| author | desharna | 
| Mon, 25 Mar 2024 19:27:53 +0100 | |
| changeset 79997 | d8320c3a43ec | 
| parent 77280 | 8543e6b10a56 | 
| child 80769 | 77f7aa898ced | 
| permissions | -rw-r--r-- | 
| 63569 | 1 | (* Title: HOL/MacLaurin.thy | 
| 2 | Author: Jacques D. Fleuriot, 2001 University of Edinburgh | |
| 3 | Author: Lawrence C Paulson, 2004 | |
| 4 | Author: Lukas Bulwahn and Bernhard Häupler, 2005 | |
| 12224 | 5 | *) | 
| 6 | ||
| 63570 | 7 | section \<open>MacLaurin and Taylor Series\<close> | 
| 15944 | 8 | |
| 15131 | 9 | theory MacLaurin | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29803diff
changeset | 10 | imports Transcendental | 
| 15131 | 11 | begin | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 12 | |
| 63569 | 13 | subsection \<open>Maclaurin's Theorem with Lagrange Form of Remainder\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 14 | |
| 63569 | 15 | text \<open>This is a very long, messy proof even now that it's been broken down | 
| 16 | into lemmas.\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 17 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 18 | lemma Maclaurin_lemma: | 
| 63569 | 19 | "0 < h \<Longrightarrow> | 
| 20 | \<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) + (B * ((h^n) /(fact n)))" | |
| 21 | by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 22 | |
| 63569 | 23 | lemma eq_diff_eq': "x = y - z \<longleftrightarrow> y = x + z" | 
| 24 | for x y z :: real | |
| 25 | by arith | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 26 | |
| 63569 | 27 | lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | 
| 28 | by (subst fact_reduce) auto | |
| 32038 | 29 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 30 | lemma Maclaurin_lemma2: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 31 | fixes B | 
| 63569 | 32 | assumes DERIV: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 33 | and INIT: "n = Suc k" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 34 | defines "difg \<equiv> | 
| 63569 | 35 | (\<lambda>m t::real. diff m t - | 
| 36 | ((\<Sum>p<n - m. diff (m + p) 0 / fact p * t ^ p) + B * (t ^ (n - m) / fact (n - m))))" | |
| 37 | (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)") | |
| 38 | shows "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 39 | proof (rule allI impI)+ | 
| 63569 | 40 | fix m t | 
| 41 | assume INIT2: "m < n \<and> 0 \<le> t \<and> t \<le> h" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 42 | have "DERIV (difg m) t :> diff (Suc m) t - | 
| 63569 | 43 | ((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) + | 
| 44 | real (n - m) * t ^ (n - Suc m) * B / fact (n - m))" | |
| 45 | by (auto simp: difg_def intro!: derivative_eq_intros DERIV[rule_format, OF INIT2]) | |
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 46 | moreover | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 47 |   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 48 | unfolding atLeast0LessThan[symmetric] by auto | 
| 63569 | 49 | have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) = | 
| 50 | (\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x))" | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 51 | unfolding intvl by (subst sum.insert) (auto simp: sum.reindex) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 52 | moreover | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 53 | have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0" | 
| 63569 | 54 | by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2 | 
| 55 | less_numeral_extra(3) mult_less_0_iff of_nat_less_0_iff) | |
| 56 | have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x) = diff (Suc m + x) 0 * t^x / fact x" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 57 | by (rule nonzero_divide_eq_eq[THEN iffD2]) auto | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 58 | moreover | 
| 63569 | 59 | have "(n - m) * t ^ (n - Suc m) * B / fact (n - m) = B * (t ^ (n - Suc m) / fact (n - Suc m))" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
69529diff
changeset | 60 | using \<open>0 < n - m\<close> by (simp add: field_split_simps fact_reduce) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 61 | ultimately show "DERIV (difg m) t :> difg (Suc m) t" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 62 | unfolding difg_def by (simp add: mult.commute) | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 63 | qed | 
