|
31719
|
1 |
(* Title: UniqueFactorization.thy
|
|
|
2 |
ID:
|
|
|
3 |
Author: Jeremy Avigad
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
Unique factorization for the natural numbers and the integers.
|
|
|
7 |
|
|
|
8 |
Note: there were previous Isabelle formalizations of unique
|
|
|
9 |
factorization due to Thomas Marthedal Rasmussen, and, building on
|
|
|
10 |
that, by Jeremy Avigad and David Gray.
|
|
|
11 |
*)
|
|
|
12 |
|
|
|
13 |
header {* UniqueFactorization *}
|
|
|
14 |
|
|
|
15 |
theory UniqueFactorization
|
|
|
16 |
imports Cong Multiset
|
|
|
17 |
begin
|
|
|
18 |
|
|
|
19 |
(* inherited from Multiset *)
|
|
|
20 |
declare One_nat_def [simp del]
|
|
|
21 |
|
|
|
22 |
(* As a simp or intro rule,
|
|
|
23 |
|
|
|
24 |
prime p \<Longrightarrow> p > 0
|
|
|
25 |
|
|
|
26 |
wreaks havoc here. When the premise includes ALL x :# M. prime x, it
|
|
|
27 |
leads to the backchaining
|
|
|
28 |
|
|
|
29 |
x > 0
|
|
|
30 |
prime x
|
|
|
31 |
x :# M which is, unfortunately,
|
|
|
32 |
count M x > 0
|
|
|
33 |
*)
|
|
|
34 |
|
|
|
35 |
|
|
|
36 |
(* useful facts *)
|
|
|
37 |
|
|
|
38 |
lemma setsum_Un2: "finite (A Un B) \<Longrightarrow>
|
|
|
39 |
setsum f (A Un B) = setsum f (A - B) + setsum f (B - A) +
|
|
|
40 |
setsum f (A Int B)"
|
|
|
41 |
apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
|
|
|
42 |
apply (erule ssubst)
|
|
|
43 |
apply (subst setsum_Un_disjoint)
|
|
|
44 |
apply auto
|
|
|
45 |
apply (subst setsum_Un_disjoint)
|
|
|
46 |
apply auto
|
|
|
47 |
done
|
|
|
48 |
|
|
|
49 |
lemma setprod_Un2: "finite (A Un B) \<Longrightarrow>
|
|
|
50 |
setprod f (A Un B) = setprod f (A - B) * setprod f (B - A) *
|
|
|
51 |
setprod f (A Int B)"
|
|
|
52 |
apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
|
|
|
53 |
apply (erule ssubst)
|
|
|
54 |
apply (subst setprod_Un_disjoint)
|
|
|
55 |
apply auto
|
|
|
56 |
apply (subst setprod_Un_disjoint)
|
|
|
57 |
apply auto
|
|
|
58 |
done
|
|
|
59 |
|
|
|
60 |
(* Should this go in Multiset.thy? *)
|
|
|
61 |
(* TN: No longer an intro-rule; needed only once and might get in the way *)
|
|
|
62 |
lemma multiset_eqI: "[| !!x. count M x = count N x |] ==> M = N"
|
|
|
63 |
by (subst multiset_eq_conv_count_eq, blast)
|
|
|
64 |
|
|
|
65 |
(* Here is a version of set product for multisets. Is it worth moving
|
|
|
66 |
to multiset.thy? If so, one should similarly define msetsum for abelian
|
|
|
67 |
semirings, using of_nat. Also, is it worth developing bounded quantifiers
|
|
|
68 |
"ALL i :# M. P i"?
|
|
|
69 |
*)
|
|
|
70 |
|
|
|
71 |
constdefs
|
|
|
72 |
msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b"
|
|
|
73 |
"msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)"
|
|
|
74 |
|
|
|
75 |
syntax
|
|
|
76 |
"_msetprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"
|
|
|
77 |
("(3PROD _:#_. _)" [0, 51, 10] 10)
|
|
|
78 |
|
|
|
79 |
translations
|
|
|
80 |
"PROD i :# A. b" == "msetprod (%i. b) A"
|
|
|
81 |
|
|
|
82 |
lemma msetprod_Un: "msetprod f (A+B) = msetprod f A * msetprod f B"
|
|
|
83 |
apply (simp add: msetprod_def power_add)
|
|
|
84 |
apply (subst setprod_Un2)
|
|
|
85 |
apply auto
|
|
|
86 |
apply (subgoal_tac
|
|
|
87 |
"(PROD x:set_of A - set_of B. f x ^ count A x * f x ^ count B x) =
|
|
|
88 |
(PROD x:set_of A - set_of B. f x ^ count A x)")
|
|
|
89 |
apply (erule ssubst)
|
|
|
90 |
apply (subgoal_tac
|
|
|
91 |
"(PROD x:set_of B - set_of A. f x ^ count A x * f x ^ count B x) =
|
|
|
92 |
(PROD x:set_of B - set_of A. f x ^ count B x)")
|
|
|
93 |
apply (erule ssubst)
|
|
|
94 |
apply (subgoal_tac "(PROD x:set_of A. f x ^ count A x) =
|
|
|
95 |
(PROD x:set_of A - set_of B. f x ^ count A x) *
|
|
|
96 |
(PROD x:set_of A Int set_of B. f x ^ count A x)")
|
|
|
97 |
apply (erule ssubst)
|
|
|
98 |
apply (subgoal_tac "(PROD x:set_of B. f x ^ count B x) =
|
|
|
99 |
(PROD x:set_of B - set_of A. f x ^ count B x) *
|
|
|
100 |
(PROD x:set_of A Int set_of B. f x ^ count B x)")
|
|
|
101 |
apply (erule ssubst)
|
|
|
102 |
apply (subst setprod_timesf)
|
|
|
103 |
apply (force simp add: mult_ac)
|
|
|
104 |
apply (subst setprod_Un_disjoint [symmetric])
|
|
|
105 |
apply (auto intro: setprod_cong)
|
|
|
106 |
apply (subst setprod_Un_disjoint [symmetric])
|
|
|
107 |
apply (auto intro: setprod_cong)
|
|
|
108 |
done
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
subsection {* unique factorization: multiset version *}
|
|
|
112 |
|
|
|
113 |
lemma multiset_prime_factorization_exists [rule_format]: "n > 0 -->
|
|
|
114 |
(EX M. (ALL (p::nat) : set_of M. prime p) & n = (PROD i :# M. i))"
|
|
|
115 |
proof (rule nat_less_induct, clarify)
|
|
|
116 |
fix n :: nat
|
|
|
117 |
assume ih: "ALL m < n. 0 < m --> (EX M. (ALL p : set_of M. prime p) & m =
|
|
|
118 |
(PROD i :# M. i))"
|
|
|
119 |
assume "(n::nat) > 0"
|
|
|
120 |
then have "n = 1 | (n > 1 & prime n) | (n > 1 & ~ prime n)"
|
|
|
121 |
by arith
|
|
|
122 |
moreover
|
|
|
123 |
{
|
|
|
124 |
assume "n = 1"
|
|
|
125 |
then have "(ALL p : set_of {#}. prime p) & n = (PROD i :# {#}. i)"
|
|
|
126 |
by (auto simp add: msetprod_def)
|
|
|
127 |
}
|
|
|
128 |
moreover
|
|
|
129 |
{
|
|
|
130 |
assume "n > 1" and "prime n"
|
|
|
131 |
then have "(ALL p : set_of {# n #}. prime p) & n = (PROD i :# {# n #}. i)"
|
|
|
132 |
by (auto simp add: msetprod_def)
|
|
|
133 |
}
|
|
|
134 |
moreover
|
|
|
135 |
{
|
|
|
136 |
assume "n > 1" and "~ prime n"
|
|
|
137 |
from prems nat_not_prime_eq_prod
|
|
|
138 |
obtain m k where "n = m * k & 1 < m & m < n & 1 < k & k < n"
|
|
|
139 |
by blast
|
|
|
140 |
with ih obtain Q R where "(ALL p : set_of Q. prime p) & m = (PROD i:#Q. i)"
|
|
|
141 |
and "(ALL p: set_of R. prime p) & k = (PROD i:#R. i)"
|
|
|
142 |
by blast
|
|
|
143 |
hence "(ALL p: set_of (Q + R). prime p) & n = (PROD i :# Q + R. i)"
|
|
|
144 |
by (auto simp add: prems msetprod_Un set_of_union)
|
|
|
145 |
then have "EX M. (ALL p : set_of M. prime p) & n = (PROD i :# M. i)"..
