| author | blanchet | 
| Wed, 08 Dec 2010 22:17:52 +0100 | |
| changeset 41087 | d7b5fd465198 | 
| parent 39159 | 0dec18004e75 | 
| child 41541 | 1fa4725c4656 | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 1 | (* Title: HOL/NSA/NSA.thy | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 3 | Author: Lawrence C Paulson, University of Cambridge | 
| 27468 | 4 | *) | 
| 5 | ||
| 6 | header{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*}
 | |
| 7 | ||
| 8 | theory NSA | |
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28562diff
changeset | 9 | imports HyperDef RComplete | 
| 27468 | 10 | begin | 
| 11 | ||
| 12 | definition | |
| 31449 | 13 | hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" where | 
| 27468 | 14 | [transfer_unfold]: "hnorm = *f* norm" | 
| 15 | ||
| 16 | definition | |
| 17 |   Infinitesimal  :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 18 |   "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
 | 
| 27468 | 19 | |
| 20 | definition | |
| 21 |   HFinite :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 22 |   "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 | 
| 27468 | 23 | |
| 24 | definition | |
| 25 |   HInfinite :: "('a::real_normed_vector) star set" where
 | |
| 37765 | 26 |   "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 | 
| 27468 | 27 | |
| 28 | definition | |
| 29 | approx :: "['a::real_normed_vector star, 'a star] => bool" (infixl "@=" 50) where | |
| 30 |     --{*the `infinitely close' relation*}
 | |
| 31 | "(x @= y) = ((x - y) \<in> Infinitesimal)" | |
| 32 | ||
| 33 | definition | |
| 34 | st :: "hypreal => hypreal" where | |
| 35 |     --{*the standard part of a hyperreal*}
 | |
| 36 | "st = (%x. @r. x \<in> HFinite & r \<in> Reals & r @= x)" | |
| 37 | ||
| 38 | definition | |
| 39 | monad :: "'a::real_normed_vector star => 'a star set" where | |
| 40 |   "monad x = {y. x @= y}"
 | |
| 41 | ||
| 42 | definition | |
| 43 | galaxy :: "'a::real_normed_vector star => 'a star set" where | |
| 44 |   "galaxy x = {y. (x + -y) \<in> HFinite}"
 | |
| 45 | ||
| 46 | notation (xsymbols) | |
| 47 | approx (infixl "\<approx>" 50) | |
| 48 | ||
| 49 | notation (HTML output) | |
| 50 | approx (infixl "\<approx>" 50) | |
| 51 | ||
| 52 | lemma SReal_def: "Reals == {x. \<exists>r. x = hypreal_of_real r}"
 | |
| 53 | by (simp add: Reals_def image_def) | |
| 54 | ||
| 55 | subsection {* Nonstandard Extension of the Norm Function *}
 | |
| 56 | ||
| 57 | definition | |
| 58 | scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" where | |
| 37765 | 59 | [transfer_unfold]: "scaleHR = starfun2 scaleR" | 
| 27468 | 60 | |
| 61 | lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" | |
| 62 | by (simp add: hnorm_def) | |
| 63 | ||
| 64 | lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" | |
| 65 | by transfer (rule refl) | |
| 66 | ||
| 67 | lemma hnorm_ge_zero [simp]: | |
| 68 | "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" | |
| 69 | by transfer (rule norm_ge_zero) | |
| 70 | ||
| 71 | lemma hnorm_eq_zero [simp]: | |
| 72 | "\<And>x::'a::real_normed_vector star. (hnorm x = 0) = (x = 0)" | |
| 73 | by transfer (rule norm_eq_zero) | |
| 74 | ||
| 75 | lemma hnorm_triangle_ineq: | |
| 76 | "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" | |
| 77 | by transfer (rule norm_triangle_ineq) | |
| 78 | ||
| 79 | lemma hnorm_triangle_ineq3: | |
| 80 | "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | |
| 81 | by transfer (rule norm_triangle_ineq3) | |
| 82 | ||
| 83 | lemma hnorm_scaleR: | |
| 84 | "\<And>x::'a::real_normed_vector star. | |
| 85 | hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" | |
| 86 | by transfer (rule norm_scaleR) | |
| 87 | ||
| 88 | lemma hnorm_scaleHR: | |
| 89 | "\<And>a (x::'a::real_normed_vector star). | |
| 90 | hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" | |
| 91 | by transfer (rule norm_scaleR) | |
| 92 | ||
| 93 | lemma hnorm_mult_ineq: | |
| 94 | "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" | |
| 95 | by transfer (rule norm_mult_ineq) | |
| 96 | ||
| 97 | lemma hnorm_mult: | |
| 98 | "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" | |
| 99 | by transfer (rule norm_mult) | |
| 100 | ||
| 101 | lemma hnorm_hyperpow: | |
| 31017 | 102 |   "\<And>(x::'a::{real_normed_div_algebra} star) n.
 | 
| 27468 | 103 | hnorm (x pow n) = hnorm x pow n" | 
| 104 | by transfer (rule norm_power) | |
| 105 | ||
| 106 | lemma hnorm_one [simp]: | |
| 107 | "hnorm (1\<Colon>'a::real_normed_div_algebra star) = 1" | |
| 108 | by transfer (rule norm_one) | |
| 109 | ||
| 110 | lemma hnorm_zero [simp]: | |
| 111 | "hnorm (0\<Colon>'a::real_normed_vector star) = 0" | |
| 112 | by transfer (rule norm_zero) | |
| 113 | ||
| 114 | lemma zero_less_hnorm_iff [simp]: | |
| 115 | "\<And>x::'a::real_normed_vector star. (0 < hnorm x) = (x \<noteq> 0)" | |
| 116 | by transfer (rule zero_less_norm_iff) | |
| 117 | ||
| 118 | lemma hnorm_minus_cancel [simp]: | |
| 119 | "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" | |
| 120 | by transfer (rule norm_minus_cancel) | |
| 121 | ||
| 122 | lemma hnorm_minus_commute: | |
| 123 | "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" | |
| 124 | by transfer (rule norm_minus_commute) | |
| 125 | ||
| 126 | lemma hnorm_triangle_ineq2: | |
| 127 | "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" | |
| 128 | by transfer (rule norm_triangle_ineq2) | |
| 129 | ||
| 130 | lemma hnorm_triangle_ineq4: | |
| 131 | "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" | |
| 132 | by transfer (rule norm_triangle_ineq4) | |
| 133 | ||
| 134 | lemma abs_hnorm_cancel [simp]: | |
| 135 | "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" | |
| 136 | by transfer (rule abs_norm_cancel) | |
| 137 | ||
| 138 | lemma hnorm_of_hypreal [simp]: | |
| 139 | "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" | |
| 140 | by transfer (rule norm_of_real) | |
| 141 | ||
| 142 | lemma nonzero_hnorm_inverse: | |
| 143 | "\<And>a::'a::real_normed_div_algebra star. | |
| 144 | a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" | |
| 145 | by transfer (rule nonzero_norm_inverse) | |
| 146 | ||
| 147 | lemma hnorm_inverse: | |
| 36409 | 148 |   "\<And>a::'a::{real_normed_div_algebra, division_ring_inverse_zero} star.
 | 
| 27468 | 149 | hnorm (inverse a) = inverse (hnorm a)" | 
| 150 | by transfer (rule norm_inverse) | |
| 151 | ||
| 152 | lemma hnorm_divide: | |
| 36409 | 153 |   "\<And>a b::'a::{real_normed_field, field_inverse_zero} star.
 | 
| 27468 | 154 | hnorm (a / b) = hnorm a / hnorm b" | 
| 155 | by transfer (rule norm_divide) | |
| 156 | ||
| 157 | lemma hypreal_hnorm_def [simp]: | |
| 30080 | 158 | "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" | 
| 27468 | 159 | by transfer (rule real_norm_def) | 
| 160 | ||
| 161 | lemma hnorm_add_less: | |
| 162 | "\<And>(x::'a::real_normed_vector star) y r s. | |
| 163 | \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x + y) < r + s" | |
| 164 | by transfer (rule norm_add_less) | |
| 165 | ||
| 166 | lemma hnorm_mult_less: | |
| 167 | "\<And>(x::'a::real_normed_algebra star) y r s. | |
| 168 | \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x * y) < r * s" | |
| 169 | by transfer (rule norm_mult_less) | |
| 170 | ||
| 171 | lemma hnorm_scaleHR_less: | |
| 172 | "\<lbrakk>\<bar>x\<bar> < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (scaleHR x y) < r * s" | |
| 173 | apply (simp only: hnorm_scaleHR) | |
| 174 | apply (simp add: mult_strict_mono') | |
| 175 | done | |
| 176 | ||
| 177 | subsection{*Closure Laws for the Standard Reals*}
 | |
| 178 | ||
| 179 | lemma Reals_minus_iff [simp]: "(-x \<in> Reals) = (x \<in> Reals)" | |
| 180 | apply auto | |
| 181 | apply (drule Reals_minus, auto) | |
| 182 | done | |
| 183 | ||
| 184 | lemma Reals_add_cancel: "\<lbrakk>x + y \<in> Reals; y \<in> Reals\<rbrakk> \<Longrightarrow> x \<in> Reals" | |
| 185 | by (drule (1) Reals_diff, simp) | |
| 186 | ||
| 187 | lemma SReal_hrabs: "(x::hypreal) \<in> Reals ==> abs x \<in> Reals" | |
| 188 | by (simp add: Reals_eq_Standard) | |
| 189 | ||
| 190 | lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> Reals" | |
| 191 | by (simp add: Reals_eq_Standard) | |
| 192 | ||
| 193 | lemma SReal_divide_number_of: "r \<in> Reals ==> r/(number_of w::hypreal) \<in> Reals" | |
| 194 | by simp | |
| 195 | ||
| 196 | text{*epsilon is not in Reals because it is an infinitesimal*}
 | |
| 197 | lemma SReal_epsilon_not_mem: "epsilon \<notin> Reals" | |
| 198 | apply (simp add: SReal_def) | |
| 199 | apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym]) | |
| 200 | done | |
| 201 | ||
| 202 | lemma SReal_omega_not_mem: "omega \<notin> Reals" | |
| 203 | apply (simp add: SReal_def) | |
| 204 | apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym]) | |
| 205 | done | |
| 206 | ||
| 207 | lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> Reals} = (UNIV::real set)"
 | |
| 208 | by simp | |
| 209 | ||
| 210 | lemma SReal_iff: "(x \<in> Reals) = (\<exists>y. x = hypreal_of_real y)" | |
| 211 | by (simp add: SReal_def) | |
| 212 | ||
| 213 | lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = Reals" | |
| 214 | by (simp add: Reals_eq_Standard Standard_def) | |
| 215 | ||
| 216 | lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` Reals = UNIV" | |
| 217 | apply (auto simp add: SReal_def) | |
| 218 | apply (rule inj_star_of [THEN inv_f_f, THEN subst], blast) | |
| 219 | done | |
| 220 | ||
| 221 | lemma SReal_hypreal_of_real_image: | |
| 222 | "[| \<exists>x. x: P; P \<subseteq> Reals |] ==> \<exists>Q. P = hypreal_of_real ` Q" | |
| 223 | by (simp add: SReal_def image_def, blast) | |
| 224 | ||
| 225 | lemma SReal_dense: | |
| 226 | "[| (x::hypreal) \<in> Reals; y \<in> Reals; x<y |] ==> \<exists>r \<in> Reals. x<r & r<y" | |
| 227 | apply (auto simp add: SReal_def) | |
| 228 | apply (drule dense, auto) | |
| 229 | done | |
| 230 | ||
| 231 | text{*Completeness of Reals, but both lemmas are unused.*}
 | |
| 232 | ||
| 233 | lemma SReal_sup_lemma: | |
| 234 | "P \<subseteq> Reals ==> ((\<exists>x \<in> P. y < x) = | |
| 235 | (\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))" | |
| 236 | by (blast dest!: SReal_iff [THEN iffD1]) | |
| 237 | ||
| 238 | lemma SReal_sup_lemma2: | |
| 239 | "[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |] | |
| 240 |       ==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) &
 | |
| 241 |           (\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
 | |
| 242 | apply (rule conjI) | |
| 243 | apply (fast dest!: SReal_iff [THEN iffD1]) | |
| 244 | apply (auto, frule subsetD, assumption) | |
| 245 | apply (drule SReal_iff [THEN iffD1]) | |
| 246 | apply (auto, rule_tac x = ya in exI, auto) | |
| 247 | done | |
| 248 | ||
| 249 | ||
| 250 | subsection{* Set of Finite Elements is a Subring of the Extended Reals*}
 | |
| 251 | ||
| 252 | lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite" | |
| 253 | apply (simp add: HFinite_def) | |
| 254 | apply (blast intro!: Reals_add hnorm_add_less) | |
| 255 | done | |
| 256 | ||
| 257 | lemma HFinite_mult: | |
| 258 | fixes x y :: "'a::real_normed_algebra star" | |
| 259 | shows "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite" | |
| 260 | apply (simp add: HFinite_def) | |
| 261 | apply (blast intro!: Reals_mult hnorm_mult_less) | |
| 262 | done | |
| 263 | ||
| 264 | lemma HFinite_scaleHR: | |
| 265 | "[|x \<in> HFinite; y \<in> HFinite|] ==> scaleHR x y \<in> HFinite" | |
| 266 | apply (simp add: HFinite_def) | |
| 267 | apply (blast intro!: Reals_mult hnorm_scaleHR_less) | |
| 268 | done | |
| 269 | ||
| 270 | lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)" | |
| 271 | by (simp add: HFinite_def) | |
| 272 | ||
| 273 | lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" | |
| 274 | apply (simp add: HFinite_def) | |
| 275 | apply (rule_tac x="star_of (norm x) + 1" in bexI) | |
| 276 | apply (transfer, simp) | |
| 277 | apply (blast intro: Reals_add SReal_hypreal_of_real Reals_1) | |
| 278 | done | |
| 279 | ||
| 280 | lemma SReal_subset_HFinite: "(Reals::hypreal set) \<subseteq> HFinite" | |
| 281 | by (auto simp add: SReal_def) | |
| 282 | ||
| 283 | lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. hnorm x < t" | |
| 284 | by (simp add: HFinite_def) | |
| 285 | ||
| 286 | lemma HFinite_hrabs_iff [iff]: "(abs (x::hypreal) \<in> HFinite) = (x \<in> HFinite)" | |
| 287 | by (simp add: HFinite_def) | |
| 288 | ||
| 289 | lemma HFinite_hnorm_iff [iff]: | |
| 290 | "(hnorm (x::hypreal) \<in> HFinite) = (x \<in> HFinite)" | |
| 291 | by (simp add: HFinite_def) | |
| 292 | ||
| 293 | lemma HFinite_number_of [simp]: "number_of w \<in> HFinite" | |
| 294 | unfolding star_number_def by (rule HFinite_star_of) | |
| 295 | ||
| 296 | (** As always with numerals, 0 and 1 are special cases **) | |
| 297 | ||
| 298 | lemma HFinite_0 [simp]: "0 \<in> HFinite" | |
| 299 | unfolding star_zero_def by (rule HFinite_star_of) | |
| 300 | ||
| 301 | lemma HFinite_1 [simp]: "1 \<in> HFinite" | |
| 302 | unfolding star_one_def by (rule HFinite_star_of) | |
| 303 | ||
| 304 | lemma hrealpow_HFinite: | |
| 31017 | 305 |   fixes x :: "'a::{real_normed_algebra,monoid_mult} star"
 | 
| 27468 | 306 | shows "x \<in> HFinite ==> x ^ n \<in> HFinite" | 
| 31017 | 307 | apply (induct n) | 
| 27468 | 308 | apply (auto simp add: power_Suc intro: HFinite_mult) | 
| 309 | done | |
| 310 | ||