| 32038 | 64 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 65 | lemma Maclaurin: | 
| 29187 | 66 | assumes h: "0 < h" | 
| 63569 | 67 | and n: "0 < n" | 
| 68 | and diff_0: "diff 0 = f" | |
| 69 | and diff_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 29187 | 70 | shows | 
| 63569 | 71 | "\<exists>t::real. 0 < t \<and> t < h \<and> | 
| 64267 | 72 |       f h = sum (\<lambda>m. (diff m 0 / fact m) * h ^ m) {..<n} + (diff n t / fact n) * h ^ n"
 | 
| 29187 | 73 | proof - | 
| 74 | from n obtain m where m: "n = Suc m" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 75 | by (cases n) (simp add: n) | 
| 63569 | 76 | from m have "m < n" by simp | 
| 29187 | 77 | |
| 63569 | 78 | obtain B where f_h: "f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + B * (h ^ n / fact n)" | 
| 29187 | 79 | using Maclaurin_lemma [OF h] .. | 
| 80 | ||
| 63040 | 81 | define g where [abs_def]: "g t = | 
| 64267 | 82 |     f t - (sum (\<lambda>m. (diff m 0 / fact m) * t^m) {..<n} + B * (t^n / fact n))" for t
 | 
| 63569 | 83 | have g2: "g 0 = 0" "g h = 0" | 
| 64267 | 84 | by (simp_all add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 sum.reindex) | 
| 29187 | 85 | |
| 63040 | 86 | define difg where [abs_def]: "difg m t = | 
| 64267 | 87 |     diff m t - (sum (\<lambda>p. (diff (m + p) 0 / fact p) * (t ^ p)) {..<n-m} +
 | 
| 63569 | 88 | B * ((t ^ (n - m)) / fact (n - m)))" for m t | 
| 29187 | 89 | have difg_0: "difg 0 = g" | 
| 63569 | 90 | by (simp add: difg_def g_def diff_0) | 
| 91 | have difg_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 63040 | 92 | using diff_Suc m unfolding difg_def [abs_def] by (rule Maclaurin_lemma2) | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
56181diff
changeset | 93 | have difg_eq_0: "\<forall>m<n. difg m 0 = 0" | 
| 64267 | 94 | by (auto simp: difg_def m Suc_diff_le lessThan_Suc_eq_insert_0 image_iff sum.reindex) | 
| 63569 | 95 | have isCont_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> isCont (difg m) x" | 
| 29187 | 96 | by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp | 
| 63569 | 97 | have differentiable_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> difg m differentiable (at x)" | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 98 | using difg_Suc real_differentiable_def by auto | 
| 63569 | 99 | have difg_Suc_eq_0: | 
| 100 | "\<And>m t. m < n \<Longrightarrow> 0 \<le> t \<Longrightarrow> t \<le> h \<Longrightarrow> DERIV (difg m) t :> 0 \<Longrightarrow> difg (Suc m) t = 0" | |
| 29187 | 101 | by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp | 
| 102 | ||
| 103 | have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" | |
| 60758 | 104 | using \<open>m < n\<close> | 
| 29187 | 105 | proof (induct m) | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 106 | case 0 | 
| 29187 | 107 | show ?case | 
| 108 | proof (rule Rolle) | |
| 109 | show "0 < h" by fact | |
| 63569 | 110 | show "difg 0 0 = difg 0 h" | 
| 111 | by (simp add: difg_0 g2) | |
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 112 |       show "continuous_on {0..h} (difg 0)"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 113 | by (simp add: continuous_at_imp_continuous_on isCont_difg n) | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 114 | qed (simp add: differentiable_difg n) | 
| 29187 | 115 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 116 | case (Suc m') | 
| 63569 | 117 | then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" | 
| 77280 | 118 | by force | 
| 29187 | 119 | have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" | 
| 120 | proof (rule Rolle) | |
| 121 | show "0 < t" by fact | |
| 122 | show "difg (Suc m') 0 = difg (Suc m') t" | |
| 60758 | 123 | using t \<open>Suc m' < n\<close> by (simp add: difg_Suc_eq_0 difg_eq_0) | 
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 124 | have "\<And>x. 0 \<le> x \<and> x \<le> t \<Longrightarrow> isCont (difg (Suc m')) x" | 
| 60758 | 125 | using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: isCont_difg) | 
| 69020 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 126 |       then show "continuous_on {0..t} (difg (Suc m'))"
 | 
| 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 paulson <lp15@cam.ac.uk> parents: 
68671diff