|
|
|
146 |
}
|
|
|
147 |
ultimately show "EX M. (ALL p : set_of M. prime p) & n = (PROD i::nat:#M. i)"
|
|
|
148 |
by blast
|
|
|
149 |
qed
|
|
|
150 |
|
|
|
151 |
lemma multiset_prime_factorization_unique_aux:
|
|
|
152 |
fixes a :: nat
|
|
|
153 |
assumes "(ALL p : set_of M. prime p)" and
|
|
|
154 |
"(ALL p : set_of N. prime p)" and
|
|
|
155 |
"(PROD i :# M. i) dvd (PROD i:# N. i)"
|
|
|
156 |
shows
|
|
|
157 |
"count M a <= count N a"
|
|
|
158 |
proof cases
|
|
|
159 |
assume "a : set_of M"
|
|
|
160 |
with prems have a: "prime a"
|
|
|
161 |
by auto
|
|
|
162 |
with prems have "a ^ count M a dvd (PROD i :# M. i)"
|
|
|
163 |
by (auto intro: dvd_setprod simp add: msetprod_def)
|
|
|
164 |
also have "... dvd (PROD i :# N. i)"
|
|
|
165 |
by (rule prems)
|
|
|
166 |
also have "... = (PROD i : (set_of N). i ^ (count N i))"
|
|
|
167 |
by (simp add: msetprod_def)
|
|
|
168 |
also have "... =
|
|
|
169 |
a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))"
|
|
|
170 |
proof (cases)
|
|
|
171 |
assume "a : set_of N"
|
|
|
172 |
hence b: "set_of N = {a} Un (set_of N - {a})"
|
|
|
173 |
by auto
|
|
|
174 |
thus ?thesis
|
|
|
175 |
by (subst (1) b, subst setprod_Un_disjoint, auto)
|
|
|
176 |
next
|
|
|
177 |
assume "a ~: set_of N"
|
|
|
178 |
thus ?thesis
|
|
|
179 |
by auto
|
|
|
180 |
qed
|
|
|
181 |
finally have "a ^ count M a dvd
|
|
|
182 |
a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))".
|
|
|
183 |
moreover have "coprime (a ^ count M a)
|
|
|
184 |
(PROD i : (set_of N - {a}). i ^ (count N i))"
|
|
|
185 |
apply (subst nat_gcd_commute)
|
|
|
186 |
apply (rule nat_setprod_coprime)
|
|
|
187 |
apply (rule nat_primes_imp_powers_coprime)
|
|
|
188 |
apply (insert prems, auto)
|
|
|
189 |
done
|
|
|
190 |
ultimately have "a ^ count M a dvd a^(count N a)"
|
|
|
191 |
by (elim nat_coprime_dvd_mult)
|
|
|
192 |
with a show ?thesis
|
|
|
193 |
by (intro power_dvd_imp_le, auto)
|
|
|
194 |
next
|
|
|
195 |
assume "a ~: set_of M"
|
|
|
196 |
thus ?thesis by auto
|
|
|
197 |
qed
|
|
|
198 |
|
|
|
199 |
lemma multiset_prime_factorization_unique:
|
|
|
200 |
assumes "(ALL (p::nat) : set_of M. prime p)" and
|
|
|
201 |
"(ALL p : set_of N. prime p)" and
|
|
|
202 |
"(PROD i :# M. i) = (PROD i:# N. i)"
|
|
|
203 |
shows
|
|
|
204 |
"M = N"
|
|
|
205 |
proof -
|
|
|
206 |
{
|
|
|
207 |
fix a
|
|
|
208 |
from prems have "count M a <= count N a"
|
|
|
209 |
by (intro multiset_prime_factorization_unique_aux, auto)
|
|
|
210 |
moreover from prems have "count N a <= count M a"
|
|
|
211 |
by (intro multiset_prime_factorization_unique_aux, auto)
|
|
|
212 |
ultimately have "count M a = count N a"
|
|
|
213 |
by auto
|
|
|
214 |
}
|
|
|
215 |
thus ?thesis by (simp add:multiset_eq_conv_count_eq)
|
|
|
216 |
qed
|
|
|
217 |
|
|
|
218 |
constdefs
|
|
|
219 |
multiset_prime_factorization :: "nat => nat multiset"
|
|
|
220 |
"multiset_prime_factorization n ==
|
|
|
221 |
if n > 0 then (THE M. ((ALL p : set_of M. prime p) &
|
|
|
222 |
n = (PROD i :# M. i)))
|
|
|
223 |
else {#}"
|
|
|
224 |
|
|
|
225 |
lemma multiset_prime_factorization: "n > 0 ==>
|
|
|
226 |
(ALL p : set_of (multiset_prime_factorization n). prime p) &
|
|
|
227 |
n = (PROD i :# (multiset_prime_factorization n). i)"
|
|
|
228 |
apply (unfold multiset_prime_factorization_def)
|
|
|
229 |
apply clarsimp
|
|
|
230 |
apply (frule multiset_prime_factorization_exists)
|
|
|
231 |
apply clarify
|
|
|
232 |
apply (rule theI)
|
|
|
233 |
apply (insert multiset_prime_factorization_unique, blast)+
|
|
|
234 |
done
|
|
|
235 |
|
|
|
236 |
|
|
|
237 |
subsection {* Prime factors and multiplicity for nats and ints *}
|
|
|
238 |
|
|
|
239 |
class unique_factorization =
|
|
|
240 |
|
|
|
241 |
fixes
|
|
|
242 |
multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" and
|
|
|
243 |
prime_factors :: "'a \<Rightarrow> 'a set"
|
|
|
244 |
|
|
|
245 |
(* definitions for the natural numbers *)
|
|
|
246 |
|
|
|
247 |
instantiation nat :: unique_factorization
|
|
|
248 |
|
|
|
249 |
begin
|
|
|
250 |
|
|
|
251 |
definition
|
|
|
252 |
multiplicity_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
|
|
|
253 |
where
|
|
|
254 |
"multiplicity_nat p n = count (multiset_prime_factorization n) p"
|
|
|
255 |
|
|
|
256 |
definition
|
|
|
257 |
prime_factors_nat :: "nat \<Rightarrow> nat set"
|
|
|
258 |
where
|
|
|
259 |
"prime_factors_nat n = set_of (multiset_prime_factorization n)"
|
|
|
260 |
|
|
|
261 |
instance proof qed
|
|
|
262 |
|
|
|
263 |
end
|
|
|
264 |
|
|
|
265 |
(* definitions for the integers *)
|
|
|
266 |
|
|
|
267 |
instantiation int :: unique_factorization
|
|
|
268 |
|
|
|
269 |
begin
|
|
|
270 |
|
|
|
271 |
definition
|
|
|
272 |
multiplicity_int :: "int \<Rightarrow> int \<Rightarrow> nat"
|
|
|
273 |
where
|
|
|
274 |
"multiplicity_int p n = multiplicity (nat p) (nat n)"
|
|
|
275 |
|
|
|
276 |
definition
|
|
|
277 |
prime_factors_int :: "int \<Rightarrow> int set"
|
|
|
278 |
where
|
|
|
279 |
"prime_factors_int n = int ` (prime_factors (nat n))"
|
|
|
280 |
|
|
|
281 |
instance proof qed
|
|
|
282 |
|
|
|
283 |
end
|
|
|
284 |
|
|
|
285 |
|
|
|
286 |
subsection {* Set up transfer *}
|
|
|
287 |
|
|
|
288 |
lemma transfer_nat_int_prime_factors:
|
|
|
289 |
"prime_factors (nat n) = nat ` prime_factors n"
|
|
|
290 |
unfolding prime_factors_int_def apply auto
|
|
|
291 |
