| author | blanchet | 
| Fri, 10 Jan 2014 16:18:18 +0100 | |
| changeset 54979 | d7593bfccf25 | 
| parent 41959 | b460124855b8 | 
| child 58880 | 0baae4311a9f | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/HOLCF/Adm.thy | 
| 25895 
0eaadfa8889e
converted adm_all and adm_ball to rule_format; cleaned up
 huffman parents: 
25880diff
changeset | 2 | Author: Franz Regensburger and Brian Huffman | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 3 | *) | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 4 | |
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 5 | header {* Admissibility and compactness *}
 | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 6 | |
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 7 | theory Adm | 
| 27181 | 8 | imports Cont | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 9 | begin | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 10 | |
| 36452 | 11 | default_sort cpo | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 12 | |
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 13 | subsection {* Definitions *}
 | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 14 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 15 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 16 |   adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 17 | "adm P = (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))" | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 18 | |
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 19 | lemma admI: | 
| 16623 
f3fcfa388ecb
cleaned up; added adm_less to adm_lemmas; added subsection headings
 huffman parents: 
16565diff
changeset | 20 | "(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P" | 
| 25895 
0eaadfa8889e
converted adm_all and adm_ball to rule_format; cleaned up
 huffman parents: 
25880diff
changeset | 21 | unfolding adm_def by fast | 
| 
0eaadfa8889e
converted adm_all and adm_ball to rule_format; cleaned up
 huffman parents: 
25880diff
changeset | 22 | |
| 25925 | 23 | lemma admD: "\<lbrakk>adm P; chain Y; \<And>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)" | 
| 25895 
0eaadfa8889e
converted adm_all and adm_ball to rule_format; cleaned up
 huffman parents: 
25880diff
changeset | 24 | unfolding adm_def by fast | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 25 | |
| 27181 | 26 | lemma admD2: "\<lbrakk>adm (\<lambda>x. \<not> P x); chain Y; P (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. P (Y i)" | 
| 27 | unfolding adm_def by fast | |
| 28 | ||
| 16565 | 29 | lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P" | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 30 | by (rule admI, erule spec) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 31 | |
| 16623 
f3fcfa388ecb
cleaned up; added adm_less to adm_lemmas; added subsection headings
 huffman parents: 
16565diff
changeset | 32 | subsection {* Admissibility on chain-finite types *}
 | 
| 
f3fcfa388ecb
cleaned up; added adm_less to adm_lemmas; added subsection headings
 huffman parents: 
16565diff
changeset | 33 | |
| 40623 | 34 | text {* For chain-finite (easy) types every formula is admissible. *}
 | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 35 | |
| 40623 | 36 | lemma adm_chfin [simp]: "adm (P::'a::chfin \<Rightarrow> bool)" | 
| 25921 | 37 | by (rule admI, frule chfin, auto simp add: maxinch_is_thelub) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 38 | |
| 16623 
f3fcfa388ecb
cleaned up; added adm_less to adm_lemmas; added subsection headings
 huffman parents: 
16565diff
changeset | 39 | subsection {* Admissibility of special formulae and propagation *}
 | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 40 | |
| 40007 | 41 | lemma adm_const [simp]: "adm (\<lambda>x. t)" | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 42 | by (rule admI, simp) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 43 | |
| 40007 | 44 | lemma adm_conj [simp]: | 
| 45 | "\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)" | |
| 25925 | 46 | by (fast intro: admI elim: admD) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 47 | |
| 40007 | 48 | lemma adm_all [simp]: | 
| 49 | "(\<And>y. adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P x y)" | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 50 | by (fast intro: admI elim: admD) | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 51 | |