| 311 | lemma HFinite_bounded: | |
| 312 | "[|(x::hypreal) \<in> HFinite; y \<le> x; 0 \<le> y |] ==> y \<in> HFinite" | |
| 31017 | 313 | apply (cases "x \<le> 0") | 
| 27468 | 314 | apply (drule_tac y = x in order_trans) | 
| 315 | apply (drule_tac [2] order_antisym) | |
| 316 | apply (auto simp add: linorder_not_le) | |
| 317 | apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) | |
| 318 | done | |
| 319 | ||
| 320 | ||
| 321 | subsection{* Set of Infinitesimals is a Subring of the Hyperreals*}
 | |
| 322 | ||
| 323 | lemma InfinitesimalI: | |
| 324 | "(\<And>r. \<lbrakk>r \<in> \<real>; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" | |
| 325 | by (simp add: Infinitesimal_def) | |
| 326 | ||
| 327 | lemma InfinitesimalD: | |
| 328 | "x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> hnorm x < r" | |
| 329 | by (simp add: Infinitesimal_def) | |
| 330 | ||
| 331 | lemma InfinitesimalI2: | |
| 332 | "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" | |
| 333 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 334 | ||
| 335 | lemma InfinitesimalD2: | |
| 336 | "\<lbrakk>x \<in> Infinitesimal; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < star_of r" | |
| 337 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 338 | ||
| 339 | lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" | |
| 340 | by (simp add: Infinitesimal_def) | |
| 341 | ||
| 342 | lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x" | |
| 343 | by auto | |
| 344 | ||
| 345 | lemma Infinitesimal_add: | |
| 346 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal" | |
| 347 | apply (rule InfinitesimalI) | |
| 348 | apply (rule hypreal_sum_of_halves [THEN subst]) | |
| 349 | apply (drule half_gt_zero) | |
| 350 | apply (blast intro: hnorm_add_less SReal_divide_number_of dest: InfinitesimalD) | |
| 351 | done | |
| 352 | ||
| 353 | lemma Infinitesimal_minus_iff [simp]: "(-x:Infinitesimal) = (x:Infinitesimal)" | |
| 354 | by (simp add: Infinitesimal_def) | |
| 355 | ||
| 356 | lemma Infinitesimal_hnorm_iff: | |
| 357 | "(hnorm x \<in> Infinitesimal) = (x \<in> Infinitesimal)" | |
| 358 | by (simp add: Infinitesimal_def) | |
| 359 | ||
| 360 | lemma Infinitesimal_hrabs_iff [iff]: | |
| 361 | "(abs (x::hypreal) \<in> Infinitesimal) = (x \<in> Infinitesimal)" | |
| 362 | by (simp add: abs_if) | |
| 363 | ||
| 364 | lemma Infinitesimal_of_hypreal_iff [simp]: | |
| 365 | "((of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal) = | |
| 366 | (x \<in> Infinitesimal)" | |
| 367 | by (subst Infinitesimal_hnorm_iff [symmetric], simp) | |
| 368 | ||
| 369 | lemma Infinitesimal_diff: | |
| 370 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal" | |
| 37887 | 371 | by (simp add: diff_minus Infinitesimal_add) | 
| 27468 | 372 | |
| 373 | lemma Infinitesimal_mult: | |
| 374 | fixes x y :: "'a::real_normed_algebra star" | |
| 375 | shows "[|x \<in> Infinitesimal; y \<in> Infinitesimal|] ==> (x * y) \<in> Infinitesimal" | |
| 376 | apply (rule InfinitesimalI) | |
| 377 | apply (subgoal_tac "hnorm (x * y) < 1 * r", simp only: mult_1) | |
| 378 | apply (rule hnorm_mult_less) | |
| 379 | apply (simp_all add: InfinitesimalD) | |
| 380 | done | |
| 381 | ||
| 382 | lemma Infinitesimal_HFinite_mult: | |
| 383 | fixes x y :: "'a::real_normed_algebra star" | |
| 384 | shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal" | |
| 385 | apply (rule InfinitesimalI) | |
| 386 | apply (drule HFiniteD, clarify) | |
| 387 | apply (subgoal_tac "0 < t") | |
| 388 | apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp) | |
| 389 | apply (subgoal_tac "0 < r / t") | |
| 390 | apply (rule hnorm_mult_less) | |
| 391 | apply (simp add: InfinitesimalD Reals_divide) | |
| 392 | apply assumption | |
| 393 | apply (simp only: divide_pos_pos) | |
| 394 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 395 | done | |
| 396 | ||
| 397 | lemma Infinitesimal_HFinite_scaleHR: | |
| 398 | "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> scaleHR x y \<in> Infinitesimal" | |
| 399 | apply (rule InfinitesimalI) | |
| 400 | apply (drule HFiniteD, clarify) | |
| 401 | apply (drule InfinitesimalD) | |
| 402 | apply (simp add: hnorm_scaleHR) | |
| 403 | apply (subgoal_tac "0 < t") | |
| 404 | apply (subgoal_tac "\<bar>x\<bar> * hnorm y < (r / t) * t", simp) | |
| 405 | apply (subgoal_tac "0 < r / t") | |
| 406 | apply (rule mult_strict_mono', simp_all) | |
| 407 | apply (simp only: divide_pos_pos) | |
| 408 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 409 | done | |
| 410 | ||
| 411 | lemma Infinitesimal_HFinite_mult2: | |
| 412 | fixes x y :: "'a::real_normed_algebra star" | |
| 413 | shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal" | |
| 414 | apply (rule InfinitesimalI) | |
| 415 | apply (drule HFiniteD, clarify) | |
| 416 | apply (subgoal_tac "0 < t") | |
| 417 | apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp) | |
| 418 | apply (subgoal_tac "0 < r / t") | |
| 419 | apply (rule hnorm_mult_less) | |
| 420 | apply assumption | |
| 421 | apply (simp add: InfinitesimalD Reals_divide) | |
| 422 | apply (simp only: divide_pos_pos) | |
| 423 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 424 | done | |
| 425 | ||
| 426 | lemma Infinitesimal_scaleR2: | |
| 427 | "x \<in> Infinitesimal ==> a *\<^sub>R x \<in> Infinitesimal" | |
| 428 | apply (case_tac "a = 0", simp) | |
| 429 | apply (rule InfinitesimalI) | |
| 430 | apply (drule InfinitesimalD) | |
| 431 | apply (drule_tac x="r / \<bar>star_of a\<bar>" in bspec) | |
| 432 | apply (simp add: Reals_eq_Standard) | |
| 433 | apply (simp add: divide_pos_pos) | |
| 434 | apply (simp add: hnorm_scaleR pos_less_divide_eq mult_commute) | |
| 435 | done | |
| 436 | ||
| 437 | lemma Compl_HFinite: "- HFinite = HInfinite" | |
| 438 | apply (auto simp add: HInfinite_def HFinite_def linorder_not_less) | |
| 439 | apply (rule_tac y="r + 1" in order_less_le_trans, simp) | |
| 440 | apply simp | |
| 441 | done | |
| 442 | ||
| 443 | lemma HInfinite_inverse_Infinitesimal: | |
| 444 | fixes x :: "'a::real_normed_div_algebra star" | |
| 445 | shows "x \<in> HInfinite ==> inverse x \<in> Infinitesimal" | |
| 446 | apply (rule InfinitesimalI) | |
| 447 | apply (subgoal_tac "x \<noteq> 0") | |
| 448 | apply (rule inverse_less_imp_less) | |
| 449 | apply (simp add: nonzero_hnorm_inverse) | |
| 450 | apply (simp add: HInfinite_def Reals_inverse) | |
| 451 | apply assumption | |
| 452 | apply (clarify, simp add: Compl_HFinite [symmetric]) | |
| 453 | done | |
| 454 | ||
| 455 | lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" | |
| 456 | by (simp add: HInfinite_def) | |
| 457 | ||
| 458 | lemma HInfiniteD: "\<lbrakk>x \<in> HInfinite; r \<in> \<real>\<rbrakk> \<Longrightarrow> r < hnorm x" | |
| 459 | by (simp add: HInfinite_def) | |
| 460 | ||
| 461 | lemma HInfinite_mult: | |
| 462 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 463 | shows "[|x \<in> HInfinite; y \<in> HInfinite|] ==> (x*y) \<in> HInfinite" | |
| 464 | apply (rule HInfiniteI, simp only: hnorm_mult) | |
| 465 | apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1) | |
| 466 | apply (case_tac "x = 0", simp add: HInfinite_def) | |
| 467 | apply (rule mult_strict_mono) | |
| 468 | apply (simp_all add: HInfiniteD) | |
| 469 | done | |
| 470 | ||
| 471 | lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y" | |
| 472 | by (auto dest: add_less_le_mono) | |
| 473 | ||
| 474 | lemma HInfinite_add_ge_zero: | |
| 475 | "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (x + y): HInfinite" | |
| 476 | by (auto intro!: hypreal_add_zero_less_le_mono | |
| 477 | simp add: abs_if add_commute add_nonneg_nonneg HInfinite_def) | |
| 478 | ||
| 479 | lemma HInfinite_add_ge_zero2: | |
| 480 | "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (y + x): HInfinite" | |
| 481 | by (auto intro!: HInfinite_add_ge_zero simp add: add_commute) | |
| 482 | ||
| 483 | lemma HInfinite_add_gt_zero: | |
| 484 | "[|(x::hypreal) \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite" | |
| 485 | by (blast intro: HInfinite_add_ge_zero order_less_imp_le) | |
| 486 | ||
| 487 | lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 488 | by (simp add: HInfinite_def) | |
| 489 | ||
| 490 | lemma HInfinite_add_le_zero: | |
| 491 | "[|(x::hypreal) \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite" | |
| 492 | apply (drule HInfinite_minus_iff [THEN iffD2]) | |
| 493 | apply (rule HInfinite_minus_iff [THEN iffD1]) | |
| 494 | apply (auto intro: HInfinite_add_ge_zero) | |
| 495 | done | |
| 496 | ||
| 497 | lemma HInfinite_add_lt_zero: | |
| 498 | "[|(x::hypreal) \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite" | |
| 499 | by (blast intro: HInfinite_add_le_zero order_less_imp_le) | |
| 500 | ||
| 501 | lemma HFinite_sum_squares: | |
| 502 | fixes a b c :: "'a::real_normed_algebra star" | |
| 503 | shows "[|a: HFinite; b: HFinite; c: HFinite|] | |
| 504 | ==> a*a + b*b + c*c \<in> HFinite" | |
| 505 | by (auto intro: HFinite_mult HFinite_add) | |
| 506 | ||
| 507 | lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0" | |
| 508 | by auto | |
| 509 | ||
| 510 | lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0" | |
| 511 | by auto | |
| 512 | ||
| 513 | lemma HFinite_diff_Infinitesimal_hrabs: | |
| 514 | "(x::hypreal) \<in> HFinite - Infinitesimal ==> abs x \<in> HFinite - Infinitesimal" | |
| 515 | by blast | |
| 516 | ||
| 517 | lemma hnorm_le_Infinitesimal: | |
| 518 | "\<lbrakk>e \<in> Infinitesimal; hnorm x \<le> e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal" | |
| 519 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 520 | ||
| 521 | lemma hnorm_less_Infinitesimal: | |
| 522 | "\<lbrakk>e \<in> Infinitesimal; hnorm x < e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal" | |
| 523 | by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) | |
| 524 | ||
| 525 | lemma hrabs_le_Infinitesimal: | |
| 526 | "[| e \<in> Infinitesimal; abs (x::hypreal) \<le> e |] ==> x \<in> Infinitesimal" | |
| 527 | by (erule hnorm_le_Infinitesimal, simp) | |
| 528 | ||
| 529 | lemma hrabs_less_Infinitesimal: | |
| 530 | "[| e \<in> Infinitesimal; abs (x::hypreal) < e |] ==> x \<in> Infinitesimal" | |
| 531 | by (erule hnorm_less_Infinitesimal, simp) | |
| 532 | ||
| 533 | lemma Infinitesimal_interval: | |
| 534 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |] | |
| 535 | ==> (x::hypreal) \<in> Infinitesimal" | |
| 536 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 537 | ||
| 538 | lemma Infinitesimal_interval2: | |
| 539 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 540 | e' \<le> x ; x \<le> e |] ==> (x::hypreal) \<in> Infinitesimal" | |
| 541 | by (auto intro: Infinitesimal_interval simp add: order_le_less) | |
| 542 | ||
| 543 | ||
| 544 | lemma lemma_Infinitesimal_hyperpow: | |
| 545 | "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> abs (x pow N) \<le> abs x" | |
| 546 | apply (unfold Infinitesimal_def) | |
| 547 | apply (auto intro!: hyperpow_Suc_le_self2 | |
| 548 | simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero) | |
| 549 | done | |
| 550 | ||
| 551 | lemma Infinitesimal_hyperpow: | |
| 552 | "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> x pow N \<in> Infinitesimal" | |
| 553 | apply (rule hrabs_le_Infinitesimal) | |
| 554 | apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto) | |
| 555 | done | |
| 556 | ||
| 557 | lemma hrealpow_hyperpow_Infinitesimal_iff: | |
| 558 | "(x ^ n \<in> Infinitesimal) = (x pow (hypnat_of_nat n) \<in> Infinitesimal)" | |
| 559 | by (simp only: hyperpow_hypnat_of_nat) | |
| 560 | ||
| 561 | lemma Infinitesimal_hrealpow: | |
| 562 | "[| (x::hypreal) \<in> Infinitesimal; 0 < n |] ==> x ^ n \<in> Infinitesimal" | |
| 563 | by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) | |
| 564 | ||
| 565 | lemma not_Infinitesimal_mult: | |
| 566 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 567 | shows "[| x \<notin> Infinitesimal; y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal" | |
| 568 | apply (unfold Infinitesimal_def, clarify, rename_tac r s) | |
| 569 | apply (simp only: linorder_not_less hnorm_mult) | |
| 570 | apply (drule_tac x = "r * s" in bspec) | |
| 571 | apply (fast intro: Reals_mult) | |
| 572 | apply (drule mp, blast intro: mult_pos_pos) | |
| 573 | apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono) | |
| 574 | apply (simp_all (no_asm_simp)) | |
| 575 | done | |
| 576 | ||
| 577 | lemma Infinitesimal_mult_disj: | |
| 578 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 579 | shows "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal" | |
| 580 | apply (rule ccontr) | |
| 581 | apply (drule de_Morgan_disj [THEN iffD1]) | |
| 582 | apply (fast dest: not_Infinitesimal_mult) | |
| 583 | done | |
| 584 | ||
| 585 | lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0" | |
| 586 | by blast | |
| 587 | ||
| 588 | lemma HFinite_Infinitesimal_diff_mult: | |
| 589 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 590 | shows "[| x \<in> HFinite - Infinitesimal; | |
| 591 | y \<in> HFinite - Infinitesimal | |
| 592 | |] ==> (x*y) \<in> HFinite - Infinitesimal" | |
| 593 | apply clarify | |
| 594 | apply (blast dest: HFinite_mult not_Infinitesimal_mult) | |
| 595 | done | |
| 596 | ||
| 597 | lemma Infinitesimal_subset_HFinite: | |
| 598 | "Infinitesimal \<subseteq> HFinite" | |
| 599 | apply (simp add: Infinitesimal_def HFinite_def, auto) | |
