evnodd_subset: "evnodd(A, b) \<subseteq> A"
  | 
| 
 | 
    46  | 
  by (unfold evnodd_def) blast
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma Finite_evnodd: "Finite(X) ==> Finite(evnodd(X,b))"
  | 
| 
 | 
    49  | 
  by (rule lepoll_Finite, rule subset_imp_lepoll, rule evnodd_subset)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma evnodd_Un: "evnodd(A Un B, b) = evnodd(A,b) Un evnodd(B,b)"
  | 
| 
 | 
    52  | 
  by (simp add: evnodd_def Collect_Un)
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma evnodd_Diff: "evnodd(A - B, b) = evnodd(A,b) - evnodd(B,b)"
  | 
| 
 | 
    55  | 
  by (simp add: evnodd_def Collect_Diff)
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma evnodd_cons [simp]:
  | 
| 
 | 
    58  | 
  "evnodd(cons(<i,j>,C), b) =
  | 
| 
 | 
    59  | 
    (if (i#+j) mod 2 = b then cons(<i,j>, evnodd(C,b)) else evnodd(C,b))"
  | 
| 
 | 
    60  | 
  by (simp add: evnodd_def Collect_cons)
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma evnodd_0 [simp]: "evnodd(0, b) = 0"
  | 
| 
 | 
    63  | 
  by (simp add: evnodd_def)
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
  | 
| 
12185
 | 
    66  | 
subsection {* Dominoes *}
 | 
| 
12173
 | 
    67  | 
  | 
| 
 | 
    68  | 
lemma domino_Finite: "d \<in> domino ==> Finite(d)"
  | 
| 
 | 
    69  | 
  by (blast intro!: Finite_cons Finite_0 elim: domino.cases)
  | 
| 
 | 
    70  | 
  | 
| 
12185
 | 
    71  | 
lemma domino_singleton:
  | 
| 
 | 
    72  | 
    "[| d \<in> domino; b<2 |] ==> \<exists>i' j'. evnodd(d,b) = {<i',j'>}"
 | 
| 
12173
 | 
    73  | 
  apply (erule domino.cases)
  | 
| 
 | 
    74  | 
   apply (rule_tac [2] k1 = "i#+j" in mod2_cases [THEN disjE])
  | 
| 
 | 
    75  | 
     apply (rule_tac k1 = "i#+j" in mod2_cases [THEN disjE])
  | 
| 
 | 
    76  | 
       apply (rule add_type | assumption)+
  | 
| 
 | 
    77  | 
      (*Four similar cases: case (i#+j) mod 2 = b, 2#-b, ...*)
  | 
| 
 | 
    78  | 
      apply (auto simp add: mod_succ succ_neq_self dest: ltD)
  | 
| 
 | 
    79  | 
  done
  | 
| 
12088
 | 
    80  | 
  | 
| 
 | 
    81  | 
  | 
| 
12185
 | 
    82  | 
subsection {* Tilings *}
 | 
| 
12173
 | 
    83  | 
  | 
| 
 | 
    84  | 
text {* The union of two disjoint tilings is a tiling *}
 | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma tiling_UnI:
  | 
| 
 | 
    87  | 
    "t \<in> tiling(A) ==> u \<in> tiling(A) ==> t Int u = 0 ==> t Un u \<in> tiling(A)"
  | 
| 
 | 
    88  | 
  apply (induct set: tiling)
  | 
| 
 | 
    89  | 
   apply (simp add: tiling.intros)
  | 
| 
 | 
    90  | 
  apply (simp add: Un_assoc subset_empty_iff [THEN iff_sym])
  | 
| 
 | 
    91  | 
  apply (blast intro: tiling.intros)
  | 
| 
 | 
    92  | 
  done
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma tiling_domino_Finite: "t \<in> tiling(domino) ==> Finite(t)"
  | 
| 
18415
 | 
    95  | 
  apply (induct set: tiling)
  | 
| 
12173
 | 
    96  | 
   apply (rule Finite_0)
  | 
| 
 | 
    97  | 
  apply (blast intro!: Finite_Un intro: domino_Finite)
  | 
| 
 | 
    98  | 
  done
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
lemma tiling_domino_0_1: "t \<in> tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|"
  | 
| 
18415
 | 
   101  | 
  apply (induct set: tiling)
  | 
| 
12173
 | 
   102  | 
   apply (simp add: evnodd_def)
  | 
| 
 | 
   103  | 
  apply (rule_tac b1 = 0 in domino_singleton [THEN exE])
  | 
| 
 | 
   104  | 
    prefer 2
  | 
| 
 | 
   105  | 
    apply simp
  | 
