25235
|
1 |
<ul>
|
|
2 |
<li>Higher-Order Logic</li>
|
|
3 |
|
|
4 |
<li style="list-style: none">
|
|
5 |
<ul>
|
28307
|
6 |
<li><a href="HOL/index.html">HOL (Higher-Order Logic)</a>
|
|
7 |
is a version of classical higher-order logic resembling
|
|
8 |
that of the <a href="http://www.cl.cam.ac.uk/Research/HVG/HOL/">HOL System</a>.
|
|
9 |
</li>
|
25235
|
10 |
|
28307
|
11 |
<li><a href="HOLCF/index.html">HOLCF (Higher-Order Logic of Computable Functions)</a>
|
|
12 |
adds Scott's Logic for Computable Functions (domain theory) to HOL.
|
|
13 |
</li>
|
25235
|
14 |
</ul>
|
|
15 |
</li>
|
|
16 |
</ul>
|
|
17 |
|
|
18 |
<ul>
|
|
19 |
<li>First-Order Logic</li>
|
|
20 |
|
|
21 |
<li style="list-style: none">
|
|
22 |
<ul>
|
28307
|
23 |
<li><a href="FOL/index.html">FOL (Many-sorted First-Order Logic)</a>
|
|
24 |
provides basic classical and intuitionistic first-order logic. It is
|
|
25 |
polymorphic.
|
|
26 |
</li>
|
25235
|
27 |
|
28307
|
28 |
<li><a href="ZF/index.html">ZF (Set Theory)</a>
|
|
29 |
offers a formulation of Zermelo-Fraenkel set theory on top of FOL.
|
|
30 |
</li>
|
25235
|
31 |
|
|
32 |
<li><a href="CCL/index.html">CCL (Classical Computational Logic)</a></li>
|
|
33 |
|
|
34 |
<li><a href="LCF/index.html">LCF (Logic of Computable Functions)</a></li>
|
|
35 |
|
|
36 |
<li><a href="FOLP/index.html">FOLP (FOL with Proof Terms)</a></li>
|
|
37 |
</ul>
|
|
38 |
</li>
|
|
39 |
</ul>
|
|
40 |
|
|
41 |
<ul>
|
|
42 |
<li>Miscellaneous</li>
|
|
43 |
|
|
44 |
<li style="list-style: none">
|
|
45 |
<ul>
|
|
46 |
<li><a href="Sequents/index.html">Sequents (first-order, modal and linear logics)</a></li>
|
|
47 |
|
28307
|
48 |
<li><a href="CTT/index.html">CTT (Constructive Type Theory)</a>
|
|
49 |
is an extensional version of Martin-Löf's Type Theory.</li>
|
25235
|
50 |
|
|
51 |
<li><a href="Cube/index.html">Cube (The Lambda Cube)</a></li>
|
|
52 |
</ul>
|
|
53 |
</li>
|
|
54 |
</ul>
|
|
55 |
|