src/HOL/HOLCF/Bifinite.thy
author huffman
Wed, 22 Jun 2011 13:30:28 -0700
changeset 43524 d75e285fcf3e
parent 42151 4da4fc77664b
child 58880 0baae4311a9f
permissions -rw-r--r--
add HOLCF/ex/Concurrency_Monad.thy, which contains resumption/state/powerdomain monad example from my PhD thesis
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
42151
4da4fc77664b tuned headers;
wenzelm
parents: 41430
diff changeset
     1
(*  Title:      HOL/HOLCF/Bifinite.thy
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     2
    Author:     Brian Huffman
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     3
*)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     4
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     5
header {* Profinite and bifinite cpos *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     6
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     7
theory Bifinite
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41370
diff changeset
     8
imports Map_Functions "~~/src/HOL/Library/Countable"
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
     9
begin
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    10
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    11
default_sort cpo
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    12
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    13
subsection {* Chains of finite deflations *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    14
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    15
locale approx_chain =
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    16
  fixes approx :: "nat \<Rightarrow> 'a \<rightarrow> 'a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    17
  assumes chain_approx [simp]: "chain (\<lambda>i. approx i)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    18
  assumes lub_approx [simp]: "(\<Squnion>i. approx i) = ID"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    19
  assumes finite_deflation_approx [simp]: "\<And>i. finite_deflation (approx i)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    20
begin
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    21
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    22
lemma deflation_approx: "deflation (approx i)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    23
using finite_deflation_approx by (rule finite_deflation_imp_deflation)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    24
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    25
lemma approx_idem: "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    26
using deflation_approx by (rule deflation.idem)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    27
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    28
lemma approx_below: "approx i\<cdot>x \<sqsubseteq> x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    29
using deflation_approx by (rule deflation.below)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    30
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    31
lemma finite_range_approx: "finite (range (\<lambda>x. approx i\<cdot>x))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    32
apply (rule finite_deflation.finite_range)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    33
apply (rule finite_deflation_approx)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    34
done
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    35
41370
17b09240893c declare more simp rules, rewrite proofs in Isar-style
huffman
parents: 41299
diff changeset
    36
lemma compact_approx [simp]: "compact (approx n\<cdot>x)"
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    37
apply (rule finite_deflation.compact)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    38
apply (rule finite_deflation_approx)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    39
done
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    40
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    41
lemma compact_eq_approx: "compact x \<Longrightarrow> \<exists>i. approx i\<cdot>x = x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    42
by (rule admD2, simp_all)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    43
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    44
end
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    45
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    46
subsection {* Omega-profinite and bifinite domains *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    47
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    48
class bifinite = pcpo +
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    49
  assumes bifinite: "\<exists>(a::nat \<Rightarrow> 'a \<rightarrow> 'a). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    50
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    51
class profinite = cpo +
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    52
  assumes profinite: "\<exists>(a::nat \<Rightarrow> 'a\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    53
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    54
subsection {* Building approx chains *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    55
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    56
lemma approx_chain_iso:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    57
  assumes a: "approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    58
  assumes [simp]: "\<And>x. f\<cdot>(g\<cdot>x) = x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    59
  assumes [simp]: "\<And>y. g\<cdot>(f\<cdot>y) = y"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    60
  shows "approx_chain (\<lambda>i. f oo a i oo g)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    61
proof -
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    62
  have 1: "f oo g = ID" by (simp add: cfun_eqI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    63
  have 2: "ep_pair f g" by (simp add: ep_pair_def)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    64
  from 1 2 show ?thesis
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    65
    using a unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    66
    by (simp add: lub_APP ep_pair.finite_deflation_e_d_p)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    67
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    68
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    69
lemma approx_chain_u_map:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    70
  assumes "approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    71
  shows "approx_chain (\<lambda>i. u_map\<cdot>(a i))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    72
  using assms unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    73
  by (simp add: lub_APP u_map_ID finite_deflation_u_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    74
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    75
lemma approx_chain_sfun_map:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    76
  assumes "approx_chain a" and "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    77
  shows "approx_chain (\<lambda>i. sfun_map\<cdot>(a i)\<cdot>(b i))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    78
  using assms unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    79
  by (simp add: lub_APP sfun_map_ID finite_deflation_sfun_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    80
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    81
lemma approx_chain_sprod_map:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    82
  assumes "approx_chain a" and "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    83
  shows "approx_chain (\<lambda>i. sprod_map\<cdot>(a i)\<cdot>(b i))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    84