| 600 | apply (rule_tac x = 1 in bexI, auto) | |
| 601 | done | |
| 602 | ||
| 603 | lemma Infinitesimal_star_of_mult: | |
| 604 | fixes x :: "'a::real_normed_algebra star" | |
| 605 | shows "x \<in> Infinitesimal ==> x * star_of r \<in> Infinitesimal" | |
| 606 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) | |
| 607 | ||
| 608 | lemma Infinitesimal_star_of_mult2: | |
| 609 | fixes x :: "'a::real_normed_algebra star" | |
| 610 | shows "x \<in> Infinitesimal ==> star_of r * x \<in> Infinitesimal" | |
| 611 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) | |
| 612 | ||
| 613 | ||
| 614 | subsection{*The Infinitely Close Relation*}
 | |
| 615 | ||
| 616 | lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x @= 0)" | |
| 617 | by (simp add: Infinitesimal_def approx_def) | |
| 618 | ||
| 619 | lemma approx_minus_iff: " (x @= y) = (x - y @= 0)" | |
| 620 | by (simp add: approx_def) | |
| 621 | ||
| 622 | lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)" | |
| 623 | by (simp add: approx_def diff_minus add_commute) | |
| 624 | ||
| 625 | lemma approx_refl [iff]: "x @= x" | |
| 626 | by (simp add: approx_def Infinitesimal_def) | |
| 627 | ||
| 628 | lemma hypreal_minus_distrib1: "-(y + -(x::'a::ab_group_add)) = x + -y" | |
| 629 | by (simp add: add_commute) | |
| 630 | ||
| 631 | lemma approx_sym: "x @= y ==> y @= x" | |
| 632 | apply (simp add: approx_def) | |
| 633 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 634 | apply simp | |
| 635 | done | |
| 636 | ||
| 637 | lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z" | |
| 638 | apply (simp add: approx_def) | |
| 639 | apply (drule (1) Infinitesimal_add) | |
| 37887 | 640 | apply (simp add: diff_minus) | 
| 27468 | 641 | done | 
| 642 | ||
| 643 | lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s" | |
| 644 | by (blast intro: approx_sym approx_trans) | |
| 645 | ||
| 646 | lemma approx_trans3: "[| x @= r; x @= s|] ==> r @= s" | |
| 647 | by (blast intro: approx_sym approx_trans) | |
| 648 | ||
| 649 | lemma number_of_approx_reorient: "(number_of w @= x) = (x @= number_of w)" | |
| 650 | by (blast intro: approx_sym) | |
| 651 | ||
| 652 | lemma zero_approx_reorient: "(0 @= x) = (x @= 0)" | |
| 653 | by (blast intro: approx_sym) | |
| 654 | ||
| 655 | lemma one_approx_reorient: "(1 @= x) = (x @= 1)" | |
| 656 | by (blast intro: approx_sym) | |
| 657 | ||
| 658 | ||
| 659 | ML {*
 | |
| 660 | local | |
| 661 | (*** re-orientation, following HOL/Integ/Bin.ML | |
| 662 | We re-orient x @=y where x is 0, 1 or a numeral, unless y is as well! | |
| 663 | ***) | |
| 664 | ||
| 665 | (*reorientation simprules using ==, for the following simproc*) | |
| 39159 | 666 | val meta_zero_approx_reorient = @{thm zero_approx_reorient} RS eq_reflection;
 | 
| 667 | val meta_one_approx_reorient = @{thm one_approx_reorient} RS eq_reflection;
 | |
| 668 | val meta_number_of_approx_reorient = @{thm number_of_approx_reorient} RS eq_reflection
 | |
| 27468 | 669 | |
| 670 | (*reorientation simplification procedure: reorients (polymorphic) | |
| 671 | 0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*) | |
| 672 | fun reorient_proc sg _ (_ $ t $ u) = | |
| 673 | case u of | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
34974diff
changeset | 674 |       Const(@{const_name Groups.zero}, _) => NONE
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
34974diff
changeset | 675 |     | Const(@{const_name Groups.one}, _) => NONE
 | 
| 27468 | 676 |     | Const(@{const_name Int.number_of}, _) $ _ => NONE
 | 
| 677 | | _ => SOME (case t of | |
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
34974diff
changeset | 678 |                 Const(@{const_name Groups.zero}, _) => meta_zero_approx_reorient
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
34974diff
changeset | 679 |               | Const(@{const_name Groups.one}, _) => meta_one_approx_reorient
 | 
| 27468 | 680 |               | Const(@{const_name Int.number_of}, _) $ _ =>
 | 
| 681 | meta_number_of_approx_reorient); | |
| 682 | ||
| 683 | in | |
| 684 | val approx_reorient_simproc = | |
| 32155 | 685 |   Arith_Data.prep_simproc @{theory}
 | 
| 27468 | 686 |     ("reorient_simproc", ["0@=x", "1@=x", "number_of w @= x"], reorient_proc);
 | 
| 687 | end; | |
| 688 | ||
| 689 | Addsimprocs [approx_reorient_simproc]; | |
| 690 | *} | |
| 691 | ||
| 692 | lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x @= y)" | |
| 693 | by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) | |
| 694 | ||
| 695 | lemma approx_monad_iff: "(x @= y) = (monad(x)=monad(y))" | |
| 696 | apply (simp add: monad_def) | |
| 697 | apply (auto dest: approx_sym elim!: approx_trans equalityCE) | |
| 698 | done | |
| 699 | ||
| 700 | lemma Infinitesimal_approx: | |
| 701 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x @= y" | |
| 702 | apply (simp add: mem_infmal_iff) | |
| 703 | apply (blast intro: approx_trans approx_sym) | |
| 704 | done | |
| 705 | ||
| 706 | lemma approx_add: "[| a @= b; c @= d |] ==> a+c @= b+d" | |
| 707 | proof (unfold approx_def) | |
| 708 | assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" | |
| 709 | have "a + c - (b + d) = (a - b) + (c - d)" by simp | |
| 710 | also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add) | |
| 711 | finally show "a + c - (b + d) \<in> Infinitesimal" . | |
| 712 | qed | |
| 713 | ||
| 714 | lemma approx_minus: "a @= b ==> -a @= -b" | |
| 715 | apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) | |
| 716 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 37887 | 717 | apply (simp add: add_commute diff_minus) | 
| 27468 | 718 | done | 
| 719 | ||
| 720 | lemma approx_minus2: "-a @= -b ==> a @= b" | |
| 721 | by (auto dest: approx_minus) | |
| 722 | ||
| 723 | lemma approx_minus_cancel [simp]: "(-a @= -b) = (a @= b)" | |
| 724 | by (blast intro: approx_minus approx_minus2) | |
| 725 | ||
| 726 | lemma approx_add_minus: "[| a @= b; c @= d |] ==> a + -c @= b + -d" | |
| 727 | by (blast intro!: approx_add approx_minus) | |
| 728 | ||
| 729 | lemma approx_diff: "[| a @= b; c @= d |] ==> a - c @= b - d" | |
| 730 | by (simp only: diff_minus approx_add approx_minus) | |
| 731 | ||
| 732 | lemma approx_mult1: | |
| 733 | fixes a b c :: "'a::real_normed_algebra star" | |
| 734 | shows "[| a @= b; c: HFinite|] ==> a*c @= b*c" | |
| 735 | by (simp add: approx_def Infinitesimal_HFinite_mult | |
| 736 | left_diff_distrib [symmetric]) | |
| 737 | ||
| 738 | lemma approx_mult2: | |
| 739 | fixes a b c :: "'a::real_normed_algebra star" | |
| 740 | shows "[|a @= b; c: HFinite|] ==> c*a @= c*b" | |
| 741 | by (simp add: approx_def Infinitesimal_HFinite_mult2 | |
| 742 | right_diff_distrib [symmetric]) | |
| 743 | ||
| 744 | lemma approx_mult_subst: | |
| 745 | fixes u v x y :: "'a::real_normed_algebra star" | |
| 746 | shows "[|u @= v*x; x @= y; v \<in> HFinite|] ==> u @= v*y" | |
| 747 | by (blast intro: approx_mult2 approx_trans) | |
| 748 | ||
| 749 | lemma approx_mult_subst2: | |
| 750 | fixes u v x y :: "'a::real_normed_algebra star" | |
| 751 | shows "[| u @= x*v; x @= y; v \<in> HFinite |] ==> u @= y*v" | |
| 752 | by (blast intro: approx_mult1 approx_trans) | |
| 753 | ||
| 754 | lemma approx_mult_subst_star_of: | |
| 755 | fixes u x y :: "'a::real_normed_algebra star" | |
| 756 | shows "[| u @= x*star_of v; x @= y |] ==> u @= y*star_of v" | |
| 757 | by (auto intro: approx_mult_subst2) | |
| 758 | ||
| 759 | lemma approx_eq_imp: "a = b ==> a @= b" | |
| 760 | by (simp add: approx_def) | |
| 761 | ||
| 762 | lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x @= x" | |
| 763 | by (blast intro: Infinitesimal_minus_iff [THEN iffD2] | |
| 764 | mem_infmal_iff [THEN iffD1] approx_trans2) | |
| 765 | ||
| 766 | lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) = (x @= z)" | |
| 767 | by (simp add: approx_def) | |
| 768 | ||
| 769 | lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x @= z)" | |
| 770 | by (force simp add: bex_Infinitesimal_iff [symmetric]) | |
| 771 | ||
| 772 | lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x @= z" | |
| 773 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 774 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 775 | apply (auto simp add: add_assoc [symmetric]) | |
| 776 | done | |
| 777 | ||
| 778 | lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x @= x + y" | |
| 779 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 780 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 781 | apply (auto simp add: add_assoc [symmetric]) | |
| 782 | done | |
| 783 | ||
| 784 | lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x @= y + x" | |
| 785 | by (auto dest: Infinitesimal_add_approx_self simp add: add_commute) | |
| 786 | ||
| 787 | lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x @= x + -y" | |
| 788 | by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) | |
| 789 | ||
| 790 | lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y @= z|] ==> x @= z" | |
| 791 | apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) | |
| 792 | apply (erule approx_trans3 [THEN approx_sym], assumption) | |
| 793 | done | |
| 794 | ||
| 795 | lemma Infinitesimal_add_right_cancel: | |
| 796 | "[| y \<in> Infinitesimal; x @= z + y|] ==> x @= z" | |
| 797 | apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) | |
| 798 | apply (erule approx_trans3 [THEN approx_sym]) | |
| 799 | apply (simp add: add_commute) | |
| 800 | apply (erule approx_sym) | |
| 801 | done | |
| 802 | ||
| 803 | lemma approx_add_left_cancel: "d + b @= d + c ==> b @= c" | |
| 804 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 805 | apply (simp add: approx_minus_iff [symmetric] add_ac) | |
| 806 | done | |
| 807 | ||
| 808 | lemma approx_add_right_cancel: "b + d @= c + d ==> b @= c" | |
| 809 | apply (rule approx_add_left_cancel) | |
| 810 | apply (simp add: add_commute) | |
| 811 | done | |
| 812 | ||
| 813 | lemma approx_add_mono1: "b @= c ==> d + b @= d + c" | |
| 814 | apply (rule approx_minus_iff [THEN iffD2]) | |
| 815 | apply (simp add: approx_minus_iff [symmetric] add_ac) | |
| 816 | done | |
| 817 | ||
| 818 | lemma approx_add_mono2: "b @= c ==> b + a @= c + a" | |
| 819 | by (simp add: add_commute approx_add_mono1) | |
| 820 | ||
| 821 | lemma approx_add_left_iff [simp]: "(a + b @= a + c) = (b @= c)" | |
| 822 | by (fast elim: approx_add_left_cancel approx_add_mono1) | |
| 823 | ||
| 824 | lemma approx_add_right_iff [simp]: "(b + a @= c + a) = (b @= c)" | |
| 825 | by (simp add: add_commute) | |
| 826 | ||
| 827 | lemma approx_HFinite: "[| x \<in> HFinite; x @= y |] ==> y \<in> HFinite" | |
| 828 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) | |
| 829 | apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) | |
| 830 | apply (drule HFinite_add) | |
| 831 | apply (auto simp add: add_assoc) | |
| 832 | done | |
| 833 | ||
| 834 | lemma approx_star_of_HFinite: "x @= star_of D ==> x \<in> HFinite" | |
| 835 | by (rule approx_sym [THEN [2] approx_HFinite], auto) | |
| 836 | ||
| 837 | lemma approx_mult_HFinite: | |
| 838 | fixes a b c d :: "'a::real_normed_algebra star" | |
| 839 | shows "[|a @= b; c @= d; b: HFinite; d: HFinite|] ==> a*c @= b*d" | |
| 840 | apply (rule approx_trans) | |
| 841 | apply (rule_tac [2] approx_mult2) | |
| 842 | apply (rule approx_mult1) | |
| 843 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 844 | done | |
| 845 | ||
| 846 | lemma scaleHR_left_diff_distrib: | |
| 847 | "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" | |
| 848 | by transfer (rule scaleR_left_diff_distrib) | |
| 849 | ||
| 850 | lemma approx_scaleR1: | |
| 851 | "[| a @= star_of b; c: HFinite|] ==> scaleHR a c @= b *\<^sub>R c" | |
| 852 | apply (unfold approx_def) | |
| 853 | apply (drule (1) Infinitesimal_HFinite_scaleHR) | |
| 854 | apply (simp only: scaleHR_left_diff_distrib) | |
| 855 | apply (simp add: scaleHR_def star_scaleR_def [symmetric]) | |
| 856 | done | |
| 857 | ||
| 858 | lemma approx_scaleR2: | |
| 859 | "a @= b ==> c *\<^sub>R a @= c *\<^sub>R b" | |
| 860 | by (simp add: approx_def Infinitesimal_scaleR2 | |
| 861 | scaleR_right_diff_distrib [symmetric]) | |
| 862 | ||
| 863 | lemma approx_scaleR_HFinite: | |
| 864 | "[|a @= star_of b; c @= d; d: HFinite|] ==> scaleHR a c @= b *\<^sub>R d" | |
| 865 | apply (rule approx_trans) | |
| 866 | apply (rule_tac [2] approx_scaleR2) | |
| 867 | apply (rule approx_scaleR1) | |
| 868 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 869 | done | |
| 870 | ||
| 871 | lemma approx_mult_star_of: | |
| 872 | fixes a c :: "'a::real_normed_algebra star" | |
| 873 | shows "[|a @= star_of b; c @= star_of d |] | |
| 874 | ==> a*c @= star_of b*star_of d" | |
| 875 | by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) | |
| 876 | ||
| 877 | lemma approx_SReal_mult_cancel_zero: | |
| 878 | "[| (a::hypreal) \<in> Reals; a \<noteq> 0; a*x @= 0 |] ==> x @= 0" | |
| 879 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 880 | apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric]) | |
| 881 | done | |
| 882 | ||
| 883 | lemma approx_mult_SReal1: "[| (a::hypreal) \<in> Reals; x @= 0 |] ==> x*a @= 0" | |
| 884 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) | |
| 885 | ||
| 886 | lemma approx_mult_SReal2: "[| (a::hypreal) \<in> Reals; x @= 0 |] ==> a*x @= 0" | |
| 887 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) | |
| 888 | ||
| 889 | lemma approx_mult_SReal_zero_cancel_iff [simp]: | |