changeset | 127 | by (simp add: continuous_at_imp_continuous_on) | 
| 69022 
e2858770997a
removal of more redundancies, and fixes
 paulson <lp15@cam.ac.uk> parents: 
69020diff
changeset | 128 | qed (use \<open>t < h\<close> \<open>Suc m' < n\<close> in \<open>simp add: differentiable_difg\<close>) | 
| 63569 | 129 | with \<open>t < h\<close> show ?case | 
| 130 | by auto | |
| 29187 | 131 | qed | 
| 77280 | 132 | then obtain t where "0 < t" "t < h" "difg (Suc m) t = 0" | 
| 133 | using \<open>m < n\<close> difg_Suc_eq_0 by force | |
| 29187 | 134 | show ?thesis | 
| 135 | proof (intro exI conjI) | |
| 77280 | 136 | show "0 < t" "t < h" by fact+ | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 137 | show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n" | 
| 63569 | 138 | using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def) | 
| 29187 | 139 | qed | 
| 140 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 141 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 142 | lemma Maclaurin2: | 
| 63569 | 143 | fixes n :: nat | 
| 144 | and h :: real | |
| 145 | assumes INIT1: "0 < h" | |
| 146 | and INIT2: "diff 0 = f" | |
| 147 | and DERIV: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 148 | shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n" | |
| 149 | proof (cases n) | |
| 150 | case 0 | |
| 151 | with INIT1 INIT2 show ?thesis by fastforce | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 152 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 153 | case Suc | 
| 63569 | 154 | then have "n > 0" by simp | 
| 77280 | 155 | from Maclaurin [OF INIT1 this INIT2 DERIV] | 
| 156 | show ?thesis by fastforce | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 157 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 158 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 159 | lemma Maclaurin_minus: | 
| 63569 | 160 | fixes n :: nat and h :: real | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 161 | assumes "h < 0" "0 < n" "diff 0 = f" | 
| 63569 | 162 | and DERIV: "\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 163 | shows "\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 164 | proof - | 
| 63569 | 165 | txt \<open>Transform \<open>ABL'\<close> into \<open>derivative_intros\<close> format.\<close> | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 166 | note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong] | 
| 63569 | 167 | let ?sum = "\<lambda>t. | 
| 168 | (\<Sum>m<n. (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) + | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 169 | (- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n" | 
| 63569 | 170 | from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = ?sum t" | 
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56238diff
changeset | 171 | by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV') | 
| 63569 | 172 | then obtain t where "0 < t" "t < - h" "f (- (- h)) = ?sum t" | 
| 173 | by blast | |
| 174 | moreover have "(- 1) ^ n * diff n (- t) * (- h) ^ n / fact n = diff n (- t) * h ^ n / fact n" | |
| 175 | by (auto simp: power_mult_distrib[symmetric]) | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 176 | moreover | 
| 63569 | 177 | have "(\<Sum>m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / fact m) = (\<Sum>m<n. diff m 0 * h ^ m / fact m)" | 
| 64267 | 178 | by (auto intro: sum.cong simp add: power_mult_distrib[symmetric]) | 
| 63569 | 179 | ultimately have "h < - t \<and> - t < 0 \<and> | 
| 180 | f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n" | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 181 | by auto | 
| 63569 | 182 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 183 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 184 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 185 | |
| 63569 | 186 | subsection \<open>More Convenient "Bidirectional" Version.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 187 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 188 | lemma Maclaurin_bi_le: | 
| 63569 | 189 | fixes n :: nat and x :: real | 
| 190 | assumes "diff 0 = f" | |
| 191 | and DERIV : "\<forall>m t. m < n \<and> \<bar>t\<bar> \<le> \<bar>x\<bar> \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 192 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) + diff n t / (fact n) * x ^ n" | |