by (subst transfer_int_nat_set_return_embed, assumption)
|
|
|
292 |
|
|
|
293 |
lemma transfer_nat_int_prime_factors_closure: "n >= 0 \<Longrightarrow>
|
|
|
294 |
nat_set (prime_factors n)"
|
|
|
295 |
by (auto simp add: nat_set_def prime_factors_int_def)
|
|
|
296 |
|
|
|
297 |
lemma transfer_nat_int_multiplicity: "p >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
|
|
|
298 |
multiplicity (nat p) (nat n) = multiplicity p n"
|
|
|
299 |
by (auto simp add: multiplicity_int_def)
|
|
|
300 |
|
|
|
301 |
declare TransferMorphism_nat_int[transfer add return:
|
|
|
302 |
transfer_nat_int_prime_factors transfer_nat_int_prime_factors_closure
|
|
|
303 |
transfer_nat_int_multiplicity]
|
|
|
304 |
|
|
|
305 |
|
|
|
306 |
lemma transfer_int_nat_prime_factors:
|
|
|
307 |
"prime_factors (int n) = int ` prime_factors n"
|
|
|
308 |
unfolding prime_factors_int_def by auto
|
|
|
309 |
|
|
|
310 |
lemma transfer_int_nat_prime_factors_closure: "is_nat n \<Longrightarrow>
|
|
|
311 |
nat_set (prime_factors n)"
|
|
|
312 |
by (simp only: transfer_nat_int_prime_factors_closure is_nat_def)
|
|
|
313 |
|
|
|
314 |
lemma transfer_int_nat_multiplicity:
|
|
|
315 |
"multiplicity (int p) (int n) = multiplicity p n"
|
|
|
316 |
by (auto simp add: multiplicity_int_def)
|
|
|
317 |
|
|
|
318 |
declare TransferMorphism_int_nat[transfer add return:
|
|
|
319 |
transfer_int_nat_prime_factors transfer_int_nat_prime_factors_closure
|
|
|
320 |
transfer_int_nat_multiplicity]
|
|
|
321 |
|
|
|
322 |
|
|
|
323 |
subsection {* Properties of prime factors and multiplicity for nats and ints *}
|
|
|
324 |
|
|
|
325 |
lemma int_prime_factors_ge_0 [elim]: "p : prime_factors (n::int) \<Longrightarrow> p >= 0"
|
|
|
326 |
by (unfold prime_factors_int_def, auto)
|
|
|
327 |
|
|
|
328 |
lemma nat_prime_factors_prime [intro]: "p : prime_factors (n::nat) \<Longrightarrow> prime p"
|
|
|
329 |
apply (case_tac "n = 0")
|
|
|
330 |
apply (simp add: prime_factors_nat_def multiset_prime_factorization_def)
|
|
|
331 |
apply (auto simp add: prime_factors_nat_def multiset_prime_factorization)
|
|
|
332 |
done
|
|
|
333 |
|
|
|
334 |
lemma int_prime_factors_prime [intro]:
|
|
|
335 |
assumes "n >= 0" and "p : prime_factors (n::int)"
|
|
|
336 |
shows "prime p"
|
|
|
337 |
|
|
|
338 |
apply (rule nat_prime_factors_prime [transferred, of n p])
|
|
|
339 |
using prems apply auto
|
|
|
340 |
done
|
|
|
341 |
|
|
|
342 |
lemma nat_prime_factors_gt_0 [elim]: "p : prime_factors x \<Longrightarrow> p > (0::nat)"
|
|
|
343 |
by (frule nat_prime_factors_prime, auto)
|
|
|
344 |
|
|
|
345 |
lemma int_prime_factors_gt_0 [elim]: "x >= 0 \<Longrightarrow> p : prime_factors x \<Longrightarrow>
|
|
|
346 |
p > (0::int)"
|
|
|
347 |
by (frule (1) int_prime_factors_prime, auto)
|
|
|
348 |
|
|
|
349 |
lemma nat_prime_factors_finite [iff]: "finite (prime_factors (n::nat))"
|
|
|
350 |
by (unfold prime_factors_nat_def, auto)
|
|
|
351 |
|
|
|
352 |
lemma int_prime_factors_finite [iff]: "finite (prime_factors (n::int))"
|
|
|
353 |
by (unfold prime_factors_int_def, auto)
|
|
|
354 |
|
|
|
355 |
lemma nat_prime_factors_altdef: "prime_factors (n::nat) =
|
|
|
356 |
{p. multiplicity p n > 0}"
|
|
|
357 |
by (force simp add: prime_factors_nat_def multiplicity_nat_def)
|
|
|
358 |
|
|
|
359 |
lemma int_prime_factors_altdef: "prime_factors (n::int) =
|
|
|
360 |
{p. p >= 0 & multiplicity p n > 0}"
|
|
|
361 |
apply (unfold prime_factors_int_def multiplicity_int_def)
|
|
|
362 |
apply (subst nat_prime_factors_altdef)
|
|
|
363 |
apply (auto simp add: image_def)
|
|
|
364 |
done
|
|
|
365 |
|
|
|
366 |
lemma nat_prime_factorization: "(n::nat) > 0 \<Longrightarrow>
|
|
|
367 |
n = (PROD p : prime_factors n. p^(multiplicity p n))"
|
|
|
368 |
by (frule multiset_prime_factorization,
|
|
|
369 |
simp add: prime_factors_nat_def multiplicity_nat_def msetprod_def)
|
|
|
370 |
|
|
|
371 |
thm nat_prime_factorization [transferred]
|
|
|
372 |
|
|
|
373 |
lemma int_prime_factorization:
|
|
|
374 |
assumes "(n::int) > 0"
|
|
|
375 |
shows "n = (PROD p : prime_factors n. p^(multiplicity p n))"
|
|
|
376 |
|
|
|
377 |
apply (rule nat_prime_factorization [transferred, of n])
|
|
|
378 |
using prems apply auto
|
|
|
379 |
done
|
|
|
380 |
|
|
|
381 |
lemma nat_neq_zero_eq_gt_zero: "((x::nat) ~= 0) = (x > 0)"
|
|
|
382 |
by auto
|
|
|
383 |
|
|
|
384 |
lemma nat_prime_factorization_unique:
|
|
|
385 |
"S = { (p::nat) . f p > 0} \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
|
|
|
386 |
n = (PROD p : S. p^(f p)) \<Longrightarrow>
|
|
|
387 |
S = prime_factors n & (ALL p. f p = multiplicity p n)"
|
|
|
388 |
apply (subgoal_tac "multiset_prime_factorization n = Abs_multiset
|
|
|
389 |
f")
|
|
|
390 |
apply (unfold prime_factors_nat_def multiplicity_nat_def)
|
|
|
391 |
apply (simp add: set_of_def count_def Abs_multiset_inverse multiset_def)
|
|
|
392 |
apply (unfold multiset_prime_factorization_def)
|
|
|
393 |
apply (subgoal_tac "n > 0")
|
|
|
394 |
prefer 2
|
|
|
395 |
apply force
|
|
|
396 |
apply (subst if_P, assumption)
|
|
|
397 |
apply (rule the1_equality)
|
|
|
398 |
apply (rule ex_ex1I)
|
|
|
399 |
apply (rule multiset_prime_factorization_exists, assumption)
|
|
|
400 |
apply (rule multiset_prime_factorization_unique)
|
|
|
401 |
apply force
|
|
|
402 |
apply force
|
|
|
403 |
apply force
|
|
|
404 |
unfolding set_of_def count_def msetprod_def
|
|
|
405 |