  using assms unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    85
  by (simp add: lub_APP sprod_map_ID finite_deflation_sprod_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    86
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    87
lemma approx_chain_ssum_map:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    88
  assumes "approx_chain a" and "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    89
  shows "approx_chain (\<lambda>i. ssum_map\<cdot>(a i)\<cdot>(b i))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    90
  using assms unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    91
  by (simp add: lub_APP ssum_map_ID finite_deflation_ssum_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    92
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    93
lemma approx_chain_cfun_map:
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    94
  assumes "approx_chain a" and "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    95
  shows "approx_chain (\<lambda>i. cfun_map\<cdot>(a i)\<cdot>(b i))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    96
  using assms unfolding approx_chain_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    97
  by (simp add: lub_APP cfun_map_ID finite_deflation_cfun_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
    98
41297
01b2de947cff rename function cprod_map to prod_map
huffman
parents: 41286
diff changeset
    99
lemma approx_chain_prod_map:
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   100
  assumes "approx_chain a" and "approx_chain b"
41297
01b2de947cff rename function cprod_map to prod_map
huffman
parents: 41286
diff changeset
   101
  shows "approx_chain (\<lambda>i. prod_map\<cdot>(a i)\<cdot>(b i))"
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   102
  using assms unfolding approx_chain_def
41297
01b2de947cff rename function cprod_map to prod_map
huffman
parents: 41286
diff changeset
   103
  by (simp add: lub_APP prod_map_ID finite_deflation_prod_map)
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   104
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   105
text {* Approx chains for countable discrete types. *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   106
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   107
definition discr_approx :: "nat \<Rightarrow> 'a::countable discr u \<rightarrow> 'a discr u"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   108
  where "discr_approx = (\<lambda>i. \<Lambda>(up\<cdot>x). if to_nat (undiscr x) < i then up\<cdot>x else \<bottom>)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   109
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   110
lemma chain_discr_approx [simp]: "chain discr_approx"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   111
unfolding discr_approx_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   112
by (rule chainI, simp add: monofun_cfun monofun_LAM)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   113
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   114
lemma lub_discr_approx [simp]: "(\<Squnion>i. discr_approx i) = ID"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   115
apply (rule cfun_eqI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   116
apply (simp add: contlub_cfun_fun)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   117
apply (simp add: discr_approx_def)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   118
apply (case_tac x, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   119
apply (rule lub_eqI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   120
apply (rule is_lubI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   121
apply (rule ub_rangeI, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   122
apply (drule ub_rangeD)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   123
apply (erule rev_below_trans)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   124
apply simp
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   125
apply (rule lessI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   126
done
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   127
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   128
lemma inj_on_undiscr [simp]: "inj_on undiscr A"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   129
using Discr_undiscr by (rule inj_on_inverseI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   130
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   131
lemma finite_deflation_discr_approx: "finite_deflation (discr_approx i)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   132
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   133
  fix x :: "'a discr u"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   134
  show "discr_approx i\<cdot>x \<sqsubseteq> x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   135
    unfolding discr_approx_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   136
    by (cases x, simp, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   137
  show "discr_approx i\<cdot>(discr_approx i\<cdot>x) = discr_approx i\<cdot>x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   138
    unfolding discr_approx_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   139
    by (cases x, simp, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   140
  show "finite {x::'a discr u. discr_approx i\<cdot>x = x}"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   141
  proof (rule finite_subset)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   142
    let ?S = "insert (\<bottom>::'a discr u) ((\<lambda>x. up\<cdot>x) ` undiscr -` to_nat -` {..<i})"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   143
    show "{x::'a discr u. discr_approx i\<cdot>x = x} \<subseteq> ?S"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   144
      unfolding discr_approx_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   145
      by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   146
    show "finite ?S"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   147
      by (simp add: finite_vimageI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   148
  qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   149
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   150
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   151
lemma discr_approx: "approx_chain discr_approx"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   152
using chain_discr_approx lub_discr_approx finite_deflation_discr_approx
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   153
by (rule approx_chain.intro)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   154
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   155
subsection {* Class instance proofs *}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   156
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   157
instance bifinite \<subseteq> profinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   158
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   159
  show "\<exists>(a::nat \<Rightarrow> 'a\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   160
    using bifinite [where 'a='a]
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   161
    by (fast intro!: approx_chain_u_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   162
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   163
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   164
instance u :: (profinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   165
  by default (rule profinite)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   166
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   167
text {*
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   168
  Types @{typ "'a \<rightarrow> 'b"} and @{typ "'a u \<rightarrow>! 'b"} are isomorphic.
