author | wenzelm |
Fri, 24 Sep 2010 15:30:30 +0200 | |
changeset 39685 | d8071cddb877 |
parent 30663 | 0b6aff7451b2 |
child 49961 | d3d2b78b1c19 |
permissions | -rw-r--r-- |
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
27487
diff
changeset
|
1 |
(* Author: Tobias Nipkow, 2007 *) |
26166 | 2 |
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
27487
diff
changeset
|
3 |
header {* Lists as vectors *} |
26166 | 4 |
|
5 |
theory ListVector |
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
27487
diff
changeset
|
6 |
imports List Main |
26166 | 7 |
begin |
8 |
||
9 |
text{* \noindent |
|
10 |
A vector-space like structure of lists and arithmetic operations on them. |
|
11 |
Is only a vector space if restricted to lists of the same length. *} |
|
12 |
||
13 |
text{* Multiplication with a scalar: *} |
|
14 |
||
15 |
abbreviation scale :: "('a::times) \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "*\<^sub>s" 70) |
|
16 |
where "x *\<^sub>s xs \<equiv> map (op * x) xs" |
|
17 |
||
18 |
lemma scale1[simp]: "(1::'a::monoid_mult) *\<^sub>s xs = xs" |
|
19 |
by (induct xs) simp_all |
|
20 |
||
21 |
subsection {* @{text"+"} and @{text"-"} *} |
|
22 |
||
23 |
fun zipwith0 :: "('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" |
|
24 |
where |
|
25 |
"zipwith0 f [] [] = []" | |
|
26 |
"zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" | |
|
27 |
"zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" | |
|
28 |
"zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys" |
|
29 |
||
27109 | 30 |
instantiation list :: ("{zero, plus}") plus |
31 |
begin |
|
32 |
||
33 |
definition |
|
34 |
list_add_def: "op + = zipwith0 (op +)" |
|
35 |
||
36 |
instance .. |
|
37 |
||
38 |
end |
|
39 |
||
40 |
instantiation list :: ("{zero, uminus}") uminus |
|
41 |
begin |
|
26166 | 42 |
|
27109 | 43 |
definition |
44 |
list_uminus_def: "uminus = map uminus" |
|
45 |
||
46 |
instance .. |
|
47 |
||
48 |
end |
|
26166 | 49 |
|
27109 | 50 |
instantiation list :: ("{zero,minus}") minus |
51 |
begin |
|
52 |
||
53 |
definition |
|
54 |
list_diff_def: "op - = zipwith0 (op -)" |
|
55 |
||
56 |
instance .. |
|
57 |
||
58 |
end |
|
26166 | 59 |
|
60 |
lemma zipwith0_Nil[simp]: "zipwith0 f [] ys = map (f 0) ys" |
|
61 |
by(induct ys) simp_all |
|
62 |
||
63 |
lemma list_add_Nil[simp]: "[] + xs = (xs::'a::monoid_add list)" |
|
64 |
by (induct xs) (auto simp:list_add_def) |
|
65 |
||
66 |
lemma list_add_Nil2[simp]: "xs + [] = (xs::'a::monoid_add list)" |
|
67 |
by (induct xs) (auto simp:list_add_def) |
|
68 |
||
69 |
lemma list_add_Cons[simp]: "(x#xs) + (y#ys) = (x+y)#(xs+ys)" |
|
70 |
by(auto simp:list_add_def) |
|
71 |
||
72 |
lemma list_diff_Nil[simp]: "[] - xs = -(xs::'a::group_add list)" |
|
73 |
by (induct xs) (auto simp:list_diff_def list_uminus_def) |
|
74 |
||
75 |
lemma list_diff_Nil2[simp]: "xs - [] = (xs::'a::group_add list)" |
|
76 |