| 193 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 194 | proof (cases "n = 0") | |
| 195 | case True | |
| 196 | with \<open>diff 0 = f\<close> show ?thesis by force | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 197 | next | 
| 63569 | 198 | case False | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 199 | show ?thesis | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 200 | proof (cases rule: linorder_cases) | 
| 63569 | 201 | assume "x = 0" | 
| 202 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" | |
| 68669 | 203 | by auto | 
| 63569 | 204 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 205 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 206 | assume "x < 0" | 
| 63569 | 207 | with \<open>n \<noteq> 0\<close> DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" | 
| 208 | by (intro Maclaurin_minus) auto | |
| 209 | then obtain t where "x < t" "t < 0" | |
| 210 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 211 | by blast | |
| 77280 | 212 | with \<open>x < 0\<close> \<open>diff 0 = f\<close> show ?thesis by force | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 213 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 214 | assume "x > 0" | 
| 63569 | 215 | with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" | 
| 216 | by (intro Maclaurin) auto | |
| 217 | then obtain t where "0 < t" "t < x" | |
| 218 | "diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n" | |
| 219 | by blast | |
| 60758 | 220 | with \<open>x > 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 63569 | 221 | then show ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 222 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 223 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 224 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 225 | lemma Maclaurin_all_lt: | 
| 63569 | 226 | fixes x :: real | 
| 227 | assumes INIT1: "diff 0 = f" | |
| 228 | and INIT2: "0 < n" | |
| 229 | and INIT3: "x \<noteq> 0" | |
| 230 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" | |
| 231 | shows "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = | |
| 232 | (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 233 | (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t") | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 234 | proof (cases rule: linorder_cases) | 
| 63569 | 235 | assume "x = 0" | 
| 236 | with INIT3 show ?thesis .. | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 237 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 238 | assume "x < 0" | 
| 63569 | 239 | with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" | 
| 240 | by (intro Maclaurin_minus) auto | |
| 77280 | 241 | then show ?thesis by force | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 242 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 243 | assume "x > 0" | 
| 63569 | 244 | with assms have "\<exists>t>0. t < x \<and> f x = ?f x t" | 
| 245 | by (intro Maclaurin) auto | |
| 77280 | 246 | then show ?thesis by force | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 247 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 248 | |
| 63569 | 249 | lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0" | 
| 250 | for x :: real and n :: nat | |
| 68669 | 251 | by simp | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 252 | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 253 | |
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 254 | lemma Maclaurin_all_le: | 
| 63569 | 255 | fixes x :: real and n :: nat | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 256 | assumes INIT: "diff 0 = f" | 
| 63569 | 257 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" | 
| 258 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n" | |
| 259 | (is "\<exists>t. _ \<and> f x = ?f x t") | |
| 260 | proof (cases "n = 0") | |
| 261 | case True | |
| 262 | with INIT show ?thesis by force | |
| 263 | next | |
| 264 | case False | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 265 | show ?thesis | 
| 77280 | 266 | using DERIV INIT Maclaurin_bi_le by auto | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 267 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 268 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 269 | lemma Maclaurin_all_le_objl: | 