| 890 | "[|(a::hypreal) \<in> Reals; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)" | |
| 891 | by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) | |
| 892 | ||
| 893 | lemma approx_SReal_mult_cancel: | |
| 894 | "[| (a::hypreal) \<in> Reals; a \<noteq> 0; a* w @= a*z |] ==> w @= z" | |
| 895 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 896 | apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric]) | |
| 897 | done | |
| 898 | ||
| 899 | lemma approx_SReal_mult_cancel_iff1 [simp]: | |
| 900 | "[| (a::hypreal) \<in> Reals; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)" | |
| 901 | by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] | |
| 902 | intro: approx_SReal_mult_cancel) | |
| 903 | ||
| 904 | lemma approx_le_bound: "[| (z::hypreal) \<le> f; f @= g; g \<le> z |] ==> f @= z" | |
| 905 | apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) | |
| 906 | apply (rule_tac x = "g+y-z" in bexI) | |
| 907 | apply (simp (no_asm)) | |
| 908 | apply (rule Infinitesimal_interval2) | |
| 909 | apply (rule_tac [2] Infinitesimal_zero, auto) | |
| 910 | done | |
| 911 | ||
| 912 | lemma approx_hnorm: | |
| 913 | fixes x y :: "'a::real_normed_vector star" | |
| 914 | shows "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" | |
| 915 | proof (unfold approx_def) | |
| 916 | assume "x - y \<in> Infinitesimal" | |
| 917 | hence 1: "hnorm (x - y) \<in> Infinitesimal" | |
| 918 | by (simp only: Infinitesimal_hnorm_iff) | |
| 919 | moreover have 2: "(0::real star) \<in> Infinitesimal" | |
| 920 | by (rule Infinitesimal_zero) | |
| 921 | moreover have 3: "0 \<le> \<bar>hnorm x - hnorm y\<bar>" | |
| 922 | by (rule abs_ge_zero) | |
| 923 | moreover have 4: "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | |
| 924 | by (rule hnorm_triangle_ineq3) | |
| 925 | ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" | |
| 926 | by (rule Infinitesimal_interval2) | |
| 927 | thus "hnorm x - hnorm y \<in> Infinitesimal" | |
| 928 | by (simp only: Infinitesimal_hrabs_iff) | |
| 929 | qed | |
| 930 | ||
| 931 | ||
| 932 | subsection{* Zero is the Only Infinitesimal that is also a Real*}
 | |
| 933 | ||
| 934 | lemma Infinitesimal_less_SReal: | |
| 935 | "[| (x::hypreal) \<in> Reals; y \<in> Infinitesimal; 0 < x |] ==> y < x" | |
| 936 | apply (simp add: Infinitesimal_def) | |
| 937 | apply (rule abs_ge_self [THEN order_le_less_trans], auto) | |
| 938 | done | |
| 939 | ||
| 940 | lemma Infinitesimal_less_SReal2: | |
| 941 | "(y::hypreal) \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r" | |
| 942 | by (blast intro: Infinitesimal_less_SReal) | |
| 943 | ||
| 944 | lemma SReal_not_Infinitesimal: | |
| 945 | "[| 0 < y; (y::hypreal) \<in> Reals|] ==> y \<notin> Infinitesimal" | |
| 946 | apply (simp add: Infinitesimal_def) | |
| 947 | apply (auto simp add: abs_if) | |
| 948 | done | |
| 949 | ||
| 950 | lemma SReal_minus_not_Infinitesimal: | |
| 951 | "[| y < 0; (y::hypreal) \<in> Reals |] ==> y \<notin> Infinitesimal" | |
| 952 | apply (subst Infinitesimal_minus_iff [symmetric]) | |
| 953 | apply (rule SReal_not_Infinitesimal, auto) | |
| 954 | done | |
| 955 | ||
| 956 | lemma SReal_Int_Infinitesimal_zero: "Reals Int Infinitesimal = {0::hypreal}"
 | |
| 957 | apply auto | |
| 958 | apply (cut_tac x = x and y = 0 in linorder_less_linear) | |
| 959 | apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 960 | done | |
| 961 | ||
| 962 | lemma SReal_Infinitesimal_zero: | |
| 963 | "[| (x::hypreal) \<in> Reals; x \<in> Infinitesimal|] ==> x = 0" | |
| 964 | by (cut_tac SReal_Int_Infinitesimal_zero, blast) | |
| 965 | ||
| 966 | lemma SReal_HFinite_diff_Infinitesimal: | |
| 967 | "[| (x::hypreal) \<in> Reals; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal" | |
| 968 | by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) | |
| 969 | ||
| 970 | lemma hypreal_of_real_HFinite_diff_Infinitesimal: | |
| 971 | "hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal" | |
| 972 | by (rule SReal_HFinite_diff_Infinitesimal, auto) | |
| 973 | ||
| 974 | lemma star_of_Infinitesimal_iff_0 [iff]: | |
| 975 | "(star_of x \<in> Infinitesimal) = (x = 0)" | |
| 976 | apply (auto simp add: Infinitesimal_def) | |
| 977 | apply (drule_tac x="hnorm (star_of x)" in bspec) | |
| 978 | apply (simp add: SReal_def) | |
| 979 | apply (rule_tac x="norm x" in exI, simp) | |
| 980 | apply simp | |
| 981 | done | |
| 982 | ||
| 983 | lemma star_of_HFinite_diff_Infinitesimal: | |
| 984 | "x \<noteq> 0 ==> star_of x \<in> HFinite - Infinitesimal" | |
| 985 | by simp | |
| 986 | ||
| 987 | lemma number_of_not_Infinitesimal [simp]: | |
| 988 | "number_of w \<noteq> (0::hypreal) ==> (number_of w :: hypreal) \<notin> Infinitesimal" | |
| 989 | by (fast dest: Reals_number_of [THEN SReal_Infinitesimal_zero]) | |
| 990 | ||
| 991 | (*again: 1 is a special case, but not 0 this time*) | |
| 992 | lemma one_not_Infinitesimal [simp]: | |
| 993 |   "(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal"
 | |
| 994 | apply (simp only: star_one_def star_of_Infinitesimal_iff_0) | |
| 995 | apply simp | |
| 996 | done | |
| 997 | ||
| 998 | lemma approx_SReal_not_zero: | |
| 999 | "[| (y::hypreal) \<in> Reals; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0" | |
| 1000 | apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) | |
| 1001 | apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 1002 | done | |
| 1003 | ||
| 1004 | lemma HFinite_diff_Infinitesimal_approx: | |
| 1005 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | |
| 1006 | ==> x \<in> HFinite - Infinitesimal" | |
| 1007 | apply (auto intro: approx_sym [THEN [2] approx_HFinite] | |
| 1008 | simp add: mem_infmal_iff) | |
| 1009 | apply (drule approx_trans3, assumption) | |
| 1010 | apply (blast dest: approx_sym) | |
| 1011 | done | |
| 1012 | ||
| 1013 | (*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the | |
| 1014 | HFinite premise.*) | |
| 1015 | lemma Infinitesimal_ratio: | |
| 1016 |   fixes x y :: "'a::{real_normed_div_algebra,field} star"
 | |
| 1017 | shows "[| y \<noteq> 0; y \<in> Infinitesimal; x/y \<in> HFinite |] | |
| 1018 | ==> x \<in> Infinitesimal" | |
| 1019 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 1020 | apply (simp add: divide_inverse mult_assoc) | |
| 1021 | done | |
| 1022 | ||
| 1023 | lemma Infinitesimal_SReal_divide: | |
| 1024 | "[| (x::hypreal) \<in> Infinitesimal; y \<in> Reals |] ==> x/y \<in> Infinitesimal" | |
| 1025 | apply (simp add: divide_inverse) | |
| 1026 | apply (auto intro!: Infinitesimal_HFinite_mult | |
| 1027 | dest!: Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 1028 | done | |
| 1029 | ||
| 1030 | (*------------------------------------------------------------------ | |
| 1031 | Standard Part Theorem: Every finite x: R* is infinitely | |
| 1032 | close to a unique real number (i.e a member of Reals) | |
| 1033 | ------------------------------------------------------------------*) | |
| 1034 | ||
| 1035 | subsection{* Uniqueness: Two Infinitely Close Reals are Equal*}
 | |
| 1036 | ||
| 1037 | lemma star_of_approx_iff [simp]: "(star_of x @= star_of y) = (x = y)" | |
| 1038 | apply safe | |
| 1039 | apply (simp add: approx_def) | |
| 1040 | apply (simp only: star_of_diff [symmetric]) | |
| 1041 | apply (simp only: star_of_Infinitesimal_iff_0) | |
| 1042 | apply simp | |
| 1043 | done | |
| 1044 | ||
| 1045 | lemma SReal_approx_iff: | |
| 1046 | "[|(x::hypreal) \<in> Reals; y \<in> Reals|] ==> (x @= y) = (x = y)" | |
| 1047 | apply auto | |
| 1048 | apply (simp add: approx_def) | |
| 1049 | apply (drule (1) Reals_diff) | |
| 1050 | apply (drule (1) SReal_Infinitesimal_zero) | |
| 1051 | apply simp | |
| 1052 | done | |
| 1053 | ||
| 1054 | lemma number_of_approx_iff [simp]: | |
| 1055 |      "(number_of v @= (number_of w :: 'a::{number,real_normed_vector} star)) =
 | |
| 1056 | (number_of v = (number_of w :: 'a))" | |
| 1057 | apply (unfold star_number_def) | |
| 1058 | apply (rule star_of_approx_iff) | |
| 1059 | done | |
| 1060 | ||
| 1061 | (*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) | |
| 1062 | lemma [simp]: | |
| 1063 |   "(number_of w @= (0::'a::{number,real_normed_vector} star)) =
 | |
| 1064 | (number_of w = (0::'a))" | |
| 1065 |   "((0::'a::{number,real_normed_vector} star) @= number_of w) =
 | |
| 1066 | (number_of w = (0::'a))" | |
| 1067 |   "(number_of w @= (1::'b::{number,one,real_normed_vector} star)) =
 | |
| 1068 | (number_of w = (1::'b))" | |
| 1069 |   "((1::'b::{number,one,real_normed_vector} star) @= number_of w) =
 | |
| 1070 | (number_of w = (1::'b))" | |
| 1071 |   "~ (0 @= (1::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 1072 |   "~ (1 @= (0::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 1073 | apply (unfold star_number_def star_zero_def star_one_def) | |
| 1074 | apply (unfold star_of_approx_iff) | |
| 1075 | by (auto intro: sym) | |
| 1076 | ||
| 1077 | lemma star_of_approx_number_of_iff [simp]: | |
| 1078 | "(star_of k @= number_of w) = (k = number_of w)" | |
| 1079 | by (subst star_of_approx_iff [symmetric], auto) | |
| 1080 | ||
| 1081 | lemma star_of_approx_zero_iff [simp]: "(star_of k @= 0) = (k = 0)" | |
| 1082 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 1083 | ||
| 1084 | lemma star_of_approx_one_iff [simp]: "(star_of k @= 1) = (k = 1)" | |
| 1085 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 1086 | ||
| 1087 | lemma approx_unique_real: | |
| 1088 | "[| (r::hypreal) \<in> Reals; s \<in> Reals; r @= x; s @= x|] ==> r = s" | |
| 1089 | by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) | |
| 1090 | ||
| 1091 | ||
| 1092 | subsection{* Existence of Unique Real Infinitely Close*}
 | |
| 1093 | ||
| 1094 | subsubsection{*Lifting of the Ub and Lub Properties*}
 | |
| 1095 | ||
| 1096 | lemma hypreal_of_real_isUb_iff: | |
| 1097 | "(isUb (Reals) (hypreal_of_real ` Q) (hypreal_of_real Y)) = | |
| 1098 | (isUb (UNIV :: real set) Q Y)" | |
| 1099 | by (simp add: isUb_def setle_def) | |
| 1100 | ||
| 1101 | lemma hypreal_of_real_isLub1: | |
| 1102 | "isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y) | |
| 1103 | ==> isLub (UNIV :: real set) Q Y" | |
| 1104 | apply (simp add: isLub_def leastP_def) | |
| 1105 | apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] | |
| 1106 | simp add: hypreal_of_real_isUb_iff setge_def) | |
| 1107 | done | |
| 1108 | ||
| 1109 | lemma hypreal_of_real_isLub2: | |
| 1110 | "isLub (UNIV :: real set) Q Y | |
| 1111 | ==> isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)" | |
| 1112 | apply (simp add: isLub_def leastP_def) | |
| 1113 | apply (auto simp add: hypreal_of_real_isUb_iff setge_def) | |
| 1114 | apply (frule_tac x2 = x in isUbD2a [THEN SReal_iff [THEN iffD1], THEN exE]) | |
| 1115 | prefer 2 apply assumption | |
| 1116 | apply (drule_tac x = xa in spec) | |
| 1117 | apply (auto simp add: hypreal_of_real_isUb_iff) | |
| 1118 | done | |
| 1119 | ||
| 1120 | lemma hypreal_of_real_isLub_iff: | |
| 1121 | "(isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)) = | |
| 1122 | (isLub (UNIV :: real set) Q Y)" | |
| 1123 | by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) | |
| 1124 | ||
| 1125 | lemma lemma_isUb_hypreal_of_real: | |
| 1126 | "isUb Reals P Y ==> \<exists>Yo. isUb Reals P (hypreal_of_real Yo)" | |
| 1127 | by (auto simp add: SReal_iff isUb_def) | |
| 1128 | ||
| 1129 | lemma lemma_isLub_hypreal_of_real: | |
| 1130 | "isLub Reals P Y ==> \<exists>Yo. isLub Reals P (hypreal_of_real Yo)" | |
| 1131 | by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) | |
| 1132 | ||
| 1133 | lemma lemma_isLub_hypreal_of_real2: | |
| 1134 | "\<exists>Yo. isLub Reals P (hypreal_of_real Yo) ==> \<exists>Y. isLub Reals P Y" | |
| 1135 | by (auto simp add: isLub_def leastP_def isUb_def) | |
| 1136 | ||
| 1137 | lemma SReal_complete: | |
| 1138 | "[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>Y. isUb Reals P Y |] | |
| 1139 | ==> \<exists>t::hypreal. isLub Reals P t" | |
| 1140 | apply (frule SReal_hypreal_of_real_image) | |
| 1141 | apply (auto, drule lemma_isUb_hypreal_of_real) | |
| 1142 | apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 | |
| 1143 | simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) | |
| 1144 | done | |
| 1145 | ||
| 1146 | (* lemma about lubs *) | |
| 1147 | lemma hypreal_isLub_unique: | |
| 1148 | "[| isLub R S x; isLub R S y |] ==> x = (y::hypreal)" | |
| 1149 | apply (frule isLub_isUb) | |
| 1150 | apply (frule_tac x = y in isLub_isUb) | |
| 1151 | apply (blast intro!: order_antisym dest!: isLub_le_isUb) | |
| 1152 | done | |
| 1153 | ||
| 1154 | lemma lemma_st_part_ub: | |
| 1155 |      "(x::hypreal) \<in> HFinite ==> \<exists>u. isUb Reals {s. s \<in> Reals & s < x} u"
 | |
| 1156 | apply (drule HFiniteD, safe) | |
| 1157 | apply (rule exI, rule isUbI) | |
| 1158 | apply (auto intro: setleI isUbI simp add: abs_less_iff) | |
| 1159 | done | |
| 1160 | ||
| 1161 | lemma lemma_st_part_nonempty: | |
| 1162 |   "(x::hypreal) \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> Reals & s < x}"
 | |
| 1163 | apply (drule HFiniteD, safe) | |
| 1164 | apply (drule Reals_minus) | |
| 1165 | apply (rule_tac x = "-t" in exI) | |
| 1166 | apply (auto simp add: abs_less_iff) | |
| 1167 | done | |
| 1168 | ||
| 1169 | lemma lemma_st_part_subset: "{s. s \<in> Reals & s < x} \<subseteq> Reals"
 | |
| 1170 | by auto | |
| 1171 | ||
| 1172 | lemma lemma_st_part_lub: | |
| 1173 |      "(x::hypreal) \<in> HFinite ==> \<exists>t. isLub Reals {s. s \<in> Reals & s < x} t"