| 
 | 
   106  | 
   apply assumption
  | 
| 
 | 
   107  | 
  apply (rule_tac b1 = 1 in domino_singleton [THEN exE])
  | 
| 
 | 
   108  | 
    prefer 2
  | 
| 
 | 
   109  | 
    apply simp
  | 
| 
 | 
   110  | 
   apply assumption
  | 
| 
 | 
   111  | 
  apply safe
  | 
| 
 | 
   112  | 
  apply (subgoal_tac "\<forall>p b. p \<in> evnodd (a,b) --> p\<notin>evnodd (t,b)")
  | 
| 
 | 
   113  | 
   apply (simp add: evnodd_Un Un_cons tiling_domino_Finite
  | 
| 
 | 
   114  | 
     evnodd_subset [THEN subset_Finite] Finite_imp_cardinal_cons)
  | 
| 
 | 
   115  | 
  apply (blast dest!: evnodd_subset [THEN subsetD] elim: equalityE)
  | 
| 
 | 
   116  | 
  done
  | 
| 
12088
 | 
   117  | 
  | 
| 
12185
 | 
   118  | 
lemma dominoes_tile_row:
  | 
| 
 | 
   119  | 
    "[| i \<in> nat;  n \<in> nat |] ==> {i} * (n #+ n) \<in> tiling(domino)"
 | 
| 
12173
 | 
   120  | 
  apply (induct_tac n)
  | 
| 
 | 
   121  | 
   apply (simp add: tiling.intros)
  | 
| 
 | 
   122  | 
  apply (simp add: Un_assoc [symmetric] Sigma_succ2)
  | 
| 
 | 
   123  | 
  apply (rule tiling.intros)
  | 
| 
 | 
   124  | 
    prefer 2 apply assumption
  | 
| 
 | 
   125  | 
   apply (rename_tac n')
  | 
| 
 | 
   126  | 
   apply (subgoal_tac (*seems the easiest way of turning one to the other*)
  | 
| 
12185
 | 
   127  | 
     "{i}*{succ (n'#+n') } Un {i}*{n'#+n'} =
 | 
| 
 | 
   128  | 
       {<i,n'#+n'>, <i,succ (n'#+n') >}")
 | 
| 
12173
 | 
   129  | 
    prefer 2 apply blast
  | 
| 
 | 
   130  | 
  apply (simp add: domino.horiz)
  | 
| 
 | 
   131  | 
  apply (blast elim: mem_irrefl mem_asym)
  | 
| 
 | 
   132  | 
  done
  | 
| 
 | 
   133  | 
  | 
| 
12185
 | 
   134  | 
lemma dominoes_tile_matrix:
  | 
| 
 | 
   135  | 
    "[| m \<in> nat;  n \<in> nat |] ==> m * (n #+ n) \<in> tiling(domino)"
  | 
| 
12173
 | 
   136  | 
  apply (induct_tac m)
  | 
| 
 | 
   137  | 
   apply (simp add: tiling.intros)
  | 
| 
 | 
   138  | 
  apply (simp add: Sigma_succ1)
  | 
| 
 | 
   139  | 
  apply (blast intro: tiling_UnI dominoes_tile_row elim: mem_irrefl)
  | 
| 
 | 
   140  | 
  done
  | 
| 
 | 
   141  | 
  | 
| 
 | 
   142  | 
lemma eq_lt_E: "[| x=y; x<y |] ==> P"
  | 
| 
 | 
   143  | 
  by auto
  | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
theorem mutil_not_tiling: "[| m \<in> nat;  n \<in> nat;
  | 
| 
 | 
   146  | 
         t = (succ(m)#+succ(m))*(succ(n)#+succ(n));
  | 
| 
 | 
   147  | 
         t' = t - {<0,0>} - {<succ(m#+m), succ(n#+n)>} |]
 | 
| 
 | 
   148  | 
      ==> t' \<notin> tiling(domino)"
  | 
| 
 | 
   149  | 
  apply (rule notI)
  | 
| 
 | 
   150  | 
  apply (drule tiling_domino_0_1)
  | 
| 
 | 
   151  | 
  apply (erule_tac x = "|?A|" in eq_lt_E)
  | 
| 
 | 
   152  | 
  apply (subgoal_tac "t \<in> tiling (domino)")
  | 
| 
 | 
   153  | 
   prefer 2 (*Requires a small simpset that won't move the succ applications*)
  | 
| 
 | 
   154  | 
   apply (simp only: nat_succI add_type dominoes_tile_matrix)
  | 
| 
12185
 | 
   155  | 
  apply (simp add: evnodd_Diff mod2_add_self mod2_succ_succ
  | 
| 
 | 
   156  | 
    tiling_domino_0_1 [symmetric])
  | 
| 
12173
 | 
   157  | 
  apply (rule lt_trans)
  | 
| 
 | 
   158  | 
   apply (rule Finite_imp_cardinal_Diff,
  | 
| 
 | 
   159  | 
     simp add: tiling_domino_Finite Finite_evnodd Finite_Diff,
  | 
| 
 | 
   160  | 
     simp add: evnodd_iff nat_0_le [THEN ltD] mod2_add_self)+
  | 
| 
 | 
   161  | 
  done
  | 
| 
12088
 | 
   162  | 
  | 
| 
 | 
   163  | 
end
  |