| 40007 | 52 | lemma adm_ball [simp]: | 
| 53 | "(\<And>y. y \<in> A \<Longrightarrow> adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P x y)" | |
| 17586 | 54 | by (fast intro: admI elim: admD) | 
| 55 | ||
| 40007 | 56 | text {* Admissibility for disjunction is hard to prove. It requires 2 lemmas. *}
 | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 57 | |
| 40007 | 58 | lemma adm_disj_lemma1: | 
| 59 | assumes adm: "adm P" | |
| 60 | assumes chain: "chain Y" | |
| 61 | assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)" | |
| 62 | shows "P (\<Squnion>i. Y i)" | |
| 63 | proof - | |
| 64 | def f \<equiv> "\<lambda>i. LEAST j. i \<le> j \<and> P (Y j)" | |
| 65 | have chain': "chain (\<lambda>i. Y (f i))" | |
| 66 | unfolding f_def | |
| 67 | apply (rule chainI) | |
| 68 | apply (rule chain_mono [OF chain]) | |
| 69 | apply (rule Least_le) | |
| 70 | apply (rule LeastI2_ex) | |
| 71 | apply (simp_all add: P) | |
| 72 | done | |
| 73 | have f1: "\<And>i. i \<le> f i" and f2: "\<And>i. P (Y (f i))" | |
| 74 | using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def) | |
| 75 | have lub_eq: "(\<Squnion>i. Y i) = (\<Squnion>i. Y (f i))" | |
| 76 | apply (rule below_antisym) | |
| 77 | apply (rule lub_mono [OF chain chain']) | |
| 78 | apply (rule chain_mono [OF chain f1]) | |
| 79 | apply (rule lub_range_mono [OF _ chain chain']) | |
| 80 | apply clarsimp | |
| 81 | done | |
| 82 | show "P (\<Squnion>i. Y i)" | |
| 83 | unfolding lub_eq using adm chain' f2 by (rule admD) | |
| 84 | qed | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 85 | |
| 40007 | 86 | lemma adm_disj_lemma2: | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 87 | "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)" | 
| 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 88 | apply (erule contrapos_pp) | 
| 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 89 | apply (clarsimp, rename_tac a b) | 
| 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 90 | apply (rule_tac x="max a b" in exI) | 
| 25895 
0eaadfa8889e
converted adm_all and adm_ball to rule_format; cleaned up
 huffman parents: 
25880diff
changeset | 91 | apply simp | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 92 | done | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 93 | |
| 40007 | 94 | lemma adm_disj [simp]: | 
| 95 | "\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)" | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 96 | apply (rule admI) | 
| 40007 | 97 | apply (erule adm_disj_lemma2 [THEN disjE]) | 
| 98 | apply (erule (2) adm_disj_lemma1 [THEN disjI1]) | |
| 99 | apply (erule (2) adm_disj_lemma1 [THEN disjI2]) | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 100 | done | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 101 | |
| 40007 | 102 | lemma adm_imp [simp]: | 
| 103 | "\<lbrakk>adm (\<lambda>x. \<not> P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)" | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 104 | by (subst imp_conv_disj, rule adm_disj) | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 105 | |
| 40007 | 106 | lemma adm_iff [simp]: | 
| 16565 | 107 | "\<lbrakk>adm (\<lambda>x. P x \<longrightarrow> Q x); adm (\<lambda>x. Q x \<longrightarrow> P x)\<rbrakk> | 
| 108 | \<Longrightarrow> adm (\<lambda>x. P x = Q x)" | |
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 109 | by (subst iff_conv_conj_imp, rule adm_conj) | 
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 110 | |
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 111 | text {* admissibility and continuity *}
 | 
| 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 112 | |
| 40007 | 113 | lemma adm_below [simp]: | 
| 114 | "\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)" | |
| 40435 | 115 | by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont) | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 116 | |
| 40007 | 117 | lemma adm_eq [simp]: | 
| 118 | "\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)" | |
| 119 | by (simp add: po_eq_conv) | |
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 120 | |
| 40007 | 121 | lemma adm_subst: "\<lbrakk>cont (\<lambda>x. t x); adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))" | 