 | |
| 1174 | by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty lemma_st_part_subset) | |
| 1175 | ||
| 1176 | lemma lemma_hypreal_le_left_cancel: "((t::hypreal) + r \<le> t) = (r \<le> 0)" | |
| 1177 | apply safe | |
| 1178 | apply (drule_tac c = "-t" in add_left_mono) | |
| 1179 | apply (drule_tac [2] c = t in add_left_mono) | |
| 1180 | apply (auto simp add: add_assoc [symmetric]) | |
| 1181 | done | |
| 1182 | ||
| 1183 | lemma lemma_st_part_le1: | |
| 1184 |      "[| (x::hypreal) \<in> HFinite;  isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1185 | r \<in> Reals; 0 < r |] ==> x \<le> t + r" | |
| 1186 | apply (frule isLubD1a) | |
| 1187 | apply (rule ccontr, drule linorder_not_le [THEN iffD2]) | |
| 1188 | apply (drule (1) Reals_add) | |
| 1189 | apply (drule_tac y = "r + t" in isLubD1 [THEN setleD], auto) | |
| 1190 | done | |
| 1191 | ||
| 1192 | lemma hypreal_setle_less_trans: | |
| 1193 | "[| S *<= (x::hypreal); x < y |] ==> S *<= y" | |
| 1194 | apply (simp add: setle_def) | |
| 1195 | apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) | |
| 1196 | done | |
| 1197 | ||
| 1198 | lemma hypreal_gt_isUb: | |
| 1199 | "[| isUb R S (x::hypreal); x < y; y \<in> R |] ==> isUb R S y" | |
| 1200 | apply (simp add: isUb_def) | |
| 1201 | apply (blast intro: hypreal_setle_less_trans) | |
| 1202 | done | |
| 1203 | ||
| 1204 | lemma lemma_st_part_gt_ub: | |
| 1205 | "[| (x::hypreal) \<in> HFinite; x < y; y \<in> Reals |] | |
| 1206 |       ==> isUb Reals {s. s \<in> Reals & s < x} y"
 | |
| 1207 | by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) | |
| 1208 | ||
| 1209 | lemma lemma_minus_le_zero: "t \<le> t + -r ==> r \<le> (0::hypreal)" | |
| 1210 | apply (drule_tac c = "-t" in add_left_mono) | |
| 1211 | apply (auto simp add: add_assoc [symmetric]) | |
| 1212 | done | |
| 1213 | ||
| 1214 | lemma lemma_st_part_le2: | |
| 1215 | "[| (x::hypreal) \<in> HFinite; | |
| 1216 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1217 | r \<in> Reals; 0 < r |] | |
| 1218 | ==> t + -r \<le> x" | |
| 1219 | apply (frule isLubD1a) | |
| 1220 | apply (rule ccontr, drule linorder_not_le [THEN iffD1]) | |
| 1221 | apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption) | |
| 1222 | apply (drule lemma_st_part_gt_ub, assumption+) | |
| 1223 | apply (drule isLub_le_isUb, assumption) | |
| 1224 | apply (drule lemma_minus_le_zero) | |
| 1225 | apply (auto dest: order_less_le_trans) | |
| 1226 | done | |
| 1227 | ||
| 1228 | lemma lemma_st_part1a: | |
| 1229 | "[| (x::hypreal) \<in> HFinite; | |
| 1230 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1231 | r \<in> Reals; 0 < r |] | |
| 1232 | ==> x + -t \<le> r" | |
| 1233 | apply (subgoal_tac "x \<le> t+r") | |
| 1234 | apply (auto intro: lemma_st_part_le1) | |
| 1235 | done | |
| 1236 | ||
| 1237 | lemma lemma_st_part2a: | |
| 1238 | "[| (x::hypreal) \<in> HFinite; | |
| 1239 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1240 | r \<in> Reals; 0 < r |] | |
| 1241 | ==> -(x + -t) \<le> r" | |
| 1242 | apply (subgoal_tac "(t + -r \<le> x)") | |
| 1243 | apply (auto intro: lemma_st_part_le2) | |
| 1244 | done | |
| 1245 | ||
| 1246 | lemma lemma_SReal_ub: | |
| 1247 |      "(x::hypreal) \<in> Reals ==> isUb Reals {s. s \<in> Reals & s < x} x"
 | |
| 1248 | by (auto intro: isUbI setleI order_less_imp_le) | |
| 1249 | ||
| 1250 | lemma lemma_SReal_lub: | |
| 1251 |      "(x::hypreal) \<in> Reals ==> isLub Reals {s. s \<in> Reals & s < x} x"
 | |
| 1252 | apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) | |
| 1253 | apply (frule isUbD2a) | |
| 1254 | apply (rule_tac x = x and y = y in linorder_cases) | |
| 1255 | apply (auto intro!: order_less_imp_le) | |
| 1256 | apply (drule SReal_dense, assumption, assumption, safe) | |
| 1257 | apply (drule_tac y = r in isUbD) | |
| 1258 | apply (auto dest: order_less_le_trans) | |
| 1259 | done | |
| 1260 | ||
| 1261 | lemma lemma_st_part_not_eq1: | |
| 1262 | "[| (x::hypreal) \<in> HFinite; | |
| 1263 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1264 | r \<in> Reals; 0 < r |] | |
| 1265 | ==> x + -t \<noteq> r" | |
| 1266 | apply auto | |
| 1267 | apply (frule isLubD1a [THEN Reals_minus]) | |
| 1268 | apply (drule Reals_add_cancel, assumption) | |
| 1269 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1270 | apply (drule hypreal_isLub_unique, assumption, auto) | |
| 1271 | done | |
| 1272 | ||
| 1273 | lemma lemma_st_part_not_eq2: | |
| 1274 | "[| (x::hypreal) \<in> HFinite; | |
| 1275 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1276 | r \<in> Reals; 0 < r |] | |
| 1277 | ==> -(x + -t) \<noteq> r" | |
| 1278 | apply (auto) | |
| 1279 | apply (frule isLubD1a) | |
| 1280 | apply (drule Reals_add_cancel, assumption) | |
| 1281 | apply (drule_tac a = "-x" in Reals_minus, simp) | |
| 1282 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1283 | apply (drule hypreal_isLub_unique, assumption, auto) | |
| 1284 | done | |
| 1285 | ||
| 1286 | lemma lemma_st_part_major: | |
| 1287 | "[| (x::hypreal) \<in> HFinite; | |
| 1288 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | |
| 1289 | r \<in> Reals; 0 < r |] | |
| 1290 | ==> abs (x - t) < r" | |
| 1291 | apply (frule lemma_st_part1a) | |
| 1292 | apply (frule_tac [4] lemma_st_part2a, auto) | |
| 1293 | apply (drule order_le_imp_less_or_eq)+ | |
| 1294 | apply (auto dest: lemma_st_part_not_eq1 lemma_st_part_not_eq2 simp add: abs_less_iff) | |
| 1295 | done | |
| 1296 | ||
| 1297 | lemma lemma_st_part_major2: | |
| 1298 |      "[| (x::hypreal) \<in> HFinite; isLub Reals {s. s \<in> Reals & s < x} t |]
 | |
| 1299 | ==> \<forall>r \<in> Reals. 0 < r --> abs (x - t) < r" | |
| 1300 | by (blast dest!: lemma_st_part_major) | |
| 1301 | ||
| 1302 | ||
| 1303 | text{*Existence of real and Standard Part Theorem*}
 | |
| 1304 | lemma lemma_st_part_Ex: | |
| 1305 | "(x::hypreal) \<in> HFinite | |
| 1306 | ==> \<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> abs (x - t) < r" | |
| 1307 | apply (frule lemma_st_part_lub, safe) | |
| 1308 | apply (frule isLubD1a) | |
| 1309 | apply (blast dest: lemma_st_part_major2) | |
| 1310 | done | |
| 1311 | ||
| 1312 | lemma st_part_Ex: | |
| 1313 | "(x::hypreal) \<in> HFinite ==> \<exists>t \<in> Reals. x @= t" | |
| 1314 | apply (simp add: approx_def Infinitesimal_def) | |
| 1315 | apply (drule lemma_st_part_Ex, auto) | |
| 1316 | done | |
| 1317 | ||
| 1318 | text{*There is a unique real infinitely close*}
 | |
| 1319 | lemma st_part_Ex1: "x \<in> HFinite ==> EX! t::hypreal. t \<in> Reals & x @= t" | |
| 1320 | apply (drule st_part_Ex, safe) | |
| 1321 | apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) | |
| 1322 | apply (auto intro!: approx_unique_real) | |
| 1323 | done | |
| 1324 | ||
| 1325 | subsection{* Finite, Infinite and Infinitesimal*}
 | |
| 1326 | ||
| 1327 | lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}"
 | |
| 1328 | apply (simp add: HFinite_def HInfinite_def) | |
| 1329 | apply (auto dest: order_less_trans) | |
| 1330 | done | |
| 1331 | ||
| 1332 | lemma HFinite_not_HInfinite: | |
| 1333 | assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" | |
| 1334 | proof | |
| 1335 | assume x': "x \<in> HInfinite" | |
| 1336 | with x have "x \<in> HFinite \<inter> HInfinite" by blast | |
| 1337 | thus False by auto | |
| 1338 | qed | |
| 1339 | ||
| 1340 | lemma not_HFinite_HInfinite: "x\<notin> HFinite ==> x \<in> HInfinite" | |
| 1341 | apply (simp add: HInfinite_def HFinite_def, auto) | |
| 1342 | apply (drule_tac x = "r + 1" in bspec) | |
| 1343 | apply (auto) | |
| 1344 | done | |
| 1345 | ||
| 1346 | lemma HInfinite_HFinite_disj: "x \<in> HInfinite | x \<in> HFinite" | |
| 1347 | by (blast intro: not_HFinite_HInfinite) | |
| 1348 | ||
| 1349 | lemma HInfinite_HFinite_iff: "(x \<in> HInfinite) = (x \<notin> HFinite)" | |
| 1350 | by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) | |
| 1351 | ||
| 1352 | lemma HFinite_HInfinite_iff: "(x \<in> HFinite) = (x \<notin> HInfinite)" | |
| 1353 | by (simp add: HInfinite_HFinite_iff) | |
| 1354 | ||
| 1355 | ||
| 1356 | lemma HInfinite_diff_HFinite_Infinitesimal_disj: | |
| 1357 | "x \<notin> Infinitesimal ==> x \<in> HInfinite | x \<in> HFinite - Infinitesimal" | |
| 1358 | by (fast intro: not_HFinite_HInfinite) | |
| 1359 | ||
| 1360 | lemma HFinite_inverse: | |
| 1361 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1362 | shows "[| x \<in> HFinite; x \<notin> Infinitesimal |] ==> inverse x \<in> HFinite" | |
| 1363 | apply (subgoal_tac "x \<noteq> 0") | |
| 1364 | apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj) | |
| 1365 | apply (auto dest!: HInfinite_inverse_Infinitesimal | |
| 1366 | simp add: nonzero_inverse_inverse_eq) | |
| 1367 | done | |
| 1368 | ||
| 1369 | lemma HFinite_inverse2: | |
| 1370 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1371 | shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite" | |
| 1372 | by (blast intro: HFinite_inverse) | |
| 1373 | ||
| 1374 | (* stronger statement possible in fact *) | |
| 1375 | lemma Infinitesimal_inverse_HFinite: | |
| 1376 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1377 | shows "x \<notin> Infinitesimal ==> inverse(x) \<in> HFinite" | |
| 1378 | apply (drule HInfinite_diff_HFinite_Infinitesimal_disj) | |
| 1379 | apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1380 | done | |
| 1381 | ||
| 1382 | lemma HFinite_not_Infinitesimal_inverse: | |
| 1383 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1384 | shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite - Infinitesimal" | |
| 1385 | apply (auto intro: Infinitesimal_inverse_HFinite) | |
| 1386 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 1387 | apply (simp add: not_Infinitesimal_not_zero right_inverse) | |
| 1388 | done | |
| 1389 | ||
| 1390 | lemma approx_inverse: | |
| 1391 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1392 | shows | |
| 1393 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | |
| 1394 | ==> inverse x @= inverse y" | |
| 1395 | apply (frule HFinite_diff_Infinitesimal_approx, assumption) | |
| 1396 | apply (frule not_Infinitesimal_not_zero2) | |
| 1397 | apply (frule_tac x = x in not_Infinitesimal_not_zero2) | |
| 1398 | apply (drule HFinite_inverse2)+ | |
| 1399 | apply (drule approx_mult2, assumption, auto) | |
| 1400 | apply (drule_tac c = "inverse x" in approx_mult1, assumption) | |
| 1401 | apply (auto intro: approx_sym simp add: mult_assoc) | |
| 1402 | done | |
| 1403 | ||
| 1404 | (*Used for NSLIM_inverse, NSLIMSEQ_inverse*) | |
| 1405 | lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1406 | lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1407 | ||
| 1408 | lemma inverse_add_Infinitesimal_approx: | |
| 1409 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1410 | shows | |
| 1411 | "[| x \<in> HFinite - Infinitesimal; | |
| 1412 | h \<in> Infinitesimal |] ==> inverse(x + h) @= inverse x" | |
| 1413 | apply (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) | |
| 1414 | done | |
| 1415 | ||
| 1416 | lemma inverse_add_Infinitesimal_approx2: | |
| 1417 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1418 | shows | |
| 1419 | "[| x \<in> HFinite - Infinitesimal; | |
| 1420 | h \<in> Infinitesimal |] ==> inverse(h + x) @= inverse x" | |
| 1421 | apply (rule add_commute [THEN subst]) | |
| 1422 | apply (blast intro: inverse_add_Infinitesimal_approx) | |
| 1423 | done | |
| 1424 | ||
| 1425 | lemma inverse_add_Infinitesimal_approx_Infinitesimal: | |
| 1426 | fixes x h :: "'a::real_normed_div_algebra star" | |
| 1427 | shows | |
| 1428 | "[| x \<in> HFinite - Infinitesimal; | |
| 1429 | h \<in> Infinitesimal |] ==> inverse(x + h) - inverse x @= h" | |
| 1430 | apply (rule approx_trans2) | |
| 1431 | apply (auto intro: inverse_add_Infinitesimal_approx | |
| 1432 | simp add: mem_infmal_iff approx_minus_iff [symmetric]) | |
| 1433 | done | |
| 1434 | ||
| 1435 | lemma Infinitesimal_square_iff: | |
| 1436 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1437 | shows "(x \<in> Infinitesimal) = (x*x \<in> Infinitesimal)" | |
| 1438 | apply (auto intro: Infinitesimal_mult) | |
| 1439 | apply (rule ccontr, frule Infinitesimal_inverse_HFinite) | |
| 1440 | apply (frule not_Infinitesimal_not_zero) | |
| 1441 | apply (auto dest: Infinitesimal_HFinite_mult simp add: mult_assoc) | |
| 1442 | done | |
| 1443 | declare Infinitesimal_square_iff [symmetric, simp] | |
| 1444 | ||
| 1445 | lemma HFinite_square_iff [simp]: | |
| 1446 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1447 | shows "(x*x \<in> HFinite) = (x \<in> HFinite)" | |
| 1448 | apply (auto intro: HFinite_mult) | |
| 1449 | apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff) | |
| 1450 | done | |
| 1451 | ||
| 1452 | lemma HInfinite_square_iff [simp]: | |
| 1453 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1454 | shows "(x*x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 1455 | by (auto simp add: HInfinite_HFinite_iff) | |
| 1456 | ||
| 1457 | lemma approx_HFinite_mult_cancel: | |
| 1458 | fixes a w z :: "'a::real_normed_div_algebra star" | |
| 1459 | shows "[| a: HFinite-Infinitesimal; a* w @= a*z |] ==> w @= z" | |
| 1460 | apply safe | |
| 1461 | apply (frule HFinite_inverse, assumption) | |
| 1462 | apply (drule not_Infinitesimal_not_zero) | |
| 1463 | apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric]) | |
| 1464 | done | |
| 1465 | ||
| 1466 | lemma approx_HFinite_mult_cancel_iff1: | |