apply (subgoal_tac "f : multiset")
|
|
|
406 |
apply (auto simp only: Abs_multiset_inverse)
|
|
|
407 |
unfolding multiset_def apply force
|
|
|
408 |
done
|
|
|
409 |
|
|
|
410 |
lemma nat_prime_factors_characterization: "S = {p. 0 < f (p::nat)} \<Longrightarrow>
|
|
|
411 |
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
|
|
|
412 |
prime_factors n = S"
|
|
|
413 |
by (rule nat_prime_factorization_unique [THEN conjunct1, symmetric],
|
|
|
414 |
assumption+)
|
|
|
415 |
|
|
|
416 |
lemma nat_prime_factors_characterization':
|
|
|
417 |
"finite {p. 0 < f (p::nat)} \<Longrightarrow>
|
|
|
418 |
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
|
|
|
419 |
prime_factors (PROD p | 0 < f p . p ^ f p) = {p. 0 < f p}"
|
|
|
420 |
apply (rule nat_prime_factors_characterization)
|
|
|
421 |
apply auto
|
|
|
422 |
done
|
|
|
423 |
|
|
|
424 |
(* A minor glitch:*)
|
|
|
425 |
|
|
|
426 |
thm nat_prime_factors_characterization'
|
|
|
427 |
[where f = "%x. f (int (x::nat))",
|
|
|
428 |
transferred direction: nat "op <= (0::int)", rule_format]
|
|
|
429 |
|
|
|
430 |
(*
|
|
|
431 |
Transfer isn't smart enough to know that the "0 < f p" should
|
|
|
432 |
remain a comparison between nats. But the transfer still works.
|
|
|
433 |
*)
|
|
|
434 |
|
|
|
435 |
lemma int_primes_characterization' [rule_format]:
|
|
|
436 |
"finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
|
|
|
437 |
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
|
|
|
438 |
prime_factors (PROD p | p >=0 & 0 < f p . p ^ f p) =
|
|
|
439 |
{p. p >= 0 & 0 < f p}"
|
|
|
440 |
|
|
|
441 |
apply (insert nat_prime_factors_characterization'
|
|
|
442 |
[where f = "%x. f (int (x::nat))",
|
|
|
443 |
transferred direction: nat "op <= (0::int)"])
|
|
|
444 |
apply auto
|
|
|
445 |
done
|
|
|
446 |
|
|
|
447 |
lemma int_prime_factors_characterization: "S = {p. 0 < f (p::int)} \<Longrightarrow>
|
|
|
448 |
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
|
|
|
449 |
prime_factors n = S"
|
|
|
450 |
apply simp
|
|
|
451 |
apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
|
|
|
452 |
apply (simp only:)
|
|
|
453 |
apply (subst int_primes_characterization')
|
|
|
454 |
apply auto
|
|
|
455 |
apply (auto simp add: int_prime_ge_0)
|
|
|
456 |
done
|
|
|
457 |
|
|
|
458 |
lemma nat_multiplicity_characterization: "S = {p. 0 < f (p::nat)} \<Longrightarrow>
|
|
|
459 |
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
|
|
|
460 |
multiplicity p n = f p"
|
|
|
461 |
by (frule nat_prime_factorization_unique [THEN conjunct2, rule_format,
|
|
|
462 |
symmetric], auto)
|
|
|
463 |
|
|
|
464 |
lemma nat_multiplicity_characterization': "finite {p. 0 < f (p::nat)} \<longrightarrow>
|
|
|
465 |
(ALL p. 0 < f p \<longrightarrow> prime p) \<longrightarrow>
|
|
|
466 |
multiplicity p (PROD p | 0 < f p . p ^ f p) = f p"
|
|
|
467 |
apply (rule impI)+
|
|
|
468 |
apply (rule nat_multiplicity_characterization)
|
|
|
469 |
apply auto
|
|
|
470 |
done
|
|
|
471 |
|
|
|
472 |
lemma int_multiplicity_characterization' [rule_format]:
|
|
|
473 |
"finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
|
|
|
474 |
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow> p >= 0 \<Longrightarrow>
|
|
|
475 |
multiplicity p (PROD p | p >= 0 & 0 < f p . p ^ f p) = f p"
|
|
|
476 |
|
|
|
477 |
apply (insert nat_multiplicity_characterization'
|
|
|
478 |
[where f = "%x. f (int (x::nat))",
|
|
|
479 |
transferred direction: nat "op <= (0::int)", rule_format])
|
|
|
480 |
apply auto
|
|
|
481 |
done
|
|
|
482 |
|
|
|
483 |
lemma int_multiplicity_characterization: "S = {p. 0 < f (p::int)} \<Longrightarrow>
|
|
|
484 |
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
|
|
|
485 |
p >= 0 \<Longrightarrow> multiplicity p n = f p"
|
|
|
486 |
apply simp
|
|
|
487 |
apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
|
|
|
488 |
apply (simp only:)
|
|
|
489 |
apply (subst int_multiplicity_characterization')
|
|
|
490 |
apply auto
|
|
|
491 |
apply (auto simp add: int_prime_ge_0)
|
|
|
492 |
done
|
|
|
493 |
|
|
|
494 |
lemma nat_multiplicity_zero [simp]: "multiplicity (p::nat) 0 = 0"
|
|
|
495 |
by (simp add: multiplicity_nat_def multiset_prime_factorization_def)
|
|
|
496 |
|
|
|
497 |
lemma int_multiplicity_zero [simp]: "multiplicity (p::int) 0 = 0"
|
|
|
498 |
by (simp add: multiplicity_int_def)
|
|
|
499 |
|
|
|
500 |
lemma nat_multiplicity_one [simp]: "multiplicity p (1::nat) = 0"
|
|
|
501 |
by (subst nat_multiplicity_characterization [where f = "%x. 0"], auto)
|
|
|
502 |
|
|
|
503 |
lemma int_multiplicity_one [simp]: "multiplicity p (1::int) = 0"
|
|
|
504 |
by (simp add: multiplicity_int_def)
|
|
|
505 |
|
|
|
506 |
lemma nat_multiplicity_prime [simp]: "prime (p::nat) \<Longrightarrow> multiplicity p p = 1"
|
|
|
507 |
apply (subst nat_multiplicity_characterization
|
|
|
508 |
[where f = "(%q. if q = p then 1 else 0)"])
|
|
|
509 |
apply auto
|
|
|
510 |
apply (case_tac "x = p")
|
|
|
511 |
apply auto
|
|
|
512 |
done
|
|
|
513 |
|
|
|
514 |
lemma int_multiplicity_prime [simp]: "prime (p::int) \<Longrightarrow> multiplicity p p = 1"
|
|
|
515 |
unfolding prime_int_def multiplicity_int_def by auto
|
|
|
516 |
|
|
|
517 |
lemma nat_multiplicity_prime_power [simp]: "prime (p::nat) \<Longrightarrow>
|
|
|
518 |
multiplicity p (p^n) = n"
|
|
|
519 |
apply (case_tac "n = 0")
|
|
|
520 |
apply auto
|
|
|
521 |
