| 9722 |      1 | %
 | 
|  |      2 | \begin{isabellebody}%
 | 
| 10267 |      3 | \def\isabellecontext{Nested{\isadigit{2}}}%
 | 
| 17056 |      4 | %
 | 
|  |      5 | \isadelimtheory
 | 
|  |      6 | %
 | 
|  |      7 | \endisadelimtheory
 | 
|  |      8 | %
 | 
|  |      9 | \isatagtheory
 | 
|  |     10 | %
 | 
|  |     11 | \endisatagtheory
 | 
|  |     12 | {\isafoldtheory}%
 | 
|  |     13 | %
 | 
|  |     14 | \isadelimtheory
 | 
| 12491 |     15 | \isanewline
 | 
| 17056 |     16 | %
 | 
|  |     17 | \endisadelimtheory
 | 
| 17175 |     18 | \isacommand{lemma}\isamarkupfalse%
 | 
|  |     19 | \ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}t\ {\isasymin}\ set\ ts\ {\isasymlongrightarrow}\ size\ t\ {\isacharless}\ Suc{\isacharparenleft}term{\isacharunderscore}list{\isacharunderscore}size\ ts{\isacharparenright}{\isachardoublequoteclose}\isanewline
 | 
| 17056 |     20 | %
 | 
|  |     21 | \isadelimproof
 | 
|  |     22 | %
 | 
|  |     23 | \endisadelimproof
 | 
|  |     24 | %
 | 
|  |     25 | \isatagproof
 | 
| 17175 |     26 | \isacommand{by}\isamarkupfalse%
 | 
|  |     27 | {\isacharparenleft}induct{\isacharunderscore}tac\ ts{\isacharcomma}\ auto{\isacharparenright}%
 | 
| 17056 |     28 | \endisatagproof
 | 
|  |     29 | {\isafoldproof}%
 | 
|  |     30 | %
 | 
|  |     31 | \isadelimproof
 | 
|  |     32 | %
 | 
|  |     33 | \endisadelimproof
 | 
| 11866 |     34 | %
 | 
| 9690 |     35 | \begin{isamarkuptext}%
 | 
|  |     36 | \noindent
 | 
|  |     37 | By making this theorem a simplification rule, \isacommand{recdef}
 | 
| 10878 |     38 | applies it automatically and the definition of \isa{trev}
 | 
| 9690 |     39 | succeeds now. As a reward for our effort, we can now prove the desired
 | 
| 10878 |     40 | lemma directly.  We no longer need the verbose
 | 
|  |     41 | induction schema for type \isa{term} and can use the simpler one arising from
 | 
| 9690 |     42 | \isa{trev}:%
 | 
|  |     43 | \end{isamarkuptext}%
 | 
| 17175 |     44 | \isamarkuptrue%
 | 
|  |     45 | \isacommand{lemma}\isamarkupfalse%
 | 
|  |     46 | \ {\isachardoublequoteopen}trev{\isacharparenleft}trev\ t{\isacharparenright}\ {\isacharequal}\ t{\isachardoublequoteclose}\isanewline
 | 
| 17056 |     47 | %
 | 
|  |     48 | \isadelimproof
 | 
|  |     49 | %
 | 
|  |     50 | \endisadelimproof
 | 
|  |     51 | %
 | 
|  |     52 | \isatagproof
 | 
| 17175 |     53 | \isacommand{apply}\isamarkupfalse%
 | 
|  |     54 | {\isacharparenleft}induct{\isacharunderscore}tac\ t\ rule{\isacharcolon}\ trev{\isachardot}induct{\isacharparenright}%
 | 
| 16069 |     55 | \begin{isamarkuptxt}%
 | 
|  |     56 | \begin{isabelle}%
 | 