| 1467 | fixes a w z :: "'a::real_normed_div_algebra star" | |
| 1468 | shows "a: HFinite-Infinitesimal ==> (a * w @= a * z) = (w @= z)" | |
| 1469 | by (auto intro: approx_mult2 approx_HFinite_mult_cancel) | |
| 1470 | ||
| 1471 | lemma HInfinite_HFinite_add_cancel: | |
| 1472 | "[| x + y \<in> HInfinite; y \<in> HFinite |] ==> x \<in> HInfinite" | |
| 1473 | apply (rule ccontr) | |
| 1474 | apply (drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1475 | apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff) | |
| 1476 | done | |
| 1477 | ||
| 1478 | lemma HInfinite_HFinite_add: | |
| 1479 | "[| x \<in> HInfinite; y \<in> HFinite |] ==> x + y \<in> HInfinite" | |
| 1480 | apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel) | |
| 1481 | apply (auto simp add: add_assoc HFinite_minus_iff) | |
| 1482 | done | |
| 1483 | ||
| 1484 | lemma HInfinite_ge_HInfinite: | |
| 1485 | "[| (x::hypreal) \<in> HInfinite; x \<le> y; 0 \<le> x |] ==> y \<in> HInfinite" | |
| 1486 | by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) | |
| 1487 | ||
| 1488 | lemma Infinitesimal_inverse_HInfinite: | |
| 1489 | fixes x :: "'a::real_normed_div_algebra star" | |
| 1490 | shows "[| x \<in> Infinitesimal; x \<noteq> 0 |] ==> inverse x \<in> HInfinite" | |
| 1491 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1492 | apply (auto dest: Infinitesimal_HFinite_mult2) | |
| 1493 | done | |
| 1494 | ||
| 1495 | lemma HInfinite_HFinite_not_Infinitesimal_mult: | |
| 1496 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1497 | shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | |
| 1498 | ==> x * y \<in> HInfinite" | |
| 1499 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1500 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1501 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1502 | apply (safe, drule HFinite_mult) | |
| 1503 | apply (auto simp add: mult_assoc HFinite_HInfinite_iff) | |
| 1504 | done | |
| 1505 | ||
| 1506 | lemma HInfinite_HFinite_not_Infinitesimal_mult2: | |
| 1507 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1508 | shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | |
| 1509 | ==> y * x \<in> HInfinite" | |
| 1510 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1511 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1512 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1513 | apply (safe, drule_tac x="inverse y" in HFinite_mult) | |
| 1514 | apply assumption | |
| 1515 | apply (auto simp add: mult_assoc [symmetric] HFinite_HInfinite_iff) | |
| 1516 | done | |
| 1517 | ||
| 1518 | lemma HInfinite_gt_SReal: | |
| 1519 | "[| (x::hypreal) \<in> HInfinite; 0 < x; y \<in> Reals |] ==> y < x" | |
| 1520 | by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) | |
| 1521 | ||
| 1522 | lemma HInfinite_gt_zero_gt_one: | |
| 1523 | "[| (x::hypreal) \<in> HInfinite; 0 < x |] ==> 1 < x" | |
| 1524 | by (auto intro: HInfinite_gt_SReal) | |
| 1525 | ||
| 1526 | ||
| 1527 | lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" | |
| 1528 | apply (simp (no_asm) add: HInfinite_HFinite_iff) | |
| 1529 | done | |
| 1530 | ||
| 1531 | lemma approx_hrabs_disj: "abs (x::hypreal) @= x | abs x @= -x" | |
| 1532 | by (cut_tac x = x in hrabs_disj, auto) | |
| 1533 | ||
| 1534 | ||
| 1535 | subsection{*Theorems about Monads*}
 | |
| 1536 | ||
| 1537 | lemma monad_hrabs_Un_subset: "monad (abs x) \<le> monad(x::hypreal) Un monad(-x)" | |
| 1538 | by (rule_tac x1 = x in hrabs_disj [THEN disjE], auto) | |
| 1539 | ||
| 1540 | lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal ==> monad (x+e) = monad x" | |
| 1541 | by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) | |
| 1542 | ||
| 1543 | lemma mem_monad_iff: "(u \<in> monad x) = (-u \<in> monad (-x))" | |
| 1544 | by (simp add: monad_def) | |
| 1545 | ||
| 1546 | lemma Infinitesimal_monad_zero_iff: "(x \<in> Infinitesimal) = (x \<in> monad 0)" | |
| 1547 | by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) | |
| 1548 | ||
| 1549 | lemma monad_zero_minus_iff: "(x \<in> monad 0) = (-x \<in> monad 0)" | |
| 1550 | apply (simp (no_asm) add: Infinitesimal_monad_zero_iff [symmetric]) | |
| 1551 | done | |
| 1552 | ||
| 1553 | lemma monad_zero_hrabs_iff: "((x::hypreal) \<in> monad 0) = (abs x \<in> monad 0)" | |
| 1554 | apply (rule_tac x1 = x in hrabs_disj [THEN disjE]) | |
| 1555 | apply (auto simp add: monad_zero_minus_iff [symmetric]) | |
| 1556 | done | |
| 1557 | ||
| 1558 | lemma mem_monad_self [simp]: "x \<in> monad x" | |
| 1559 | by (simp add: monad_def) | |
| 1560 | ||
| 1561 | ||
| 1562 | subsection{*Proof that @{term "x @= y"} implies @{term"\<bar>x\<bar> @= \<bar>y\<bar>"}*}
 | |
| 1563 | ||
| 1564 | lemma approx_subset_monad: "x @= y ==> {x,y} \<le> monad x"
 | |
| 1565 | apply (simp (no_asm)) | |
| 1566 | apply (simp add: approx_monad_iff) | |
| 1567 | done | |
| 1568 | ||
| 1569 | lemma approx_subset_monad2: "x @= y ==> {x,y} \<le> monad y"
 | |
| 1570 | apply (drule approx_sym) | |
| 1571 | apply (fast dest: approx_subset_monad) | |
| 1572 | done | |
| 1573 | ||
| 1574 | lemma mem_monad_approx: "u \<in> monad x ==> x @= u" | |
| 1575 | by (simp add: monad_def) | |
| 1576 | ||
| 1577 | lemma approx_mem_monad: "x @= u ==> u \<in> monad x" | |
| 1578 | by (simp add: monad_def) | |
| 1579 | ||
| 1580 | lemma approx_mem_monad2: "x @= u ==> x \<in> monad u" | |
| 1581 | apply (simp add: monad_def) | |
| 1582 | apply (blast intro!: approx_sym) | |
| 1583 | done | |
| 1584 | ||
| 1585 | lemma approx_mem_monad_zero: "[| x @= y;x \<in> monad 0 |] ==> y \<in> monad 0" | |
| 1586 | apply (drule mem_monad_approx) | |
| 1587 | apply (fast intro: approx_mem_monad approx_trans) | |
| 1588 | done | |
| 1589 | ||
| 1590 | lemma Infinitesimal_approx_hrabs: | |
| 1591 | "[| x @= y; (x::hypreal) \<in> Infinitesimal |] ==> abs x @= abs y" | |
| 1592 | apply (drule Infinitesimal_monad_zero_iff [THEN iffD1]) | |
| 1593 | apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] mem_monad_approx approx_trans3) | |
| 1594 | done | |
| 1595 | ||
| 1596 | lemma less_Infinitesimal_less: | |
| 1597 | "[| 0 < x; (x::hypreal) \<notin>Infinitesimal; e :Infinitesimal |] ==> e < x" | |
| 1598 | apply (rule ccontr) | |
| 1599 | apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval] | |
| 1600 | dest!: order_le_imp_less_or_eq simp add: linorder_not_less) | |
| 1601 | done | |
| 1602 | ||
| 1603 | lemma Ball_mem_monad_gt_zero: | |
| 1604 | "[| 0 < (x::hypreal); x \<notin> Infinitesimal; u \<in> monad x |] ==> 0 < u" | |
| 1605 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1606 | apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) | |
| 1607 | apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) | |
| 1608 | done | |
| 1609 | ||
| 1610 | lemma Ball_mem_monad_less_zero: | |
| 1611 | "[| (x::hypreal) < 0; x \<notin> Infinitesimal; u \<in> monad x |] ==> u < 0" | |
| 1612 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1613 | apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) | |
| 1614 | apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) | |
| 1615 | done | |
| 1616 | ||
| 1617 | lemma lemma_approx_gt_zero: | |
| 1618 | "[|0 < (x::hypreal); x \<notin> Infinitesimal; x @= y|] ==> 0 < y" | |
| 1619 | by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) | |
| 1620 | ||
| 1621 | lemma lemma_approx_less_zero: | |
| 1622 | "[|(x::hypreal) < 0; x \<notin> Infinitesimal; x @= y|] ==> y < 0" | |
| 1623 | by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) | |
| 1624 | ||
| 1625 | theorem approx_hrabs: "(x::hypreal) @= y ==> abs x @= abs y" | |
| 1626 | by (drule approx_hnorm, simp) | |
| 1627 | ||
| 1628 | lemma approx_hrabs_zero_cancel: "abs(x::hypreal) @= 0 ==> x @= 0" | |
| 1629 | apply (cut_tac x = x in hrabs_disj) | |
| 1630 | apply (auto dest: approx_minus) | |
| 1631 | done | |
| 1632 | ||
| 1633 | lemma approx_hrabs_add_Infinitesimal: | |
| 1634 | "(e::hypreal) \<in> Infinitesimal ==> abs x @= abs(x+e)" | |
| 1635 | by (fast intro: approx_hrabs Infinitesimal_add_approx_self) | |
| 1636 | ||
| 1637 | lemma approx_hrabs_add_minus_Infinitesimal: | |
| 1638 | "(e::hypreal) \<in> Infinitesimal ==> abs x @= abs(x + -e)" | |
| 1639 | by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) | |
| 1640 | ||
| 1641 | lemma hrabs_add_Infinitesimal_cancel: | |
| 1642 | "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 1643 | abs(x+e) = abs(y+e')|] ==> abs x @= abs y" | |
| 1644 | apply (drule_tac x = x in approx_hrabs_add_Infinitesimal) | |
| 1645 | apply (drule_tac x = y in approx_hrabs_add_Infinitesimal) | |
| 1646 | apply (auto intro: approx_trans2) | |
| 1647 | done | |
| 1648 | ||
| 1649 | lemma hrabs_add_minus_Infinitesimal_cancel: | |
| 1650 | "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal; | |
| 1651 | abs(x + -e) = abs(y + -e')|] ==> abs x @= abs y" | |
| 1652 | apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal) | |
| 1653 | apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal) | |
| 1654 | apply (auto intro: approx_trans2) | |
| 1655 | done | |
| 1656 | ||
| 1657 | subsection {* More @{term HFinite} and @{term Infinitesimal} Theorems *}
 | |
| 1658 | ||
| 1659 | (* interesting slightly counterintuitive theorem: necessary | |
| 1660 | for proving that an open interval is an NS open set | |
| 1661 | *) | |
| 1662 | lemma Infinitesimal_add_hypreal_of_real_less: | |
| 1663 | "[| x < y; u \<in> Infinitesimal |] | |
| 1664 | ==> hypreal_of_real x + u < hypreal_of_real y" | |
| 1665 | apply (simp add: Infinitesimal_def) | |
| 1666 | apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) | |
| 1667 | apply (simp add: abs_less_iff) | |
| 1668 | done | |
| 1669 | ||
| 1670 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less: | |
| 1671 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | |
| 1672 | ==> abs (hypreal_of_real r + x) < hypreal_of_real y" | |
| 1673 | apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) | |
| 1674 | apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) | |
| 1675 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less | |
| 1676 | simp del: star_of_abs | |
| 1677 | simp add: star_of_abs [symmetric]) | |
| 1678 | done | |
| 1679 | ||
| 1680 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: | |
| 1681 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | |
| 1682 | ==> abs (x + hypreal_of_real r) < hypreal_of_real y" | |
| 1683 | apply (rule add_commute [THEN subst]) | |
| 1684 | apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption) | |
| 1685 | done | |
| 1686 | ||
| 1687 | lemma hypreal_of_real_le_add_Infininitesimal_cancel: | |
| 1688 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | |
| 1689 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | |
| 1690 | ==> hypreal_of_real x \<le> hypreal_of_real y" | |
| 1691 | apply (simp add: linorder_not_less [symmetric], auto) | |
| 1692 | apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) | |
| 1693 | apply (auto simp add: Infinitesimal_diff) | |
| 1694 | done | |
| 1695 | ||
| 1696 | lemma hypreal_of_real_le_add_Infininitesimal_cancel2: | |
| 1697 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | |
| 1698 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | |
| 1699 | ==> x \<le> y" | |
| 1700 | by (blast intro: star_of_le [THEN iffD1] | |
| 1701 | intro!: hypreal_of_real_le_add_Infininitesimal_cancel) | |
| 1702 | ||
| 1703 | lemma hypreal_of_real_less_Infinitesimal_le_zero: | |
| 1704 | "[| hypreal_of_real x < e; e \<in> Infinitesimal |] ==> hypreal_of_real x \<le> 0" | |
| 1705 | apply (rule linorder_not_less [THEN iffD1], safe) | |
| 1706 | apply (drule Infinitesimal_interval) | |
| 1707 | apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto) | |
| 1708 | done | |
| 1709 | ||
| 1710 | (*used once, in Lim/NSDERIV_inverse*) | |
| 1711 | lemma Infinitesimal_add_not_zero: | |
| 1712 | "[| h \<in> Infinitesimal; x \<noteq> 0 |] ==> star_of x + h \<noteq> 0" | |
| 1713 | apply auto | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
32960diff
changeset | 1714 | apply (subgoal_tac "h = - star_of x", auto intro: minus_unique [symmetric]) | 
| 27468 | 1715 | done | 
| 1716 | ||
| 1717 | lemma Infinitesimal_square_cancel [simp]: | |
| 1718 | "(x::hypreal)*x + y*y \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1719 | apply (rule Infinitesimal_interval2) | |
| 1720 | apply (rule_tac [3] zero_le_square, assumption) | |
| 1721 | apply (auto) | |
| 1722 | done | |
| 1723 | ||
| 1724 | lemma HFinite_square_cancel [simp]: | |
| 1725 | "(x::hypreal)*x + y*y \<in> HFinite ==> x*x \<in> HFinite" | |
| 1726 | apply (rule HFinite_bounded, assumption) | |
| 1727 | apply (auto) | |
| 1728 | done | |
| 1729 | ||
| 1730 | lemma Infinitesimal_square_cancel2 [simp]: | |
| 1731 | "(x::hypreal)*x + y*y \<in> Infinitesimal ==> y*y \<in> Infinitesimal" | |
| 1732 | apply (rule Infinitesimal_square_cancel) | |
| 1733 | apply (rule add_commute [THEN subst]) | |
| 1734 | apply (simp (no_asm)) | |
| 1735 | done | |
| 1736 | ||
| 1737 | lemma HFinite_square_cancel2 [simp]: | |
| 1738 | "(x::hypreal)*x + y*y \<in> HFinite ==> y*y \<in> HFinite" | |
| 1739 | apply (rule HFinite_square_cancel) | |
| 1740 | apply (rule add_commute [THEN subst]) | |
| 1741 | apply (simp (no_asm)) | |
| 1742 | done | |
| 1743 | ||
| 1744 | lemma Infinitesimal_sum_square_cancel [simp]: | |
| 1745 | "(x::hypreal)*x + y*y + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1746 | apply (rule Infinitesimal_interval2, assumption) | |