apply (subst nat_multiplicity_characterization
|
|
|
522 |
[where f = "(%q. if q = p then n else 0)"])
|
|
|
523 |
apply auto
|
|
|
524 |
apply (case_tac "x = p")
|
|
|
525 |
apply auto
|
|
|
526 |
done
|
|
|
527 |
|
|
|
528 |
lemma int_multiplicity_prime_power [simp]: "prime (p::int) \<Longrightarrow>
|
|
|
529 |
multiplicity p (p^n) = n"
|
|
|
530 |
apply (frule int_prime_ge_0)
|
|
|
531 |
apply (auto simp add: prime_int_def multiplicity_int_def nat_power_eq)
|
|
|
532 |
done
|
|
|
533 |
|
|
|
534 |
lemma nat_multiplicity_nonprime [simp]: "~ prime (p::nat) \<Longrightarrow>
|
|
|
535 |
multiplicity p n = 0"
|
|
|
536 |
apply (case_tac "n = 0")
|
|
|
537 |
apply auto
|
|
|
538 |
apply (frule multiset_prime_factorization)
|
|
|
539 |
apply (auto simp add: set_of_def multiplicity_nat_def)
|
|
|
540 |
done
|
|
|
541 |
|
|
|
542 |
lemma int_multiplicity_nonprime [simp]: "~ prime (p::int) \<Longrightarrow> multiplicity p n = 0"
|
|
|
543 |
by (unfold multiplicity_int_def prime_int_def, auto)
|
|
|
544 |
|
|
|
545 |
lemma nat_multiplicity_not_factor [simp]:
|
|
|
546 |
"p ~: prime_factors (n::nat) \<Longrightarrow> multiplicity p n = 0"
|
|
|
547 |
by (subst (asm) nat_prime_factors_altdef, auto)
|
|
|
548 |
|
|
|
549 |
lemma int_multiplicity_not_factor [simp]:
|
|
|
550 |
"p >= 0 \<Longrightarrow> p ~: prime_factors (n::int) \<Longrightarrow> multiplicity p n = 0"
|
|
|
551 |
by (subst (asm) int_prime_factors_altdef, auto)
|
|
|
552 |
|
|
|
553 |
lemma nat_multiplicity_product_aux: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow>
|
|
|
554 |
(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
|
|
|
555 |
(ALL p. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
|
|
|
556 |
apply (rule nat_prime_factorization_unique)
|
|
|
557 |
apply (simp only: nat_prime_factors_altdef)
|
|
|
558 |
apply auto
|
|
|
559 |
apply (subst power_add)
|
|
|
560 |
apply (subst setprod_timesf)
|
|
|
561 |
apply (rule arg_cong2)back back
|
|
|
562 |
apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors k Un
|
|
|
563 |
(prime_factors l - prime_factors k)")
|
|
|
564 |
apply (erule ssubst)
|
|
|
565 |
apply (subst setprod_Un_disjoint)
|
|
|
566 |
apply auto
|
|
|
567 |
apply (subgoal_tac "(\<Prod>p\<in>prime_factors l - prime_factors k. p ^ multiplicity p k) =
|
|
|
568 |
(\<Prod>p\<in>prime_factors l - prime_factors k. 1)")
|
|
|
569 |
apply (erule ssubst)
|
|
|
570 |
apply (simp add: setprod_1)
|
|
|
571 |
apply (erule nat_prime_factorization)
|
|
|
572 |
apply (rule setprod_cong, auto)
|
|
|
573 |
apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors l Un
|
|
|
574 |
(prime_factors k - prime_factors l)")
|
|
|
575 |
apply (erule ssubst)
|
|
|
576 |
apply (subst setprod_Un_disjoint)
|
|
|
577 |
apply auto
|
|
|
578 |
apply (subgoal_tac "(\<Prod>p\<in>prime_factors k - prime_factors l. p ^ multiplicity p l) =
|
|
|
579 |
(\<Prod>p\<in>prime_factors k - prime_factors l. 1)")
|
|
|
580 |
apply (erule ssubst)
|
|
|
581 |
apply (simp add: setprod_1)
|
|
|
582 |
apply (erule nat_prime_factorization)
|
|
|
583 |
apply (rule setprod_cong, auto)
|
|
|
584 |
done
|
|
|
585 |
|
|
|
586 |
(* transfer doesn't have the same problem here with the right
|
|
|
587 |
choice of rules. *)
|
|
|
588 |
|
|
|
589 |
lemma int_multiplicity_product_aux:
|
|
|
590 |
assumes "(k::int) > 0" and "l > 0"
|
|
|
591 |
shows
|
|
|
592 |
"(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
|
|
|
593 |
(ALL p >= 0. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
|
|
|
594 |
|
|
|
595 |
apply (rule nat_multiplicity_product_aux [transferred, of l k])
|
|
|
596 |
using prems apply auto
|
|
|
597 |
done
|
|
|
598 |
|
|
|
599 |
lemma nat_prime_factors_product: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) =
|
|
|
600 |
prime_factors k Un prime_factors l"
|
|
|
601 |
by (rule nat_multiplicity_product_aux [THEN conjunct1, symmetric])
|
|
|
602 |
|
|
|
603 |
lemma int_prime_factors_product: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) =
|
|
|
604 |
prime_factors k Un prime_factors l"
|
|
|
605 |
by (rule int_multiplicity_product_aux [THEN conjunct1, symmetric])
|
|
|
606 |
|
|
|
607 |
lemma nat_multiplicity_product: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> multiplicity p (k * l) =
|
|
|
608 |
multiplicity p k + multiplicity p l"
|
|
|
609 |
by (rule nat_multiplicity_product_aux [THEN conjunct2, rule_format,
|
|
|
610 |
symmetric])
|
|
|
611 |
|
|
|
612 |
lemma int_multiplicity_product: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> p >= 0 \<Longrightarrow>
|
|
|
613 |
multiplicity p (k * l) = multiplicity p k + multiplicity p l"
|
|
|
614 |
by (rule int_multiplicity_product_aux [THEN conjunct2, rule_format,
|
|
|
615 |
symmetric])
|
|
|
616 |
|
|
|
617 |
lemma nat_multiplicity_setprod: "finite S \<Longrightarrow> (ALL x : S. f x > 0) \<Longrightarrow>
|
|
|
618 |
multiplicity (p::nat) (PROD x : S. f x) =
|
|
|
619 |
(SUM x : S. multiplicity p (f x))"
|
|
|
620 |
apply (induct set: finite)
|
|
|
621 |
apply auto
|
|
|
622 |
apply (subst nat_multiplicity_product)
|
|
|
623 |
apply auto
|
|
|
624 |
done
|
|
|
625 |
|
|
|
626 |
(* Transfer is delicate here for two reasons: first, because there is
|
|
|
627 |
an implicit quantifier over functions (f), and, second, because the
|
|
|
628 |
product over the multiplicity should not be translated to an integer
|
|
|
629 |
product.