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   169
*}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   170
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   171
definition "encode_cfun = (\<Lambda> f. sfun_abs\<cdot>(fup\<cdot>f))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   172
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   173
definition "decode_cfun = (\<Lambda> g x. sfun_rep\<cdot>g\<cdot>(up\<cdot>x))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   174
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   175
lemma decode_encode_cfun [simp]: "decode_cfun\<cdot>(encode_cfun\<cdot>x) = x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   176
unfolding encode_cfun_def decode_cfun_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   177
by (simp add: eta_cfun)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   178
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   179
lemma encode_decode_cfun [simp]: "encode_cfun\<cdot>(decode_cfun\<cdot>y) = y"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   180
unfolding encode_cfun_def decode_cfun_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   181
apply (simp add: sfun_eq_iff strictify_cancel)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   182
apply (rule cfun_eqI, case_tac x, simp_all)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   183
done
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   184
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   185
instance cfun :: (profinite, bifinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   186
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   187
  obtain a :: "nat \<Rightarrow> 'a\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>" where a: "approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   188
    using profinite ..
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   189
  obtain b :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where b: "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   190
    using bifinite ..
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   191
  have "approx_chain (\<lambda>i. decode_cfun oo sfun_map\<cdot>(a i)\<cdot>(b i) oo encode_cfun)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   192
    using a b by (simp add: approx_chain_iso approx_chain_sfun_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   193
  thus "\<exists>(a::nat \<Rightarrow> ('a \<rightarrow> 'b) \<rightarrow> ('a \<rightarrow> 'b)). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   194
    by - (rule exI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   195
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   196
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   197
text {*
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   198
  Types @{typ "('a * 'b) u"} and @{typ "'a u \<otimes> 'b u"} are isomorphic.
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   199
*}
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   200
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   201
definition "encode_prod_u = (\<Lambda>(up\<cdot>(x, y)). (:up\<cdot>x, up\<cdot>y:))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   202
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   203
definition "decode_prod_u = (\<Lambda>(:up\<cdot>x, up\<cdot>y:). up\<cdot>(x, y))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   204
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   205
lemma decode_encode_prod_u [simp]: "decode_prod_u\<cdot>(encode_prod_u\<cdot>x) = x"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   206
unfolding encode_prod_u_def decode_prod_u_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   207
by (case_tac x, simp, rename_tac y, case_tac y, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   208
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   209
lemma encode_decode_prod_u [simp]: "encode_prod_u\<cdot>(decode_prod_u\<cdot>y) = y"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   210
unfolding encode_prod_u_def decode_prod_u_def
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   211
apply (case_tac y, simp, rename_tac a b)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   212
apply (case_tac a, simp, case_tac b, simp, simp)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   213
done
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   214
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   215
instance prod :: (profinite, profinite) profinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   216
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   217
  obtain a :: "nat \<Rightarrow> 'a\<^sub>\<bottom> \<rightarrow> 'a\<^sub>\<bottom>" where a: "approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   218
    using profinite ..
