| author | wenzelm | 
| Wed, 22 Feb 2006 22:18:32 +0100 | |
| changeset 19121 | d7fd5415a781 | 
| parent 15791 | 446ec11266be | 
| child 21216 | 1c8580913738 | 
| permissions | -rw-r--r-- | 
| 15511 | 1  | 
(* Title: HOL/Lattices.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* Lattices via Locales *}
 | 
|
7  | 
||
8  | 
theory Lattice_Locales  | 
|
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
9  | 
imports HOL  | 
| 15511 | 10  | 
begin  | 
11  | 
||
12  | 
subsection{* Lattices *}
 | 
|
13  | 
||
14  | 
text{* This theory of lattice locales only defines binary sup and inf
 | 
|
15  | 
operations. The extension to finite sets is done in theory @{text
 | 
|
16  | 
Finite_Set}. In the longer term it may be better to define arbitrary  | 
|
17  | 
sups and infs via @{text THE}. *}
 | 
|
18  | 
||
19  | 
locale partial_order =  | 
|
20  | 
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50)  | 
|
21  | 
assumes refl[iff]: "x \<sqsubseteq> x"  | 
|
22  | 
and trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"  | 
|
23  | 
and antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"  | 
|
24  | 
||
25  | 
locale lower_semilattice = partial_order +  | 
|
26  | 
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)  | 
|
27  | 
assumes inf_le1: "x \<sqinter> y \<sqsubseteq> x" and inf_le2: "x \<sqinter> y \<sqsubseteq> y"  | 
|
28  | 
and inf_least: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"  | 
|
29  | 
||
30  | 
locale upper_semilattice = partial_order +  | 
|
31  | 
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)  | 
|
32  | 
assumes sup_ge1: "x \<sqsubseteq> x \<squnion> y" and sup_ge2: "y \<sqsubseteq> x \<squnion> y"  | 
|
33  | 
and sup_greatest: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"  | 
|
34  | 
||
35  | 
locale lattice = lower_semilattice + upper_semilattice  | 
|
36  | 
||
37  | 
lemma (in lower_semilattice) inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"  | 
|
38  | 
by(blast intro: antisym inf_le1 inf_le2 inf_least)  | 
|
39  | 
||
40  | 
lemma (in upper_semilattice) sup_commute: "(x \<squnion> y) = (y \<squnion> x)"  | 
|
41  | 
by(blast intro: antisym sup_ge1 sup_ge2 sup_greatest)  | 
|
42  | 
||
43  | 
lemma (in lower_semilattice) inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"  | 
|
44  | 
by(blast intro: antisym inf_le1 inf_le2 inf_least trans del:refl)  | 
|
45  | 
||
46  | 
lemma (in upper_semilattice) sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"  | 
|
47  | 
by(blast intro!: antisym sup_ge1 sup_ge2 intro: sup_greatest trans del:refl)  | 
|
48  | 
||
49  | 
lemma (in lower_semilattice) inf_idem[simp]: "x \<sqinter> x = x"  | 
|
50  | 
by(blast intro: antisym inf_le1 inf_le2 inf_least refl)  | 
|
51  | 
||
52  | 
lemma (in upper_semilattice) sup_idem[simp]: "x \<squnion> x = x"  | 
|
53  | 
by(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl)  | 
|
54  | 
||
| 15791 | 55  | 
lemma (in lower_semilattice) inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"  | 
56  | 
by (simp add: inf_assoc[symmetric])  | 
|
57  | 
||
58  | 
lemma (in upper_semilattice) sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"  | 
|
59  | 
by (simp add: sup_assoc[symmetric])  | 
|
60  | 
||
| 15511 | 61  | 
lemma (in lattice) inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"  | 
62  | 
by(blast intro: antisym inf_le1 inf_least sup_ge1)  | 
|
63  | 
||
64  | 
lemma (in lattice) sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"  | 
|
65  | 
by(blast intro: antisym sup_ge1 sup_greatest inf_le1)  | 
|
66  | 
||
67  | 
lemma (in lower_semilattice) inf_absorb: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"  | 
|
68  | 
by(blast intro: antisym inf_le1 inf_least refl)  | 
|
69  | 
||
70  | 
lemma (in upper_semilattice) sup_absorb: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"  | 
|
71  | 
by(blast intro: antisym sup_ge2 sup_greatest refl)  | 
|
72  | 
||
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
73  | 
|
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
74  | 
lemma (in lower_semilattice) below_inf_conv[simp]:  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
75  | 
"x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)"  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
76  | 
by(blast intro: antisym inf_le1 inf_le2 inf_least refl trans)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
77  | 
|
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
78  | 
lemma (in upper_semilattice) above_sup_conv[simp]:  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
79  | 
"x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
80  | 