|
|
|
630 |
|
|
|
631 |
The way to handle the first is to use quantifier rules for functions.
|
|
|
632 |
The way to handle the second is to turn off the offending rule.
|
|
|
633 |
*)
|
|
|
634 |
|
|
|
635 |
lemma transfer_nat_int_sum_prod_closure3:
|
|
|
636 |
"(SUM x : A. int (f x)) >= 0"
|
|
|
637 |
"(PROD x : A. int (f x)) >= 0"
|
|
|
638 |
apply (rule setsum_nonneg, auto)
|
|
|
639 |
apply (rule setprod_nonneg, auto)
|
|
|
640 |
done
|
|
|
641 |
|
|
|
642 |
declare TransferMorphism_nat_int[transfer
|
|
|
643 |
add return: transfer_nat_int_sum_prod_closure3
|
|
|
644 |
del: transfer_nat_int_sum_prod2 (1)]
|
|
|
645 |
|
|
|
646 |
lemma int_multiplicity_setprod: "p >= 0 \<Longrightarrow> finite S \<Longrightarrow>
|
|
|
647 |
(ALL x : S. f x > 0) \<Longrightarrow>
|
|
|
648 |
multiplicity (p::int) (PROD x : S. f x) =
|
|
|
649 |
(SUM x : S. multiplicity p (f x))"
|
|
|
650 |
|
|
|
651 |
apply (frule nat_multiplicity_setprod
|
|
|
652 |
[where f = "%x. nat(int(nat(f x)))",
|
|
|
653 |
transferred direction: nat "op <= (0::int)"])
|
|
|
654 |
apply auto
|
|
|
655 |
apply (subst (asm) setprod_cong)
|
|
|
656 |
apply (rule refl)
|
|
|
657 |
apply (rule if_P)
|
|
|
658 |
apply auto
|
|
|
659 |
apply (rule setsum_cong)
|
|
|
660 |
apply auto
|
|
|
661 |
done
|
|
|
662 |
|
|
|
663 |
declare TransferMorphism_nat_int[transfer
|
|
|
664 |
add return: transfer_nat_int_sum_prod2 (1)]
|
|
|
665 |
|
|
|
666 |
lemma nat_multiplicity_prod_prime_powers:
|
|
|
667 |
"finite S \<Longrightarrow> (ALL p : S. prime (p::nat)) \<Longrightarrow>
|
|
|
668 |
multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
|
|
|
669 |
apply (subgoal_tac "(PROD p : S. p ^ f p) =
|
|
|
670 |
(PROD p : S. p ^ (%x. if x : S then f x else 0) p)")
|
|
|
671 |
apply (erule ssubst)
|
|
|
672 |
apply (subst nat_multiplicity_characterization)
|
|
|
673 |
prefer 5 apply (rule refl)
|
|
|
674 |
apply (rule refl)
|
|
|
675 |
apply auto
|
|
|
676 |
apply (subst setprod_mono_one_right)
|
|
|
677 |
apply assumption
|
|
|
678 |
prefer 3
|
|
|
679 |
apply (rule setprod_cong)
|
|
|
680 |
apply (rule refl)
|
|
|
681 |
apply auto
|
|
|
682 |
done
|
|
|
683 |
|
|
|
684 |
(* Here the issue with transfer is the implicit quantifier over S *)
|
|
|
685 |
|
|
|
686 |
lemma int_multiplicity_prod_prime_powers:
|
|
|
687 |
"(p::int) >= 0 \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
|
|
|
688 |
multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
|
|
|
689 |
|
|
|
690 |
apply (subgoal_tac "int ` nat ` S = S")
|
|
|
691 |
apply (frule nat_multiplicity_prod_prime_powers [where f = "%x. f(int x)"
|
|
|
692 |
and S = "nat ` S", transferred])
|
|
|
693 |
apply auto
|
|
|
694 |
apply (subst prime_int_def [symmetric])
|
|
|
695 |
apply auto
|
|
|
696 |
apply (subgoal_tac "xb >= 0")
|
|
|
697 |
apply force
|
|
|
698 |
apply (rule int_prime_ge_0)
|
|
|
699 |
apply force
|
|
|
700 |
apply (subst transfer_nat_int_set_return_embed)
|
|
|
701 |
apply (unfold nat_set_def, auto)
|
|
|
702 |
done
|
|
|
703 |
|
|
|
704 |
lemma nat_multiplicity_distinct_prime_power: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow>
|
|
|
705 |
p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
|
|
|
706 |
apply (subgoal_tac "q^n = setprod (%x. x^n) {q}")
|
|
|
707 |
apply (erule ssubst)
|
|
|
708 |
apply (subst nat_multiplicity_prod_prime_powers)
|
|
|
709 |
apply auto
|
|
|
710 |
done
|
|
|
711 |
|
|
|
712 |
lemma int_multiplicity_distinct_prime_power: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow>
|
|
|
713 |
p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
|
|
|
714 |
apply (frule int_prime_ge_0 [of q])
|
|
|
715 |
apply (frule nat_multiplicity_distinct_prime_power [transferred leaving: n])
|
|
|
716 |
prefer 4
|
|
|
717 |
apply assumption
|
|
|
718 |
apply auto
|
|
|
719 |
done
|
|
|
720 |
|
|
|
721 |
lemma nat_dvd_multiplicity:
|
|
|
722 |
"(0::nat) < y \<Longrightarrow> x dvd y \<Longrightarrow> multiplicity p x <= multiplicity p y"
|
|
|
723 |
apply (case_tac "x = 0")
|
|
|
724 |
apply (auto simp add: dvd_def nat_multiplicity_product)
|
|
|
725 |
done
|
|
|
726 |
|
|
|
727 |
lemma int_dvd_multiplicity:
|
|
|
728 |
"(0::int) < y \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> p >= 0 \<Longrightarrow>
|
|
|
729 |
multiplicity p x <= multiplicity p y"
|
|
|
730 |
apply (case_tac "x = 0")
|
|
|
731 |
apply (auto simp add: dvd_def)
|
|
|
732 |
apply (subgoal_tac "0 < k")
|
|
|
733 |
apply (auto simp add: int_multiplicity_product)
|
|
|
734 |
apply (erule zero_less_mult_pos)
|
|
|
735 |
apply arith
|
|
|
736 |
done
|
|
|
737 |
|
|
|
738 |
lemma nat_dvd_prime_factors [intro]:
|
|
|
739 |
"0 < (y::nat) \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
|
|
|
740 |
apply (simp only: nat_prime_factors_altdef)
|
|
|
741 |
apply auto
|
|
|
742 |
apply (frule nat_dvd_multiplicity)
|
|
|
743 |
apply auto
|
|
|
744 |
(* It is a shame that auto and arith don't get this. *)
|
|
|
745 |
apply (erule order_less_le_trans)back
|
|
|
746 |
apply assumption
|
|
|
747 |