| 40435 | 122 | by (simp add: adm_def cont2contlubE ch2ch_cont) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 123 | |
| 41182 | 124 | lemma adm_not_below [simp]: "cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. t x \<notsqsubseteq> u)" | 
| 40007 | 125 | by (rule admI, simp add: cont2contlubE ch2ch_cont lub_below_iff) | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 126 | |
| 25880 | 127 | subsection {* Compactness *}
 | 
| 128 | ||
| 129 | definition | |
| 130 | compact :: "'a::cpo \<Rightarrow> bool" where | |
| 41182 | 131 | "compact k = adm (\<lambda>x. k \<notsqsubseteq> x)" | 
| 25880 | 132 | |
| 41182 | 133 | lemma compactI: "adm (\<lambda>x. k \<notsqsubseteq> x) \<Longrightarrow> compact k" | 
| 25880 | 134 | unfolding compact_def . | 
| 135 | ||
| 41182 | 136 | lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> x)" | 
| 25880 | 137 | unfolding compact_def . | 
| 138 | ||
| 139 | lemma compactI2: | |
| 27413 | 140 | "(\<And>Y. \<lbrakk>chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i) \<Longrightarrow> compact x" | 
| 25880 | 141 | unfolding compact_def adm_def by fast | 
| 142 | ||
| 143 | lemma compactD2: | |
| 27413 | 144 | "\<lbrakk>compact x; chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i" | 
| 25880 | 145 | unfolding compact_def adm_def by fast | 
| 146 | ||
| 39969 | 147 | lemma compact_below_lub_iff: | 
| 148 | "\<lbrakk>compact x; chain Y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<longleftrightarrow> (\<exists>i. x \<sqsubseteq> Y i)" | |
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40435diff
changeset | 149 | by (fast intro: compactD2 elim: below_lub) | 
| 39969 | 150 | |
| 25880 | 151 | lemma compact_chfin [simp]: "compact (x::'a::chfin)" | 
| 152 | by (rule compactI [OF adm_chfin]) | |
| 153 | ||
| 154 | lemma compact_imp_max_in_chain: | |
| 155 | "\<lbrakk>chain Y; compact (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. max_in_chain i Y" | |
| 156 | apply (drule (1) compactD2, simp) | |
| 157 | apply (erule exE, rule_tac x=i in exI) | |
| 158 | apply (rule max_in_chainI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 159 | apply (rule below_antisym) | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25921diff
changeset | 160 | apply (erule (1) chain_mono) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 161 | apply (erule (1) below_trans [OF is_ub_thelub]) | 
| 25880 | 162 | done | 
| 163 | ||
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 164 | text {* admissibility and compactness *}
 | 
| 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 165 | |
| 40007 | 166 | lemma adm_compact_not_below [simp]: | 
| 41182 | 167 | "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<notsqsubseteq> t x)" | 
| 25880 | 168 | unfolding compact_def by (rule adm_subst) | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 169 | |
| 40007 | 170 | lemma adm_neq_compact [simp]: | 
| 171 | "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)" | |
| 172 | by (simp add: po_eq_conv) | |
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 173 | |
| 40007 | 174 | lemma adm_compact_neq [simp]: | 
| 175 | "\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)" | |
| 176 | by (simp add: po_eq_conv) | |
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 177 | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41182diff
changeset | 178 | lemma compact_bottom [simp, intro]: "compact \<bottom>" | 
| 40007 | 179 | by (rule compactI, simp) | 
| 17814 
21183d6f62b8
added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
 huffman parents: 
17586diff
changeset | 180 | |
| 25802 | 181 | text {* Any upward-closed predicate is admissible. *}
 | 
| 182 | ||
| 183 | lemma adm_upward: | |
| 184 | assumes P: "\<And>x y. \<lbrakk>P x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> P y" | |
| 185 | shows "adm P" | |
| 186 | by (rule admI, drule spec, erule P, erule is_ub_thelub) | |
| 187 | ||
| 40007 | 188 | lemmas adm_lemmas = | 
| 189 | adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 190 | adm_below adm_eq adm_not_below | 
| 40007 | 191 | adm_compact_not_below adm_compact_neq adm_neq_compact | 
| 16056 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 192 | |
| 
32c3b7188c28
Moved admissibility definitions and lemmas to a separate theory
 huffman parents: diff
changeset | 193 | end |