| 1747 | apply (rule_tac [2] zero_le_square, simp) | |
| 1748 | apply (insert zero_le_square [of y]) | |
| 1749 | apply (insert zero_le_square [of z], simp del:zero_le_square) | |
| 1750 | done | |
| 1751 | ||
| 1752 | lemma HFinite_sum_square_cancel [simp]: | |
| 1753 | "(x::hypreal)*x + y*y + z*z \<in> HFinite ==> x*x \<in> HFinite" | |
| 1754 | apply (rule HFinite_bounded, assumption) | |
| 1755 | apply (rule_tac [2] zero_le_square) | |
| 1756 | apply (insert zero_le_square [of y]) | |
| 1757 | apply (insert zero_le_square [of z], simp del:zero_le_square) | |
| 1758 | done | |
| 1759 | ||
| 1760 | lemma Infinitesimal_sum_square_cancel2 [simp]: | |
| 1761 | "(y::hypreal)*y + x*x + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1762 | apply (rule Infinitesimal_sum_square_cancel) | |
| 1763 | apply (simp add: add_ac) | |
| 1764 | done | |
| 1765 | ||
| 1766 | lemma HFinite_sum_square_cancel2 [simp]: | |
| 1767 | "(y::hypreal)*y + x*x + z*z \<in> HFinite ==> x*x \<in> HFinite" | |
| 1768 | apply (rule HFinite_sum_square_cancel) | |
| 1769 | apply (simp add: add_ac) | |
| 1770 | done | |
| 1771 | ||
| 1772 | lemma Infinitesimal_sum_square_cancel3 [simp]: | |
| 1773 | "(z::hypreal)*z + y*y + x*x \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | |
| 1774 | apply (rule Infinitesimal_sum_square_cancel) | |
| 1775 | apply (simp add: add_ac) | |
| 1776 | done | |
| 1777 | ||
| 1778 | lemma HFinite_sum_square_cancel3 [simp]: | |
| 1779 | "(z::hypreal)*z + y*y + x*x \<in> HFinite ==> x*x \<in> HFinite" | |
| 1780 | apply (rule HFinite_sum_square_cancel) | |
| 1781 | apply (simp add: add_ac) | |
| 1782 | done | |
| 1783 | ||
| 1784 | lemma monad_hrabs_less: | |
| 1785 | "[| y \<in> monad x; 0 < hypreal_of_real e |] | |
| 1786 | ==> abs (y - x) < hypreal_of_real e" | |
| 1787 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1788 | apply (drule bex_Infinitesimal_iff [THEN iffD2]) | |
| 1789 | apply (auto dest!: InfinitesimalD) | |
| 1790 | done | |
| 1791 | ||
| 1792 | lemma mem_monad_SReal_HFinite: | |
| 1793 | "x \<in> monad (hypreal_of_real a) ==> x \<in> HFinite" | |
| 1794 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1795 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1796 | apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1797 | apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add]) | |
| 1798 | done | |
| 1799 | ||
| 1800 | ||
| 1801 | subsection{* Theorems about Standard Part*}
 | |
| 1802 | ||
| 1803 | lemma st_approx_self: "x \<in> HFinite ==> st x @= x" | |
| 1804 | apply (simp add: st_def) | |
| 1805 | apply (frule st_part_Ex, safe) | |
| 1806 | apply (rule someI2) | |
| 1807 | apply (auto intro: approx_sym) | |
| 1808 | done | |
| 1809 | ||
| 1810 | lemma st_SReal: "x \<in> HFinite ==> st x \<in> Reals" | |
| 1811 | apply (simp add: st_def) | |
| 1812 | apply (frule st_part_Ex, safe) | |
| 1813 | apply (rule someI2) | |
| 1814 | apply (auto intro: approx_sym) | |
| 1815 | done | |
| 1816 | ||
| 1817 | lemma st_HFinite: "x \<in> HFinite ==> st x \<in> HFinite" | |
| 1818 | by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 1819 | ||
| 1820 | lemma st_unique: "\<lbrakk>r \<in> \<real>; r \<approx> x\<rbrakk> \<Longrightarrow> st x = r" | |
| 1821 | apply (frule SReal_subset_HFinite [THEN subsetD]) | |
| 1822 | apply (drule (1) approx_HFinite) | |
| 1823 | apply (unfold st_def) | |
| 1824 | apply (rule some_equality) | |
| 1825 | apply (auto intro: approx_unique_real) | |
| 1826 | done | |
| 1827 | ||
| 1828 | lemma st_SReal_eq: "x \<in> Reals ==> st x = x" | |
| 1829 | apply (erule st_unique) | |
| 1830 | apply (rule approx_refl) | |
| 1831 | done | |
| 1832 | ||
| 1833 | lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" | |
| 1834 | by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) | |
| 1835 | ||
| 1836 | lemma st_eq_approx: "[| x \<in> HFinite; y \<in> HFinite; st x = st y |] ==> x @= y" | |
| 1837 | by (auto dest!: st_approx_self elim!: approx_trans3) | |
| 1838 | ||
| 1839 | lemma approx_st_eq: | |
| 1840 | assumes "x \<in> HFinite" and "y \<in> HFinite" and "x @= y" | |
| 1841 | shows "st x = st y" | |
| 1842 | proof - | |
| 1843 | have "st x @= x" "st y @= y" "st x \<in> Reals" "st y \<in> Reals" | |
| 1844 | by (simp_all add: st_approx_self st_SReal prems) | |
| 1845 | with prems show ?thesis | |
| 1846 | by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) | |
| 1847 | qed | |
| 1848 | ||
| 1849 | lemma st_eq_approx_iff: | |
| 1850 | "[| x \<in> HFinite; y \<in> HFinite|] | |
| 1851 | ==> (x @= y) = (st x = st y)" | |
| 1852 | by (blast intro: approx_st_eq st_eq_approx) | |
| 1853 | ||
| 1854 | lemma st_Infinitesimal_add_SReal: | |
| 1855 | "[| x \<in> Reals; e \<in> Infinitesimal |] ==> st(x + e) = x" | |
| 1856 | apply (erule st_unique) | |
| 1857 | apply (erule Infinitesimal_add_approx_self) | |
| 1858 | done | |
| 1859 | ||
| 1860 | lemma st_Infinitesimal_add_SReal2: | |
| 1861 | "[| x \<in> Reals; e \<in> Infinitesimal |] ==> st(e + x) = x" | |
| 1862 | apply (erule st_unique) | |
| 1863 | apply (erule Infinitesimal_add_approx_self2) | |
| 1864 | done | |
| 1865 | ||
| 1866 | lemma HFinite_st_Infinitesimal_add: | |
| 1867 | "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = st(x) + e" | |
| 1868 | by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1869 | ||
| 1870 | lemma st_add: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x + y) = st x + st y" | |
| 1871 | by (simp add: st_unique st_SReal st_approx_self approx_add) | |
| 1872 | ||
| 1873 | lemma st_number_of [simp]: "st (number_of w) = number_of w" | |
| 1874 | by (rule Reals_number_of [THEN st_SReal_eq]) | |
| 1875 | ||
| 1876 | (*the theorem above for the special cases of zero and one*) | |
| 1877 | lemma [simp]: "st 0 = 0" "st 1 = 1" | |
| 1878 | by (simp_all add: st_SReal_eq) | |
| 1879 | ||
| 1880 | lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" | |
| 1881 | by (simp add: st_unique st_SReal st_approx_self approx_minus) | |
| 1882 | ||
| 1883 | lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" | |
| 1884 | by (simp add: st_unique st_SReal st_approx_self approx_diff) | |
| 1885 | ||
| 1886 | lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" | |
| 1887 | by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) | |
| 1888 | ||
| 1889 | lemma st_Infinitesimal: "x \<in> Infinitesimal ==> st x = 0" | |
| 1890 | by (simp add: st_unique mem_infmal_iff) | |
| 1891 | ||
| 1892 | lemma st_not_Infinitesimal: "st(x) \<noteq> 0 ==> x \<notin> Infinitesimal" | |
| 1893 | by (fast intro: st_Infinitesimal) | |
| 1894 | ||
| 1895 | lemma st_inverse: | |
| 1896 | "[| x \<in> HFinite; st x \<noteq> 0 |] | |
| 1897 | ==> st(inverse x) = inverse (st x)" | |
| 1898 | apply (rule_tac c1 = "st x" in hypreal_mult_left_cancel [THEN iffD1]) | |
| 1899 | apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) | |
| 1900 | apply (subst right_inverse, auto) | |
| 1901 | done | |
| 1902 | ||
| 1903 | lemma st_divide [simp]: | |
| 1904 | "[| x \<in> HFinite; y \<in> HFinite; st y \<noteq> 0 |] | |
| 1905 | ==> st(x/y) = (st x) / (st y)" | |
| 1906 | by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) | |
| 1907 | ||
| 1908 | lemma st_idempotent [simp]: "x \<in> HFinite ==> st(st(x)) = st(x)" | |
| 1909 | by (blast intro: st_HFinite st_approx_self approx_st_eq) | |
| 1910 | ||
| 1911 | lemma Infinitesimal_add_st_less: | |
| 1912 | "[| x \<in> HFinite; y \<in> HFinite; u \<in> Infinitesimal; st x < st y |] | |
| 1913 | ==> st x + u < st y" | |
| 1914 | apply (drule st_SReal)+ | |
| 1915 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) | |
| 1916 | done | |
| 1917 | ||
| 1918 | lemma Infinitesimal_add_st_le_cancel: | |
| 1919 | "[| x \<in> HFinite; y \<in> HFinite; | |
| 1920 | u \<in> Infinitesimal; st x \<le> st y + u | |
| 1921 | |] ==> st x \<le> st y" | |
| 1922 | apply (simp add: linorder_not_less [symmetric]) | |
| 1923 | apply (auto dest: Infinitesimal_add_st_less) | |
| 1924 | done | |
| 1925 | ||
| 1926 | lemma st_le: "[| x \<in> HFinite; y \<in> HFinite; x \<le> y |] ==> st(x) \<le> st(y)" | |
| 1927 | apply (frule HFinite_st_Infinitesimal_add) | |
| 1928 | apply (rotate_tac 1) | |
| 1929 | apply (frule HFinite_st_Infinitesimal_add, safe) | |
| 1930 | apply (rule Infinitesimal_add_st_le_cancel) | |
| 1931 | apply (rule_tac [3] x = ea and y = e in Infinitesimal_diff) | |
| 1932 | apply (auto simp add: add_assoc [symmetric]) | |
| 1933 | done | |
| 1934 | ||
| 1935 | lemma st_zero_le: "[| 0 \<le> x; x \<in> HFinite |] ==> 0 \<le> st x" | |
| 1936 | apply (subst numeral_0_eq_0 [symmetric]) | |
| 1937 | apply (rule st_number_of [THEN subst]) | |
| 1938 | apply (rule st_le, auto) | |
| 1939 | done | |
| 1940 | ||
| 1941 | lemma st_zero_ge: "[| x \<le> 0; x \<in> HFinite |] ==> st x \<le> 0" | |
| 1942 | apply (subst numeral_0_eq_0 [symmetric]) | |
| 1943 | apply (rule st_number_of [THEN subst]) | |
| 1944 | apply (rule st_le, auto) | |
| 1945 | done | |
| 1946 | ||
| 1947 | lemma st_hrabs: "x \<in> HFinite ==> abs(st x) = st(abs x)" | |
| 1948 | apply (simp add: linorder_not_le st_zero_le abs_if st_minus | |
| 1949 | linorder_not_less) | |
| 1950 | apply (auto dest!: st_zero_ge [OF order_less_imp_le]) | |
| 1951 | done | |
| 1952 | ||
| 1953 | ||
| 1954 | ||
| 1955 | subsection {* Alternative Definitions using Free Ultrafilter *}
 | |
| 1956 | ||
| 1957 | subsubsection {* @{term HFinite} *}
 | |
| 1958 | ||
| 1959 | lemma HFinite_FreeUltrafilterNat: | |
| 1960 | "star_n X \<in> HFinite | |
| 1961 |      ==> \<exists>u. {n. norm (X n) < u} \<in> FreeUltrafilterNat"
 | |
| 1962 | apply (auto simp add: HFinite_def SReal_def) | |
| 1963 | apply (rule_tac x=r in exI) | |
| 1964 | apply (simp add: hnorm_def star_of_def starfun_star_n) | |
| 1965 | apply (simp add: star_less_def starP2_star_n) | |
| 1966 | done | |
| 1967 | ||
| 1968 | lemma FreeUltrafilterNat_HFinite: | |
| 1969 |      "\<exists>u. {n. norm (X n) < u} \<in> FreeUltrafilterNat
 | |
| 1970 | ==> star_n X \<in> HFinite" | |
| 1971 | apply (auto simp add: HFinite_def mem_Rep_star_iff) | |
| 1972 | apply (rule_tac x="star_of u" in bexI) | |
| 1973 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 1974 | apply (simp add: star_less_def starP2_star_n) | |
| 1975 | apply (simp add: SReal_def) | |
| 1976 | done | |
| 1977 | ||
| 1978 | lemma HFinite_FreeUltrafilterNat_iff: | |
| 1979 |      "(star_n X \<in> HFinite) = (\<exists>u. {n. norm (X n) < u} \<in> FreeUltrafilterNat)"
 | |
| 1980 | by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) | |
| 1981 | ||
| 1982 | subsubsection {* @{term HInfinite} *}
 | |
| 1983 | ||
| 1984 | lemma lemma_Compl_eq: "- {n. u < norm (xa n)} = {n. norm (xa n) \<le> u}"
 | |
| 1985 | by auto | |
| 1986 | ||
| 1987 | lemma lemma_Compl_eq2: "- {n. norm (xa n) < u} = {n. u \<le> norm (xa n)}"
 | |
| 1988 | by auto | |
| 1989 | ||
| 1990 | lemma lemma_Int_eq1: | |
| 1991 |      "{n. norm (xa n) \<le> u} Int {n. u \<le> norm (xa n)}
 | |
| 1992 |           = {n. norm(xa n) = u}"
 | |
| 1993 | by auto | |
| 1994 | ||
| 1995 | lemma lemma_FreeUltrafilterNat_one: | |
| 1996 |      "{n. norm (xa n) = u} \<le> {n. norm (xa n) < u + (1::real)}"
 | |
| 1997 | by auto | |
| 1998 | ||
| 1999 | (*------------------------------------- | |
| 2000 | Exclude this type of sets from free | |
| 2001 | ultrafilter for Infinite numbers! | |
| 2002 | -------------------------------------*) | |
| 2003 | lemma FreeUltrafilterNat_const_Finite: | |
| 2004 |      "{n. norm (X n) = u} \<in> FreeUltrafilterNat ==> star_n X \<in> HFinite"
 | |
| 2005 | apply (rule FreeUltrafilterNat_HFinite) | |
| 2006 | apply (rule_tac x = "u + 1" in exI) | |
| 2007 | apply (erule ultra, simp) | |
| 2008 | done | |
| 2009 | ||
| 2010 | lemma HInfinite_FreeUltrafilterNat: | |
| 2011 |      "star_n X \<in> HInfinite ==> \<forall>u. {n. u < norm (X n)} \<in> FreeUltrafilterNat"
 | |
| 2012 | apply (drule HInfinite_HFinite_iff [THEN iffD1]) | |
| 2013 | apply (simp add: HFinite_FreeUltrafilterNat_iff) | |
| 2014 | apply (rule allI, drule_tac x="u + 1" in spec) | |
| 2015 | apply (drule FreeUltrafilterNat.not_memD) | |
| 2016 | apply (simp add: Collect_neg_eq [symmetric] linorder_not_less) | |
| 2017 | apply (erule ultra, simp) | |
| 2018 | done | |
| 2019 | ||
| 2020 | lemma lemma_Int_HI: | |
| 2021 |      "{n. norm (Xa n) < u} Int {n. X n = Xa n} \<subseteq> {n. norm (X n) < (u::real)}"
 | |
| 2022 | by auto | |
| 2023 | ||
| 2024 | lemma lemma_Int_HIa: "{n. u < norm (X n)} Int {n. norm (X n) < u} = {}"
 | |
| 2025 | by (auto intro: order_less_asym) | |
| 2026 | ||
| 2027 | lemma FreeUltrafilterNat_HInfinite: | |
| 2028 |      "\<forall>u. {n. u < norm (X n)} \<in> FreeUltrafilterNat ==> star_n X \<in> HInfinite"
 | |
| 2029 | apply (rule HInfinite_HFinite_iff [THEN iffD2]) | |
| 2030 | apply (safe, drule HFinite_FreeUltrafilterNat, safe) | |
| 2031 | apply (drule_tac x = u in spec) | |
| 2032 | apply (drule (1) FreeUltrafilterNat.Int) | |
| 2033 | apply (simp add: Collect_conj_eq [symmetric]) | |
| 2034 | apply (subgoal_tac "\<forall>n. \<not> (norm (X n) < u \<and> u < norm (X n))", auto) | |
| 2035 | done | |
| 2036 | ||
| 2037 | lemma HInfinite_FreeUltrafilterNat_iff: | |
| 2038 |      "(star_n X \<in> HInfinite) = (\<forall>u. {n. u < norm (X n)} \<in> FreeUltrafilterNat)"
 | |
| 2039 | by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) | |
| 2040 | ||