| 63569 | 270 | "diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<longrightarrow> | 
| 271 | (\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)" | |
| 272 | for x :: real and n :: nat | |
| 273 | by (blast intro: Maclaurin_all_le) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 274 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 275 | |
| 63569 | 276 | subsection \<open>Version for Exponential Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 277 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 278 | lemma Maclaurin_exp_lt: | 
| 63569 | 279 | fixes x :: real and n :: nat | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 280 | shows | 
| 63569 | 281 | "x \<noteq> 0 \<Longrightarrow> n > 0 \<Longrightarrow> | 
| 282 | (\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n)" | |
| 68669 | 283 | using Maclaurin_all_lt [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 284 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 285 | lemma Maclaurin_exp_le: | 
| 63569 | 286 | fixes x :: real and n :: nat | 
| 287 | shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n" | |
| 288 | using Maclaurin_all_le_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto | |
| 289 | ||
| 69529 | 290 | corollary exp_lower_Taylor_quadratic: "0 \<le> x \<Longrightarrow> 1 + x + x\<^sup>2 / 2 \<le> exp x" | 
| 63569 | 291 | for x :: real | 
| 292 | using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square) | |
| 293 | ||
| 65273 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 294 | corollary ln_2_less_1: "ln 2 < (1::real)" | 
| 77280 | 295 | by (smt (verit) ln_eq_minus_one ln_le_minus_one) | 
| 63569 | 296 | |
| 297 | subsection \<open>Version for Sine Function\<close> | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 298 | |
| 67091 | 299 | lemma mod_exhaust_less_4: "m mod 4 = 0 \<or> m mod 4 = 1 \<or> m mod 4 = 2 \<or> m mod 4 = 3" | 
| 63569 | 300 | for m :: nat | 
| 301 | by auto | |
| 302 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 303 | |
| 63569 | 304 | text \<open>It is unclear why so many variant results are needed.\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 305 | |
| 63569 | 306 | lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real m * pi / 2)" | 
| 307 | by (auto simp: cos_add sin_add add_divide_distrib distrib_right) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 308 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 309 | lemma Maclaurin_sin_expansion2: | 
| 63569 | 310 | "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 311 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 68669 | 312 | proof (cases "n = 0 \<or> x = 0") | 
| 313 | case False | |
| 314 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 315 | have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> sin x = | |
| 316 | (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n" | |
| 317 | proof (rule Maclaurin_all_lt) | |
| 318 | show "\<forall>m x. ((\<lambda>t. sin (t + 1/2 * real m * pi)) has_real_derivative | |
| 319 | sin (x + 1/2 * real (Suc m) * pi)) (at x)" | |
| 320 | by (rule allI derivative_eq_intros | use sin_expansion_lemma in force)+ | |
| 321 | qed (use False in auto) | |
| 322 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 323 | apply (rule ex_forward, simp) | 
| 68669 | 324 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 325 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 326 | done | 
| 327 | qed auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 328 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 329 | lemma Maclaurin_sin_expansion: | 
| 63569 | 330 | "\<exists>t. sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | 
| 331 | using Maclaurin_sin_expansion2 [of x n] by blast | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 332 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 333 | lemma Maclaurin_sin_expansion3: | 
| 68669 | 334 | assumes "n > 0" "x > 0" | 
| 335 | shows "\<exists>t. 0 < t \<and> t < x \<and> | |
| 336 | sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 337 | proof - | |
| 338 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 339 | have "\<exists>t. 0 < t \<and> t < x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 340 | proof (rule Maclaurin) | |
| 341 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 342 | ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative | |
| 343 | sin (t + 1/2 * real (Suc m) * pi)) (at t)" | |
| 344 | apply (simp add: sin_expansion_lemma del: of_nat_Suc) | |
| 345 | apply (force intro!: derivative_eq_intros) | |
| 346 | done | |
| 347 | qed (use assms in auto) | |
| 348 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 349 | apply (rule ex_forward, simp) | 
| 68669 | 350 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 351 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 352 | done | 
| 353 | qed | |
| 63569 | 354 | |
| 355 | lemma Maclaurin_sin_expansion4: | |
| 68669 | 356 | assumes "0 < x" | 
| 357 | shows "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 358 | proof - | |
| 359 | let ?diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)" | |
| 360 | have "\<exists>t. 0 < t \<and> t \<le> x \<and> sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 361 | proof (rule Maclaurin2) | |
| 362 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 363 | ((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative | |
| 364 | sin (t + 1/2 * real (Suc m) * pi)) (at t)" | |
| 365 | apply (simp add: sin_expansion_lemma del: of_nat_Suc) | |
| 366 | apply (force intro!: derivative_eq_intros) | |
| 367 | done | |
| 368 | qed (use assms in auto) | |
| 369 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 370 | apply (rule ex_forward, simp) | 
| 68669 | 371 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 372 | apply (auto simp: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc) | 
| 68669 | 373 | done | 
| 374 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 375 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 376 | |
| 63569 | 377 | subsection \<open>Maclaurin Expansion for Cosine Function\<close> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 378 | |
| 63569 | 379 | lemma sumr_cos_zero_one [simp]: "(\<Sum>m<Suc n. cos_coeff m * 0 ^ m) = 1" | 
| 380 | by (induct n) auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 381 | |
| 63569 | 382 | lemma cos_expansion_lemma: "cos (x + real (Suc m) * pi / 2) = - sin (x + real m * pi / 2)" | 
| 383 | by (auto simp: cos_add sin_add distrib_right add_divide_distrib) | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 384 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 385 | lemma Maclaurin_cos_expansion: | 
| 63569 | 386 | "\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> | 
| 387 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos(t + 1/2 * real n * pi) / fact n) * x ^ n" | |
| 68669 | 388 | proof (cases "n = 0 \<or> x = 0") | 
| 389 | case False | |
| 390 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 391 | have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> cos x = | |
| 392 | (\<Sum>m<n. (?diff m 0 / fact m) * x ^ m) + (?diff n t / fact n) * x ^ n" | |
| 393 | proof (rule Maclaurin_all_lt) | |
| 394 | show "\<forall>m x. ((\<lambda>t. cos (t + 1/2 * real m * pi)) has_real_derivative | |
| 395 | cos (x + 1/2 * real (Suc m) * pi)) (at x)" | |
| 77280 | 396 | using cos_expansion_lemma | 
| 397 | by (intro allI derivative_eq_intros | simp)+ | |
| 68669 | 398 | qed (use False in auto) | 
| 399 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 400 | apply (rule ex_forward, simp) | 
| 68669 | 401 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 402 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE simp del: of_nat_Suc) | 
| 68669 | 403 | done | 
| 404 | qed auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 405 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 406 | lemma Maclaurin_cos_expansion2: | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 407 | assumes "x > 0" "n > 0" | 
| 68669 | 408 | shows "\<exists>t. 0 < t \<and> t < x \<and> | 
| 63569 | 409 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos (t + 1/2 * real n * pi) / fact n) * x ^ n" | 
| 68669 | 410 | proof - | 
| 411 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 412 | have "\<exists>t. 0 < t \<and> t < x \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 413 | proof (rule Maclaurin) | |
| 414 | show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> | |
| 415 | ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative | |
| 416 | cos (t + 1 / 2 * real (Suc m) * pi)) (at t)" | |
| 417 | by (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 418 | qed (use assms in auto) | |