by (induct xs) (auto simp:list_diff_def) |
|
77 |
||
78 |
lemma list_diff_Cons_Cons[simp]: "(x#xs) - (y#ys) = (x-y)#(xs-ys)" |
|
79 |
by (induct xs) (auto simp:list_diff_def) |
|
80 |
||
81 |
lemma list_uminus_Cons[simp]: "-(x#xs) = (-x)#(-xs)" |
|
82 |
by (induct xs) (auto simp:list_uminus_def) |
|
83 |
||
84 |
lemma self_list_diff: |
|
85 |
"xs - xs = replicate (length(xs::'a::group_add list)) 0" |
|
86 |
by(induct xs) simp_all |
|
87 |
||
88 |
lemma list_add_assoc: fixes xs :: "'a::monoid_add list" |
|
89 |
shows "(xs+ys)+zs = xs+(ys+zs)" |
|
90 |
apply(induct xs arbitrary: ys zs) |
|
91 |
apply simp |
|
92 |
apply(case_tac ys) |
|
93 |
apply(simp) |
|
94 |
apply(simp) |
|
95 |
apply(case_tac zs) |
|
96 |
apply(simp) |
|
97 |
apply(simp add:add_assoc) |
|
98 |
done |
|
99 |
||
100 |
subsection "Inner product" |
|
101 |
||
102 |
definition iprod :: "'a::ring list \<Rightarrow> 'a list \<Rightarrow> 'a" ("\<langle>_,_\<rangle>") where |
|
103 |
"\<langle>xs,ys\<rangle> = (\<Sum>(x,y) \<leftarrow> zip xs ys. x*y)" |
|
104 |
||
105 |
lemma iprod_Nil[simp]: "\<langle>[],ys\<rangle> = 0" |
|
106 |
by(simp add:iprod_def) |
|
107 |
||
108 |
lemma iprod_Nil2[simp]: "\<langle>xs,[]\<rangle> = 0" |
|
109 |
by(simp add:iprod_def) |
|
110 |
||
111 |
lemma iprod_Cons[simp]: "\<langle>x#xs,y#ys\<rangle> = x*y + \<langle>xs,ys\<rangle>" |
|
112 |
by(simp add:iprod_def) |
|
113 |
||
114 |
lemma iprod0_if_coeffs0: "\<forall>c\<in>set cs. c = 0 \<Longrightarrow> \<langle>cs,xs\<rangle> = 0" |
|
115 |
apply(induct cs arbitrary:xs) |
|
116 |
apply simp |
|
117 |
apply(case_tac xs) apply simp |
|
118 |
apply auto |
|
119 |
done |
|
120 |
||
121 |
lemma iprod_uminus[simp]: "\<langle>-xs,ys\<rangle> = -\<langle>xs,ys\<rangle>" |
|
122 |
by(simp add: iprod_def uminus_listsum_map o_def split_def map_zip_map list_uminus_def) |
|
123 |
||
124 |
lemma iprod_left_add_distrib: "\<langle>xs + ys,zs\<rangle> = \<langle>xs,zs\<rangle> + \<langle>ys,zs\<rangle>" |
|
125 |
apply(induct xs arbitrary: ys zs) |
|
126 |
apply (simp add: o_def split_def) |
|
127 |
apply(case_tac ys) |
|
128 |
apply simp |
|
129 |
apply(case_tac zs) |
|
130 |
apply (simp) |
|
131 |
apply(simp add:left_distrib) |
|
132 |
done |
|
133 |
||
134 |
lemma iprod_left_diff_distrib: "\<langle>xs - ys, zs\<rangle> = \<langle>xs,zs\<rangle> - \<langle>ys,zs\<rangle>" |
|
135 |
apply(induct xs arbitrary: ys zs) |
|
136 |
apply (simp add: o_def split_def) |
|
137 |
apply(case_tac ys) |
|
138 |
apply simp |
|
139 |
apply(case_tac zs) |
|
140 |
apply (simp) |
|
141 |
apply(simp add:left_diff_distrib) |
|
142 |
done |
|
143 |
||
144 |
lemma iprod_assoc: "\<langle>x *\<^sub>s xs, ys\<rangle> = x * \<langle>xs,ys\<rangle>" |
|
145 |
apply(induct xs arbitrary: ys) |
|
146 |
apply simp |
|
147 |
apply(case_tac ys) |
|
148 |
apply (simp) |
|
149 |
apply (simp add:right_distrib mult_assoc) |
|
150 |
done |
|
151 |
||
152 |
end |