| 2041 | subsubsection {* @{term Infinitesimal} *}
 | |
| 2042 | ||
| 2043 | lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) = (\<forall>x::real. P (star_of x))" | |
| 2044 | by (unfold SReal_def, auto) | |
| 2045 | ||
| 2046 | lemma Infinitesimal_FreeUltrafilterNat: | |
| 2047 |      "star_n X \<in> Infinitesimal ==> \<forall>u>0. {n. norm (X n) < u} \<in> \<U>"
 | |
| 2048 | apply (simp add: Infinitesimal_def ball_SReal_eq) | |
| 2049 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 2050 | apply (simp add: star_less_def starP2_star_n) | |
| 2051 | done | |
| 2052 | ||
| 2053 | lemma FreeUltrafilterNat_Infinitesimal: | |
| 2054 |      "\<forall>u>0. {n. norm (X n) < u} \<in> \<U> ==> star_n X \<in> Infinitesimal"
 | |
| 2055 | apply (simp add: Infinitesimal_def ball_SReal_eq) | |
| 2056 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 2057 | apply (simp add: star_less_def starP2_star_n) | |
| 2058 | done | |
| 2059 | ||
| 2060 | lemma Infinitesimal_FreeUltrafilterNat_iff: | |
| 2061 |      "(star_n X \<in> Infinitesimal) = (\<forall>u>0. {n. norm (X n) < u} \<in> \<U>)"
 | |
| 2062 | by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) | |
| 2063 | ||
| 2064 | (*------------------------------------------------------------------------ | |
| 2065 | Infinitesimals as smaller than 1/n for all n::nat (> 0) | |
| 2066 | ------------------------------------------------------------------------*) | |
| 2067 | ||
| 2068 | lemma lemma_Infinitesimal: | |
| 2069 | "(\<forall>r. 0 < r --> x < r) = (\<forall>n. x < inverse(real (Suc n)))" | |
| 2070 | apply (auto simp add: real_of_nat_Suc_gt_zero) | |
| 2071 | apply (blast dest!: reals_Archimedean intro: order_less_trans) | |
| 2072 | done | |
| 2073 | ||
| 2074 | lemma lemma_Infinitesimal2: | |
| 2075 | "(\<forall>r \<in> Reals. 0 < r --> x < r) = | |
| 2076 | (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" | |
| 2077 | apply safe | |
| 2078 | apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) | |
| 2079 | apply (simp (no_asm_use)) | |
| 2080 | apply (rule real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive, THEN star_of_less [THEN iffD2], THEN [2] impE]) | |
| 2081 | prefer 2 apply assumption | |
| 2082 | apply (simp add: real_of_nat_def) | |
| 2083 | apply (auto dest!: reals_Archimedean simp add: SReal_iff) | |
| 2084 | apply (drule star_of_less [THEN iffD2]) | |
| 2085 | apply (simp add: real_of_nat_def) | |
| 2086 | apply (blast intro: order_less_trans) | |
| 2087 | done | |
| 2088 | ||
| 2089 | ||
| 2090 | lemma Infinitesimal_hypreal_of_nat_iff: | |
| 2091 |      "Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}"
 | |
| 2092 | apply (simp add: Infinitesimal_def) | |
| 2093 | apply (auto simp add: lemma_Infinitesimal2) | |
| 2094 | done | |
| 2095 | ||
| 2096 | ||
| 2097 | subsection{*Proof that @{term omega} is an infinite number*}
 | |
| 2098 | ||
| 2099 | text{*It will follow that epsilon is an infinitesimal number.*}
 | |
| 2100 | ||
| 2101 | lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
 | |
| 2102 | by (auto simp add: less_Suc_eq) | |
| 2103 | ||
| 2104 | (*------------------------------------------- | |
| 2105 | Prove that any segment is finite and | |
| 2106 | hence cannot belong to FreeUltrafilterNat | |
| 2107 | -------------------------------------------*) | |
| 2108 | lemma finite_nat_segment: "finite {n::nat. n < m}"
 | |
| 2109 | apply (induct "m") | |
| 2110 | apply (auto simp add: Suc_Un_eq) | |
| 2111 | done | |
| 2112 | ||
| 2113 | lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
 | |
| 2114 | by (auto intro: finite_nat_segment) | |
| 2115 | ||
| 2116 | lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
 | |
| 2117 | apply (cut_tac x = u in reals_Archimedean2, safe) | |
| 2118 | apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) | |
| 2119 | apply (auto dest: order_less_trans) | |
| 2120 | done | |
| 2121 | ||
| 2122 | lemma lemma_real_le_Un_eq: | |
| 2123 |      "{n. f n \<le> u} = {n. f n < u} Un {n. u = (f n :: real)}"
 | |
| 2124 | by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 2125 | ||
| 2126 | lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
 | |
| 2127 | by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real) | |
| 2128 | ||
| 2129 | lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. abs(real n) \<le> u}"
 | |
| 2130 | apply (simp (no_asm) add: real_of_nat_Suc_gt_zero finite_real_of_nat_le_real) | |
| 2131 | done | |
| 2132 | ||
| 2133 | lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: | |
| 2134 |      "{n. abs(real n) \<le> u} \<notin> FreeUltrafilterNat"
 | |
| 2135 | by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) | |
| 2136 | ||
| 2137 | lemma FreeUltrafilterNat_nat_gt_real: "{n. u < real n} \<in> FreeUltrafilterNat"
 | |
| 2138 | apply (rule ccontr, drule FreeUltrafilterNat.not_memD) | |
| 2139 | apply (subgoal_tac "- {n::nat. u < real n} = {n. real n \<le> u}")
 | |
| 2140 | prefer 2 apply force | |
| 2141 | apply (simp add: finite_real_of_nat_le_real [THEN FreeUltrafilterNat.finite]) | |
| 2142 | done | |
| 2143 | ||
| 2144 | (*-------------------------------------------------------------- | |
| 2145 |  The complement of {n. abs(real n) \<le> u} =
 | |
| 2146 |  {n. u < abs (real n)} is in FreeUltrafilterNat
 | |
| 2147 | by property of (free) ultrafilters | |
| 2148 | --------------------------------------------------------------*) | |
| 2149 | ||
| 2150 | lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}"
 | |
| 2151 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 2152 | ||
| 2153 | text{*@{term omega} is a member of @{term HInfinite}*}
 | |
| 2154 | ||
| 2155 | lemma FreeUltrafilterNat_omega: "{n. u < real n} \<in> FreeUltrafilterNat"
 | |
| 2156 | apply (cut_tac u = u in rabs_real_of_nat_le_real_FreeUltrafilterNat) | |
| 2157 | apply (auto dest: FreeUltrafilterNat.not_memD simp add: Compl_real_le_eq) | |
| 2158 | done | |
| 2159 | ||
| 2160 | theorem HInfinite_omega [simp]: "omega \<in> HInfinite" | |
| 2161 | apply (simp add: omega_def) | |
| 2162 | apply (rule FreeUltrafilterNat_HInfinite) | |
| 2163 | apply (simp (no_asm) add: real_norm_def real_of_nat_Suc diff_less_eq [symmetric] FreeUltrafilterNat_omega) | |
| 2164 | done | |
| 2165 | ||
| 2166 | (*----------------------------------------------- | |
| 2167 | Epsilon is a member of Infinitesimal | |
| 2168 | -----------------------------------------------*) | |
| 2169 | ||
| 2170 | lemma Infinitesimal_epsilon [simp]: "epsilon \<in> Infinitesimal" | |
| 2171 | by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega simp add: hypreal_epsilon_inverse_omega) | |
| 2172 | ||
| 2173 | lemma HFinite_epsilon [simp]: "epsilon \<in> HFinite" | |
| 2174 | by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 2175 | ||
| 2176 | lemma epsilon_approx_zero [simp]: "epsilon @= 0" | |
| 2177 | apply (simp (no_asm) add: mem_infmal_iff [symmetric]) | |
| 2178 | done | |
| 2179 | ||
| 2180 | (*------------------------------------------------------------------------ | |
| 2181 | Needed for proof that we define a hyperreal [<X(n)] @= hypreal_of_real a given | |
| 2182 | that \<forall>n. |X n - a| < 1/n. Used in proof of NSLIM => LIM. | |
| 2183 | -----------------------------------------------------------------------*) | |
| 2184 | ||
| 2185 | lemma real_of_nat_less_inverse_iff: | |
| 2186 | "0 < u ==> (u < inverse (real(Suc n))) = (real(Suc n) < inverse u)" | |
| 2187 | apply (simp add: inverse_eq_divide) | |
| 2188 | apply (subst pos_less_divide_eq, assumption) | |
| 2189 | apply (subst pos_less_divide_eq) | |
| 2190 | apply (simp add: real_of_nat_Suc_gt_zero) | |
| 36779 | 2191 | apply (simp add: mult_commute) | 
| 27468 | 2192 | done | 
| 2193 | ||
| 2194 | lemma finite_inverse_real_of_posnat_gt_real: | |
| 2195 |      "0 < u ==> finite {n. u < inverse(real(Suc n))}"
 | |
| 2196 | apply (simp (no_asm_simp) add: real_of_nat_less_inverse_iff) | |
| 2197 | apply (simp (no_asm_simp) add: real_of_nat_Suc less_diff_eq [symmetric]) | |
| 2198 | apply (rule finite_real_of_nat_less_real) | |
| 2199 | done | |
| 2200 | ||
| 2201 | lemma lemma_real_le_Un_eq2: | |
| 2202 |      "{n. u \<le> inverse(real(Suc n))} =
 | |
| 2203 |      {n. u < inverse(real(Suc n))} Un {n. u = inverse(real(Suc n))}"
 | |
| 2204 | apply (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 2205 | done | |
| 2206 | ||
| 2207 | lemma real_of_nat_inverse_eq_iff: | |
| 2208 | "(u = inverse (real(Suc n))) = (real(Suc n) = inverse u)" | |
| 2209 | by (auto simp add: real_of_nat_Suc_gt_zero less_imp_neq [THEN not_sym]) | |
| 2210 | ||
| 2211 | lemma lemma_finite_omega_set2: "finite {n::nat. u = inverse(real(Suc n))}"
 | |
| 2212 | apply (simp (no_asm_simp) add: real_of_nat_inverse_eq_iff) | |
| 2213 | apply (cut_tac x = "inverse u - 1" in lemma_finite_omega_set) | |
| 2214 | apply (simp add: real_of_nat_Suc diff_eq_eq [symmetric] eq_commute) | |
| 2215 | done | |
| 2216 | ||
| 2217 | lemma finite_inverse_real_of_posnat_ge_real: | |
| 2218 |      "0 < u ==> finite {n. u \<le> inverse(real(Suc n))}"
 | |
| 2219 | by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_omega_set2 finite_inverse_real_of_posnat_gt_real) | |
| 2220 | ||
| 2221 | lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: | |
| 2222 |      "0 < u ==> {n. u \<le> inverse(real(Suc n))} \<notin> FreeUltrafilterNat"
 | |
| 2223 | by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) | |
| 2224 | ||
| 2225 | (*-------------------------------------------------------------- | |
| 2226 |     The complement of  {n. u \<le> inverse(real(Suc n))} =
 | |
| 2227 |     {n. inverse(real(Suc n)) < u} is in FreeUltrafilterNat
 | |
| 2228 | by property of (free) ultrafilters | |
| 2229 | --------------------------------------------------------------*) | |
| 2230 | lemma Compl_le_inverse_eq: | |
| 2231 |      "- {n. u \<le> inverse(real(Suc n))} =
 | |
| 2232 |       {n. inverse(real(Suc n)) < u}"
 | |
| 2233 | apply (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 2234 | done | |
| 2235 | ||
| 2236 | lemma FreeUltrafilterNat_inverse_real_of_posnat: | |
| 2237 | "0 < u ==> | |
| 2238 |       {n. inverse(real(Suc n)) < u} \<in> FreeUltrafilterNat"
 | |
| 2239 | apply (cut_tac u = u in inverse_real_of_posnat_ge_real_FreeUltrafilterNat) | |
| 2240 | apply (auto dest: FreeUltrafilterNat.not_memD simp add: Compl_le_inverse_eq) | |
| 2241 | done | |
| 2242 | ||
| 2243 | text{* Example of an hypersequence (i.e. an extended standard sequence)
 | |
| 2244 | whose term with an hypernatural suffix is an infinitesimal i.e. | |
| 2245 | the whn'nth term of the hypersequence is a member of Infinitesimal*} | |
| 2246 | ||
| 2247 | lemma SEQ_Infinitesimal: | |
| 2248 | "( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal" | |
| 2249 | apply (simp add: hypnat_omega_def starfun_star_n star_n_inverse) | |
| 2250 | apply (simp add: Infinitesimal_FreeUltrafilterNat_iff) | |
| 2251 | apply (simp add: real_of_nat_Suc_gt_zero FreeUltrafilterNat_inverse_real_of_posnat) | |
| 2252 | done | |
| 2253 | ||
| 2254 | text{* Example where we get a hyperreal from a real sequence
 | |
| 2255 | for which a particular property holds. The theorem is | |
| 2256 | used in proofs about equivalence of nonstandard and | |
| 2257 | standard neighbourhoods. Also used for equivalence of | |
| 2258 | nonstandard ans standard definitions of pointwise | |
| 2259 | limit.*} | |
| 2260 | ||
| 2261 | (*----------------------------------------------------- | |
| 2262 | |X(n) - x| < 1/n ==> [<X n>] - hypreal_of_real x| \<in> Infinitesimal | |
| 2263 | -----------------------------------------------------*) | |
| 2264 | lemma real_seq_to_hypreal_Infinitesimal: | |
| 2265 | "\<forall>n. norm(X n - x) < inverse(real(Suc n)) | |
| 2266 | ==> star_n X - star_of x \<in> Infinitesimal" | |
| 2267 | apply (auto intro!: bexI dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat.Int intro: order_less_trans FreeUltrafilterNat.subset simp add: star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse) | |
| 2268 | done | |
| 2269 | ||
| 2270 | lemma real_seq_to_hypreal_approx: | |
| 2271 | "\<forall>n. norm(X n - x) < inverse(real(Suc n)) | |
| 2272 | ==> star_n X @= star_of x" | |
| 2273 | apply (subst approx_minus_iff) | |
| 2274 | apply (rule mem_infmal_iff [THEN subst]) | |
| 2275 | apply (erule real_seq_to_hypreal_Infinitesimal) | |
| 2276 | done | |
| 2277 | ||
| 2278 | lemma real_seq_to_hypreal_approx2: | |
| 2279 | "\<forall>n. norm(x - X n) < inverse(real(Suc n)) | |
| 2280 | ==> star_n X @= star_of x" | |
| 2281 | apply (rule real_seq_to_hypreal_approx) | |
| 2282 | apply (subst norm_minus_cancel [symmetric]) | |
| 2283 | apply (simp del: norm_minus_cancel) | |
| 2284 | done | |
| 2285 | ||
| 2286 | lemma real_seq_to_hypreal_Infinitesimal2: | |
| 2287 | "\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) | |
| 2288 | ==> star_n X - star_n Y \<in> Infinitesimal" | |
| 2289 | by (auto intro!: bexI | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2290 | dest: FreeUltrafilterNat_inverse_real_of_posnat | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2291 | FreeUltrafilterNat.Int | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2292 | intro: order_less_trans FreeUltrafilterNat.subset | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2293 | simp add: Infinitesimal_FreeUltrafilterNat_iff star_n_diff | 
| 27468 | 2294 | star_n_inverse) | 
| 2295 | ||
| 2296 | end |