| 419 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 420 | apply (rule ex_forward, simp) | 
| 68669 | 421 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 422 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 68669 | 423 | done | 
| 424 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 425 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 426 | lemma Maclaurin_minus_cos_expansion: | 
| 68669 | 427 | assumes "n > 0" "x < 0" | 
| 428 | shows "\<exists>t. x < t \<and> t < 0 \<and> | |
| 429 | cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + ((cos (t + 1/2 * real n * pi) / fact n) * x ^ n)" | |
| 430 | proof - | |
| 431 | let ?diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)" | |
| 432 | have "\<exists>t. x < t \<and> t < 0 \<and> cos x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / fact n * x ^ n" | |
| 433 | proof (rule Maclaurin_minus) | |
| 434 | show "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> | |
| 435 | ((\<lambda>u. cos (u + 1 / 2 * real m * pi)) has_real_derivative | |
| 436 | cos (t + 1 / 2 * real (Suc m) * pi)) (at t)" | |
| 437 | by (simp add: cos_expansion_lemma del: of_nat_Suc) | |
| 438 | qed (use assms in auto) | |
| 439 | then show ?thesis | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 440 | apply (rule ex_forward, simp) | 
| 68669 | 441 | apply (rule sum.cong[OF refl]) | 
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 442 | apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE) | 
| 68669 | 443 | done | 
| 444 | qed | |
| 63569 | 445 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 446 | |
| 63569 | 447 | (* Version for ln(1 +/- x). Where is it?? *) | 
| 448 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 449 | |
| 63569 | 450 | lemma sin_bound_lemma: "x = y \<Longrightarrow> \<bar>u\<bar> \<le> v \<Longrightarrow> \<bar>(x + u) - y\<bar> \<le> v" | 
| 451 | for x y u v :: real | |
| 452 | by auto | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 453 | |
| 63569 | 454 | lemma Maclaurin_sin_bound: "\<bar>sin x - (\<Sum>m<n. sin_coeff m * x ^ m)\<bar> \<le> inverse (fact n) * \<bar>x\<bar> ^ n" | 
| 14738 | 455 | proof - | 
| 63569 | 456 | have est: "x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" for x y :: real | 
| 457 | by (rule mult_right_mono) simp_all | |
| 68157 | 458 | let ?diff = "\<lambda>(n::nat) (x::real). | 
| 63569 | 459 | if n mod 4 = 0 then sin x | 
| 460 | else if n mod 4 = 1 then cos x | |
| 461 | else if n mod 4 = 2 then - sin x | |
| 462 | else - cos x" | |
| 22985 | 463 | have diff_0: "?diff 0 = sin" by simp | 
| 68157 | 464 | have "DERIV (?diff m) x :> ?diff (Suc m) x" for m and x | 
| 465 | using mod_exhaust_less_4 [of m] | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 466 | by (auto simp: mod_Suc intro!: derivative_eq_intros) | 
| 68157 | 467 | then have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" | 
| 468 | by blast | |
| 22985 | 469 | from Maclaurin_all_le [OF diff_0 DERIV_diff] | 
| 63569 | 470 | obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" | 
| 471 | and t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / (fact n) * x ^ n" | |
| 472 | by fast | |
| 68157 | 473 | have diff_m_0: "?diff m 0 = (if even m then 0 else (- 1) ^ ((m - Suc 0) div 2))" for m | 
| 474 | using mod_exhaust_less_4 [of m] | |
| 68671 
205749fba102
fixing a theorem statement, etc.
 paulson <lp15@cam.ac.uk> parents: 
68669diff
changeset | 475 | by (auto simp: minus_one_power_iff even_even_mod_4_iff [of m] dest: even_mod_4_div_2 odd_mod_4_div_2) | 
| 14738 | 476 | show ?thesis | 
| 22985 | 477 | apply (subst t2) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 478 | apply (rule sin_bound_lemma) | 
| 64267 | 479 | apply (rule sum.cong[OF refl]) | 
| 77280 | 480 | unfolding sin_coeff_def | 
| 63569 | 481 | apply (subst diff_m_0, simp) | 
| 482 | using est | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 483 | apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono | 
| 63569 | 484 | simp: ac_simps divide_inverse power_abs [symmetric] abs_mult) | 
| 14738 | 485 | done | 
| 486 | qed | |
| 487 | ||
| 63570 | 488 | |
| 489 | section \<open>Taylor series\<close> | |
| 490 | ||
| 491 | text \<open> | |
| 492 | We use MacLaurin and the translation of the expansion point \<open>c\<close> to \<open>0\<close> | |