|  |     57 | \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ trev\ {\isacharparenleft}trev\ {\isacharparenleft}Var\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ Var\ x\isanewline
 | 
|  |     58 | \ {\isadigit{2}}{\isachardot}\ {\isasymAnd}f\ ts{\isachardot}\isanewline
 | 
|  |     59 | \isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }{\isasymforall}x{\isachardot}\ x\ {\isasymin}\ set\ ts\ {\isasymlongrightarrow}\ trev\ {\isacharparenleft}trev\ x{\isacharparenright}\ {\isacharequal}\ x\ {\isasymLongrightarrow}\isanewline
 | 
|  |     60 | \isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }trev\ {\isacharparenleft}trev\ {\isacharparenleft}App\ f\ ts{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ App\ f\ ts%
 | 
|  |     61 | \end{isabelle}
 | 
|  |     62 | Both the base case and the induction step fall to simplification:%
 | 
|  |     63 | \end{isamarkuptxt}%
 | 
| 17175 |     64 | \isamarkuptrue%
 | 
|  |     65 | \isacommand{by}\isamarkupfalse%
 | 
|  |     66 | {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ rev{\isacharunderscore}map\ sym{\isacharbrackleft}OF\ map{\isacharunderscore}compose{\isacharbrackright}\ cong{\isacharcolon}\ map{\isacharunderscore}cong{\isacharparenright}%
 | 
| 17056 |     67 | \endisatagproof
 | 
|  |     68 | {\isafoldproof}%
 | 
|  |     69 | %
 | 
|  |     70 | \isadelimproof
 | 
|  |     71 | %
 | 
|  |     72 | \endisadelimproof
 | 
| 11866 |     73 | %
 | 
| 9690 |     74 | \begin{isamarkuptext}%
 | 
|  |     75 | \noindent
 | 
| 10878 |     76 | If the proof of the induction step mystifies you, we recommend that you go through
 | 
| 9754 |     77 | the chain of simplification steps in detail; you will probably need the help of
 | 
| 9933 |     78 | \isa{trace{\isacharunderscore}simp}. Theorem \isa{map{\isacharunderscore}cong} is discussed below.
 | 
| 9721 |     79 | %\begin{quote}
 | 
|  |     80 | %{term[display]"trev(trev(App f ts))"}\\
 | 
|  |     81 | %{term[display]"App f (rev(map trev (rev(map trev ts))))"}\\
 | 
|  |     82 | %{term[display]"App f (map trev (rev(rev(map trev ts))))"}\\
 | 
|  |     83 | %{term[display]"App f (map trev (map trev ts))"}\\
 | 
|  |     84 | %{term[display]"App f (map (trev o trev) ts)"}\\
 | 
|  |     85 | %{term[display]"App f (map (%x. x) ts)"}\\
 | 
|  |     86 | %{term[display]"App f ts"}
 | 
|  |     87 | %\end{quote}
 | 
| 9690 |     88 | 
 | 
| 10878 |     89 | The definition of \isa{trev} above is superior to the one in
 | 
|  |     90 | \S\ref{sec:nested-datatype} because it uses \isa{rev}
 | 
|  |     91 | and lets us use existing facts such as \hbox{\isa{rev\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs}}.