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   219
  obtain b :: "nat \<Rightarrow> 'b\<^sub>\<bottom> \<rightarrow> 'b\<^sub>\<bottom>" where b: "approx_chain b"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   220
    using profinite ..
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   221
  have "approx_chain (\<lambda>i. decode_prod_u oo sprod_map\<cdot>(a i)\<cdot>(b i) oo encode_prod_u)"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   222
    using a b by (simp add: approx_chain_iso approx_chain_sprod_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   223
  thus "\<exists>(a::nat \<Rightarrow> ('a \<times> 'b)\<^sub>\<bottom> \<rightarrow> ('a \<times> 'b)\<^sub>\<bottom>). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   224
    by - (rule exI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   225
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   226
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   227
instance prod :: (bifinite, bifinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   228
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   229
  show "\<exists>(a::nat \<Rightarrow> ('a \<times> 'b) \<rightarrow> ('a \<times> 'b)). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   230
    using bifinite [where 'a='a] and bifinite [where 'a='b]
41297
01b2de947cff rename function cprod_map to prod_map
huffman
parents: 41286
diff changeset
   231
    by (fast intro!: approx_chain_prod_map)
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   232
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   233
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   234
instance sfun :: (bifinite, bifinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   235
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   236
  show "\<exists>(a::nat \<Rightarrow> ('a \<rightarrow>! 'b) \<rightarrow> ('a \<rightarrow>! 'b)). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   237
    using bifinite [where 'a='a] and bifinite [where 'a='b]
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   238
    by (fast intro!: approx_chain_sfun_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   239
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   240
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   241
instance sprod :: (bifinite, bifinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   242
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   243
  show "\<exists>(a::nat \<Rightarrow> ('a \<otimes> 'b) \<rightarrow> ('a \<otimes> 'b)). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   244
    using bifinite [where 'a='a] and bifinite [where 'a='b]
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   245
    by (fast intro!: approx_chain_sprod_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   246
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   247
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   248
instance ssum :: (bifinite, bifinite) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   249
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   250
  show "\<exists>(a::nat \<Rightarrow> ('a \<oplus> 'b) \<rightarrow> ('a \<oplus> 'b)). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   251
    using bifinite [where 'a='a] and bifinite [where 'a='b]
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   252
    by (fast intro!: approx_chain_ssum_map)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   253
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   254
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   255
lemma approx_chain_unit: "approx_chain (\<bottom> :: nat \<Rightarrow> unit \<rightarrow> unit)"
41430
1aa23e9f2c87 change some lemma names containing 'UU' to 'bottom'
huffman
parents: 41413
diff changeset
   256
by (simp add: approx_chain_def cfun_eq_iff finite_deflation_bottom)
41286
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   257
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   258
instance unit :: bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   259
  by default (fast intro!: approx_chain_unit)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   260
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   261
instance discr :: (countable) profinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   262
  by default (fast intro!: discr_approx)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   263
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   264
instance lift :: (countable) bifinite
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   265
proof
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   266
  note [simp] = cont_Abs_lift cont_Rep_lift Rep_lift_inverse Abs_lift_inverse
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   267
  obtain a :: "nat \<Rightarrow> ('a discr)\<^sub>\<bottom> \<rightarrow> ('a discr)\<^sub>\<bottom>" where a: "approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   268
    using profinite ..
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   269
  hence "approx_chain (\<lambda>i. (\<Lambda> y. Abs_lift y) oo a i oo (\<Lambda> x. Rep_lift x))"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   270
    by (rule approx_chain_iso) simp_all
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   271
  thus "\<exists>(a::nat \<Rightarrow> 'a lift \<rightarrow> 'a lift). approx_chain a"
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   272
    by - (rule exI)
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   273
qed
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   274
3d7685a4a5ff reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
huffman
parents:
diff changeset
   275
end