done
|
|
|
748 |
|
|
|
749 |
lemma int_dvd_prime_factors [intro]:
|
|
|
750 |
"0 < (y::int) \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
|
|
|
751 |
apply (auto simp add: int_prime_factors_altdef)
|
|
|
752 |
apply (erule order_less_le_trans)
|
|
|
753 |
apply (rule int_dvd_multiplicity)
|
|
|
754 |
apply auto
|
|
|
755 |
done
|
|
|
756 |
|
|
|
757 |
lemma nat_multiplicity_dvd: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
|
|
|
758 |
ALL p. multiplicity p x <= multiplicity p y \<Longrightarrow>
|
|
|
759 |
x dvd y"
|
|
|
760 |
apply (subst nat_prime_factorization [of x], assumption)
|
|
|
761 |
apply (subst nat_prime_factorization [of y], assumption)
|
|
|
762 |
apply (rule setprod_dvd_setprod_subset2)
|
|
|
763 |
apply force
|
|
|
764 |
apply (subst nat_prime_factors_altdef)+
|
|
|
765 |
apply auto
|
|
|
766 |
(* Again, a shame that auto and arith don't get this. *)
|
|
|
767 |
apply (drule_tac x = xa in spec, auto)
|
|
|
768 |
apply (rule le_imp_power_dvd)
|
|
|
769 |
apply blast
|
|
|
770 |
done
|
|
|
771 |
|
|
|
772 |
lemma int_multiplicity_dvd: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
|
|
|
773 |
ALL p >= 0. multiplicity p x <= multiplicity p y \<Longrightarrow>
|
|
|
774 |
x dvd y"
|
|
|
775 |
apply (subst int_prime_factorization [of x], assumption)
|
|
|
776 |
apply (subst int_prime_factorization [of y], assumption)
|
|
|
777 |
apply (rule setprod_dvd_setprod_subset2)
|
|
|
778 |
apply force
|
|
|
779 |
apply (subst int_prime_factors_altdef)+
|
|
|
780 |
apply auto
|
|
|
781 |
apply (rule dvd_power_le)
|
|
|
782 |
apply auto
|
|
|
783 |
apply (drule_tac x = xa in spec)
|
|
|
784 |
apply (erule impE)
|
|
|
785 |
apply auto
|
|
|
786 |
done
|
|
|
787 |
|
|
|
788 |
lemma nat_multiplicity_dvd': "(0::nat) < x \<Longrightarrow>
|
|
|
789 |
\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
|
|
|
790 |
apply (cases "y = 0")
|
|
|
791 |
apply auto
|
|
|
792 |
apply (rule nat_multiplicity_dvd, auto)
|
|
|
793 |
apply (case_tac "prime p")
|
|
|
794 |
apply auto
|
|
|
795 |
done
|
|
|
796 |
|
|
|
797 |
lemma int_multiplicity_dvd': "(0::int) < x \<Longrightarrow> 0 <= y \<Longrightarrow>
|
|
|
798 |
\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
|
|
|
799 |
apply (cases "y = 0")
|
|
|
800 |
apply auto
|
|
|
801 |
apply (rule int_multiplicity_dvd, auto)
|
|
|
802 |
apply (case_tac "prime p")
|
|
|
803 |
apply auto
|
|
|
804 |
done
|
|
|
805 |
|
|
|
806 |
lemma nat_dvd_multiplicity_eq: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
|
|
|
807 |
(x dvd y) = (ALL p. multiplicity p x <= multiplicity p y)"
|
|
|
808 |
by (auto intro: nat_dvd_multiplicity nat_multiplicity_dvd)
|
|
|
809 |
|
|
|
810 |
lemma int_dvd_multiplicity_eq: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
|
|
|
811 |
(x dvd y) = (ALL p >= 0. multiplicity p x <= multiplicity p y)"
|
|
|
812 |
by (auto intro: int_dvd_multiplicity int_multiplicity_dvd)
|
|
|
813 |
|
|
|
814 |
lemma nat_prime_factors_altdef2: "(n::nat) > 0 \<Longrightarrow>
|
|
|
815 |
(p : prime_factors n) = (prime p & p dvd n)"
|
|
|
816 |
apply (case_tac "prime p")
|
|
|
817 |
apply auto
|
|
|
818 |
apply (subst nat_prime_factorization [where n = n], assumption)
|
|
|
819 |
apply (rule dvd_trans)
|
|
|
820 |
apply (rule dvd_power [where x = p and n = "multiplicity p n"])
|
|
|
821 |
apply (subst (asm) nat_prime_factors_altdef, force)
|
|
|
822 |
apply (rule dvd_setprod)
|
|
|
823 |
apply auto
|
|
|
824 |
apply (subst nat_prime_factors_altdef)
|
|
|
825 |
apply (subst (asm) nat_dvd_multiplicity_eq)
|
|
|
826 |
apply auto
|
|
|
827 |
apply (drule spec [where x = p])
|
|
|
828 |
apply auto
|
|
|
829 |
done
|
|
|
830 |
|
|
|
831 |
lemma int_prime_factors_altdef2:
|
|
|
832 |
assumes "(n::int) > 0"
|
|
|
833 |
shows "(p : prime_factors n) = (prime p & p dvd n)"
|
|
|
834 |
|
|
|
835 |
apply (case_tac "p >= 0")
|
|
|
836 |
apply (rule nat_prime_factors_altdef2 [transferred])
|
|
|
837 |
using prems apply auto
|
|
|
838 |
apply (auto simp add: int_prime_ge_0 int_prime_factors_ge_0)
|
|
|
839 |
done
|
|
|
840 |
|
|
|
841 |
lemma nat_multiplicity_eq:
|
|
|
842 |
fixes x and y::nat
|
|
|
843 |
assumes [arith]: "x > 0" "y > 0" and
|
|
|
844 |
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
|
|
|
845 |
shows "x = y"
|
|
|
846 |
|
|
|
847 |
apply (rule dvd_anti_sym)
|
|
|
848 |
apply (auto intro: nat_multiplicity_dvd')
|
|
|
849 |
done
|
|
|
850 |
|
|
|
851 |
lemma int_multiplicity_eq:
|
|
|
852 |
fixes x and y::int
|
|
|
853 |
assumes [arith]: "x > 0" "y > 0" and
|
|
|
854 |
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
|
|
|
855 |
shows "x = y"
|
|
|
856 |
|
|
|
857 |
apply (rule dvd_anti_sym [transferred])
|
|
|
858 |
apply (auto intro: int_multiplicity_dvd')
|
|
|
859 |
done
|
|
|
860 |
|
|
|
861 |
|
|
|
862 |
subsection {* An application *}
|
|
|
863 |
|
|
|
864 |
lemma nat_gcd_eq:
|
|
|
865 |
assumes pos [arith]: "x > 0" "y > 0"
|
|
|
866 |
shows "gcd (x::nat) y =
|
|
|
867 |
(PROD p: prime_factors x Un prime_factors y.