by(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl trans)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
81  | 
|
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
82  | 
|
| 15511 | 83  | 
text{* Towards distributivity: if you have one of them, you have them all. *}
 | 
84  | 
||
85  | 
lemma (in lattice) distrib_imp1:  | 
|
86  | 
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
|
87  | 
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
88  | 
proof-  | 
|
89  | 
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)  | 
|
90  | 
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc)  | 
|
91  | 
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"  | 
|
92  | 
by(simp add:inf_sup_absorb inf_commute)  | 
|
93  | 
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)  | 
|
94  | 
finally show ?thesis .  | 
|
95  | 
qed  | 
|
96  | 
||
97  | 
lemma (in lattice) distrib_imp2:  | 
|
98  | 
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
99  | 
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
|
100  | 
proof-  | 
|
101  | 
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)  | 
|
102  | 
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc)  | 
|
103  | 
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"  | 
|
104  | 
by(simp add:sup_inf_absorb sup_commute)  | 
|
105  | 
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)  | 
|
106  | 
finally show ?thesis .  | 
|
107  | 
qed  | 
|
108  | 
||
109  | 
text{* A package of rewrite rules for deciding equivalence wrt ACI: *}
 | 
|
110  | 
||
111  | 
lemma (in lower_semilattice) inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"  | 
|
112  | 
proof -  | 
|
113  | 
have "x \<sqinter> (y \<sqinter> z) = (y \<sqinter> z) \<sqinter> x" by (simp only: inf_commute)  | 
|
114  | 
also have "... = y \<sqinter> (z \<sqinter> x)" by (simp only: inf_assoc)  | 
|
115  | 
also have "z \<sqinter> x = x \<sqinter> z" by (simp only: inf_commute)  | 
|
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
116  | 
finally(back_subst) show ?thesis .  | 
| 15511 | 117  | 
qed  | 
118  | 
||
119  | 
lemma (in upper_semilattice) sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"  | 
|
120  | 
proof -  | 
|
121  | 
have "x \<squnion> (y \<squnion> z) = (y \<squnion> z) \<squnion> x" by (simp only: sup_commute)  | 
|
122  | 
also have "... = y \<squnion> (z \<squnion> x)" by (simp only: sup_assoc)  | 
|
123  | 
also have "z \<squnion> x = x \<squnion> z" by (simp only: sup_commute)  | 
|
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15511 
diff
changeset
 | 
124  | 
finally(back_subst) show ?thesis .  | 
| 15511 | 125  | 
qed  | 
126  | 
||
127  | 
lemma (in lower_semilattice) inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"  | 
|
128  | 
proof -  | 
|
129  | 
have "x \<sqinter> (x \<sqinter> y) = (x \<sqinter> x) \<sqinter> y" by(simp only:inf_assoc)  | 
|
130  | 
also have "\<dots> = x \<sqinter> y" by(simp)  | 
|
131  | 
finally show ?thesis .  | 
|
132  | 
qed  | 
|
133  | 
||
134  | 
lemma (in upper_semilattice) sup_left_idem: "x \<squnion> (x \<squnion> y) = x \<squnion> y"  | 
|
135  | 
proof -  | 
|
136  | 
have "x \<squnion> (x \<squnion> y) = (x \<squnion> x) \<squnion> y" by(simp only:sup_assoc)  | 
|
137  | 
also have "\<dots> = x \<squnion> y" by(simp)  | 
|
138  | 
finally show ?thesis .  | 
|
139  | 
qed  | 
|
140  | 
||
141  | 
||
142  | 
lemmas (in lower_semilattice) inf_ACI =  | 
|
143  | 
inf_commute inf_assoc inf_left_commute inf_left_idem  | 
|
144  | 
||
145  | 
lemmas (in upper_semilattice) sup_ACI =  | 
|
146  | 
sup_commute sup_assoc sup_left_commute sup_left_idem  | 
|
147  | 
||
148  | 
lemmas (in lattice) ACI = inf_ACI sup_ACI  | 
|
149  | 
||
150  | 
||
151  | 
subsection{* Distributive lattices *}
 | 
|
152  | 
||
153  | 
locale distrib_lattice = lattice +  | 
|
154  | 
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"  | 
|
155  | 
||
156  | 
lemma (in distrib_lattice) sup_inf_distrib2:  | 
|
157  | 
"(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"  | 
|
158  | 
by(simp add:ACI sup_inf_distrib1)  | 
|
159  | 
||
160  | 
lemma (in distrib_lattice) inf_sup_distrib1:  | 
|
161  | 
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"  | 
|
162  | 
by(rule distrib_imp2[OF sup_inf_distrib1])  | 
|
163  | 
||
164  | 
lemma (in distrib_lattice) inf_sup_distrib2:  | 
|
165  | 
"(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"  | 
|
166  | 
by(simp add:ACI inf_sup_distrib1)  | 
|
167  | 
||
168  | 
lemmas (in distrib_lattice) distrib =  | 
|
169  | 
sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2  | 
|
170  | 
||
171  | 
||
172  | 
end  |