| 493 | to prove Taylor's theorem. | |
| 494 | \<close> | |
| 495 | ||
| 69529 | 496 | lemma Taylor_up: | 
| 63570 | 497 | assumes INIT: "n > 0" "diff 0 = f" | 
| 498 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t)" | |
| 499 | and INTERV: "a \<le> c" "c < b" | |
| 500 | shows "\<exists>t::real. c < t \<and> t < b \<and> | |
| 501 | f b = (\<Sum>m<n. (diff m c / fact m) * (b - c)^m) + (diff n t / fact n) * (b - c)^n" | |
| 502 | proof - | |
| 503 | from INTERV have "0 < b - c" by arith | |
| 504 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 505 | by auto | |
| 506 | moreover | |
| 507 | have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> b - c \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 508 | proof (intro strip) | |
| 509 | fix m t | |
| 510 | assume "m < n \<and> 0 \<le> t \<and> t \<le> b - c" | |
| 511 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 512 | by auto | |
| 513 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 514 | by (rule DERIV_add) | |
| 515 | ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)" | |
| 516 | by (rule DERIV_chain2) | |
| 517 | then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 518 | by simp | |
| 519 | qed | |
| 520 | ultimately obtain x where | |
| 521 | "0 < x \<and> x < b - c \<and> | |
| 522 | f (b - c + c) = | |
| 523 | (\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n" | |
| 524 | by (rule Maclaurin [THEN exE]) | |
| 77280 | 525 | then show ?thesis | 
| 526 | by (smt (verit) sum.cong) | |
| 63570 | 527 | qed | 
| 528 | ||
| 69529 | 529 | lemma Taylor_down: | 
| 63570 | 530 | fixes a :: real and n :: nat | 
| 531 | assumes INIT: "n > 0" "diff 0 = f" | |
| 532 | and DERIV: "(\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t)" | |
| 533 | and INTERV: "a < c" "c \<le> b" | |
| 534 | shows "\<exists>t. a < t \<and> t < c \<and> | |
| 535 | f a = (\<Sum>m<n. (diff m c / fact m) * (a - c)^m) + (diff n t / fact n) * (a - c)^n" | |
| 536 | proof - | |
| 537 | from INTERV have "a-c < 0" by arith | |
| 538 | moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))" | |
| 539 | by auto | |
| 540 | moreover | |
| 541 | have "\<forall>m t. m < n \<and> a - c \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | |
| 542 | proof (rule allI impI)+ | |
| 543 | fix m t | |
| 544 | assume "m < n \<and> a - c \<le> t \<and> t \<le> 0" | |
| 545 | with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)" | |
| 546 | by auto | |
| 547 | moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0" | |
| 548 | by (rule DERIV_add) | |
| 77280 | 549 | ultimately show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)" | 
| 550 | using DERIV_chain2 DERIV_shift by blast | |
| 63570 | 551 | qed | 
| 552 | ultimately obtain x where | |
| 553 | "a - c < x \<and> x < 0 \<and> | |
| 554 | f (a - c + c) = | |
| 555 | (\<Sum>m<n. diff m (0 + c) / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 556 | by (rule Maclaurin_minus [THEN exE]) | |
| 557 | then have "a < x + c \<and> x + c < c \<and> | |
| 558 | f a = (\<Sum>m<n. diff m c / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n" | |
| 559 | by fastforce | |
| 560 | then show ?thesis by fastforce | |
| 561 | qed | |
| 562 | ||
| 69529 | 563 | theorem Taylor: | 
| 63570 | 564 | fixes a :: real and n :: nat | 
| 565 | assumes INIT: "n > 0" "diff 0 = f" | |
| 566 | and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 567 | and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c" | |
| 568 | shows "\<exists>t. | |
| 569 | (if x < c then x < t \<and> t < c else c < t \<and> t < x) \<and> | |
| 570 | f x = (\<Sum>m<n. (diff m c / fact m) * (x - c)^m) + (diff n t / fact n) * (x - c)^n" | |
| 571 | proof (cases "x < c") | |
| 572 | case True | |
| 573 | note INIT | |
| 574 | moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 575 | using DERIV and INTERV by fastforce | |
| 77280 | 576 | ultimately show ?thesis | 
| 577 | using True INTERV Taylor_down by simp | |
| 63570 | 578 | next | 
| 579 | case False | |
| 580 | note INIT | |
| 581 | moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | |
| 582 | using DERIV and INTERV by fastforce | |
| 77280 | 583 | ultimately show ?thesis | 
| 584 | using Taylor_up INTERV False by simp | |
| 63570 | 585 | qed | 
| 586 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 587 | end |