|
|
|
868 |
p ^ (min (multiplicity p x) (multiplicity p y)))"
|
|
|
869 |
proof -
|
|
|
870 |
def z == "(PROD p: prime_factors (x::nat) Un prime_factors y.
|
|
|
871 |
p ^ (min (multiplicity p x) (multiplicity p y)))"
|
|
|
872 |
have [arith]: "z > 0"
|
|
|
873 |
unfolding z_def by (rule setprod_pos_nat, auto)
|
|
|
874 |
have aux: "!!p. prime p \<Longrightarrow> multiplicity p z =
|
|
|
875 |
min (multiplicity p x) (multiplicity p y)"
|
|
|
876 |
unfolding z_def
|
|
|
877 |
apply (subst nat_multiplicity_prod_prime_powers)
|
|
|
878 |
apply (auto simp add: nat_multiplicity_not_factor)
|
|
|
879 |
done
|
|
|
880 |
have "z dvd x"
|
|
|
881 |
by (intro nat_multiplicity_dvd', auto simp add: aux)
|
|
|
882 |
moreover have "z dvd y"
|
|
|
883 |
by (intro nat_multiplicity_dvd', auto simp add: aux)
|
|
|
884 |
moreover have "ALL w. w dvd x & w dvd y \<longrightarrow> w dvd z"
|
|
|
885 |
apply auto
|
|
|
886 |
apply (case_tac "w = 0", auto)
|
|
|
887 |
apply (erule nat_multiplicity_dvd')
|
|
|
888 |
apply (auto intro: nat_dvd_multiplicity simp add: aux)
|
|
|
889 |
done
|
|
|
890 |
ultimately have "z = gcd x y"
|
|
|
891 |
by (subst nat_gcd_unique [symmetric], blast)
|
|
|
892 |
thus ?thesis
|
|
|
893 |
unfolding z_def by auto
|
|
|
894 |
qed
|
|
|
895 |
|
|
|
896 |
lemma nat_lcm_eq:
|
|
|
897 |
assumes pos [arith]: "x > 0" "y > 0"
|
|
|
898 |
shows "lcm (x::nat) y =
|
|
|
899 |
(PROD p: prime_factors x Un prime_factors y.
|
|
|
900 |
p ^ (max (multiplicity p x) (multiplicity p y)))"
|
|
|
901 |
proof -
|
|
|
902 |
def z == "(PROD p: prime_factors (x::nat) Un prime_factors y.
|
|
|
903 |
p ^ (max (multiplicity p x) (multiplicity p y)))"
|
|
|
904 |
have [arith]: "z > 0"
|
|
|
905 |
unfolding z_def by (rule setprod_pos_nat, auto)
|
|
|
906 |
have aux: "!!p. prime p \<Longrightarrow> multiplicity p z =
|
|
|
907 |
max (multiplicity p x) (multiplicity p y)"
|
|
|
908 |
unfolding z_def
|
|
|
909 |
apply (subst nat_multiplicity_prod_prime_powers)
|
|
|
910 |
apply (auto simp add: nat_multiplicity_not_factor)
|
|
|
911 |
done
|
|
|
912 |
have "x dvd z"
|
|
|
913 |
by (intro nat_multiplicity_dvd', auto simp add: aux)
|
|
|
914 |
moreover have "y dvd z"
|
|
|
915 |
by (intro nat_multiplicity_dvd', auto simp add: aux)
|
|
|
916 |
moreover have "ALL w. x dvd w & y dvd w \<longrightarrow> z dvd w"
|
|
|
917 |
apply auto
|
|
|
918 |
apply (case_tac "w = 0", auto)
|
|
|
919 |
apply (rule nat_multiplicity_dvd')
|
|
|
920 |
apply (auto intro: nat_dvd_multiplicity simp add: aux)
|
|
|
921 |
done
|
|
|
922 |
ultimately have "z = lcm x y"
|
|
|
923 |
by (subst nat_lcm_unique [symmetric], blast)
|
|
|
924 |
thus ?thesis
|
|
|
925 |
unfolding z_def by auto
|
|
|
926 |
qed
|
|
|
927 |
|
|
|
928 |
lemma nat_multiplicity_gcd:
|
|
|
929 |
assumes [arith]: "x > 0" "y > 0"
|
|
|
930 |
shows "multiplicity (p::nat) (gcd x y) =
|
|
|
931 |
min (multiplicity p x) (multiplicity p y)"
|
|
|
932 |
|
|
|
933 |
apply (subst nat_gcd_eq)
|
|
|
934 |
apply auto
|
|
|
935 |
apply (subst nat_multiplicity_prod_prime_powers)
|
|
|
936 |
apply auto
|
|
|
937 |
done
|
|
|
938 |
|
|
|
939 |
lemma nat_multiplicity_lcm:
|
|
|
940 |
assumes [arith]: "x > 0" "y > 0"
|
|
|
941 |
shows "multiplicity (p::nat) (lcm x y) =
|
|
|
942 |
max (multiplicity p x) (multiplicity p y)"
|
|
|
943 |
|
|
|
944 |
apply (subst nat_lcm_eq)
|
|
|
945 |
apply auto
|
|
|
946 |
apply (subst nat_multiplicity_prod_prime_powers)
|
|
|
947 |
apply auto
|
|
|
948 |
done
|
|
|
949 |
|
|
|
950 |
lemma nat_gcd_lcm_distrib: "gcd (x::nat) (lcm y z) = lcm (gcd x y) (gcd x z)"
|
|
|
951 |
apply (case_tac "x = 0 | y = 0 | z = 0")
|
|
|
952 |
apply auto
|
|
|
953 |
apply (rule nat_multiplicity_eq)
|
|
|
954 |
apply (auto simp add: nat_multiplicity_gcd nat_multiplicity_lcm
|
|
|
955 |
nat_lcm_pos)
|
|
|
956 |
done
|
|
|
957 |
|
|
|
958 |
lemma int_gcd_lcm_distrib: "gcd (x::int) (lcm y z) = lcm (gcd x y) (gcd x z)"
|
|
|
959 |
apply (subst (1 2 3) int_gcd_abs)
|
|
|
960 |
apply (subst int_lcm_abs)
|
|
|
961 |
apply (subst (2) abs_of_nonneg)
|
|
|
962 |
apply force
|
|
|
963 |
apply (rule nat_gcd_lcm_distrib [transferred])
|
|
|
964 |
apply auto
|
|
|
965 |
done
|
|
|
966 |
|
|
|
967 |
end
|