 | 
| 9690 |     92 | Thus this proof is a good example of an important principle:
 | 
|  |     93 | \begin{quote}
 | 
|  |     94 | \emph{Chose your definitions carefully\\
 | 
|  |     95 | because they determine the complexity of your proofs.}
 | 
|  |     96 | \end{quote}
 | 
|  |     97 | 
 | 
| 9721 |     98 | Let us now return to the question of how \isacommand{recdef} can come up with
 | 
|  |     99 | sensible termination conditions in the presence of higher-order functions
 | 
| 11494 |    100 | like \isa{map}. For a start, if nothing were known about \isa{map}, then
 | 
| 9792 |    101 | \isa{map\ trev\ ts} might apply \isa{trev} to arbitrary terms, and thus
 | 
|  |    102 | \isacommand{recdef} would try to prove the unprovable \isa{size\ t\ {\isacharless}\ Suc\ {\isacharparenleft}term{\isacharunderscore}list{\isacharunderscore}size\ ts{\isacharparenright}}, without any assumption about \isa{t}.  Therefore
 | 
| 9721 |    103 | \isacommand{recdef} has been supplied with the congruence theorem
 | 
| 9754 |    104 | \isa{map{\isacharunderscore}cong}:
 | 
| 9690 |    105 | \begin{isabelle}%
 | 
| 10696 |    106 | \ \ \ \ \ {\isasymlbrakk}xs\ {\isacharequal}\ ys{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ set\ ys\ {\isasymLongrightarrow}\ f\ x\ {\isacharequal}\ g\ x{\isasymrbrakk}\isanewline
 | 
| 10950 |    107 | \isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ map\ f\ xs\ {\isacharequal}\ map\ g\ ys%
 | 
| 9924 |    108 | \end{isabelle}
 | 
| 11494 |    109 | Its second premise expresses that in \isa{map\ f\ xs},
 | 
|  |    110 | function \isa{f} is only applied to elements of list \isa{xs}.  Congruence
 | 
|  |    111 | rules for other higher-order functions on lists are similar.  If you get
 | 
| 10212 |    112 | into a situation where you need to supply \isacommand{recdef} with new
 | 
| 11494 |    113 | congruence rules, you can append a hint after the end of
 | 
| 13111 |    114 | the recursion equations:\cmmdx{hints}%
 | 
| 9940 |    115 | \end{isamarkuptext}%
 | 
| 17175 |    116 | \isamarkuptrue%
 | 
|  |    117 | {\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}cong{\isacharcolon}\ map{\isacharunderscore}cong{\isacharparenright}%
 | 
| 9940 |    118 | \begin{isamarkuptext}%
 | 
|  |    119 | \noindent
 | 
| 11494 |    120 | Or you can declare them globally
 | 
|  |    121 | by giving them the \attrdx{recdef_cong} attribute:%
 | 
| 9940 |    122 | \end{isamarkuptext}%
 | 
| 17175 |    123 | \isamarkuptrue%
 | 
|  |    124 | \isacommand{declare}\isamarkupfalse%
 | 
|  |    125 | \ map{\isacharunderscore}cong{\isacharbrackleft}recdef{\isacharunderscore}cong{\isacharbrackright}%
 | 
| 9940 |    126 | \begin{isamarkuptext}%
 | 
| 11494 |    127 | The \isa{cong} and \isa{recdef{\isacharunderscore}cong} attributes are
 | 
| 9940 |    128 | intentionally kept apart because they control different activities, namely
 | 
| 10171 |    129 | simplification and making recursive definitions.
 | 
| 9933 |    130 | %The simplifier's congruence rules cannot be used by recdef.
 | 
|  |    131 | %For example the weak congruence rules for if and case would prevent
 | 
|  |    132 | %recdef from generating sensible termination conditions.%
 | 
| 9690 |    133 | \end{isamarkuptext}%
 | 
| 17175 |    134 | \isamarkuptrue%
 | 
| 17056 |    135 | %
 | 
|  |    136 | \isadelimtheory
 | 
|  |    137 | %
 | 
|  |    138 | \endisadelimtheory
 | 
|  |    139 | %
 | 
|  |    140 | \isatagtheory
 | 
|  |    141 | %
 | 
|  |    142 | \endisatagtheory
 | 
|  |    143 | {\isafoldtheory}%
 | 
|  |    144 | %
 | 
|  |    145 | \isadelimtheory
 | 
|  |    146 | %
 | 
|  |    147 | \endisadelimtheory
 | 
| 9722 |    148 | \end{isabellebody}%
 | 
| 9690 |    149 | %%% Local Variables:
 | 
|  |    150 | %%% mode: latex
 | 
|  |    151 | %%% TeX-master: "root"
 | 
|  |    152 | %%% End:
 |