author | wenzelm |
Thu, 04 Mar 2021 15:41:46 +0100 | |
changeset 73359 | d8a0e996614b |
parent 70180 | 5beca7396282 |
child 75669 | 43f5dfb7fa35 |
permissions | -rw-r--r-- |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
1 |
(* Title: HOL/Order_Relation.thy |
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
2 |
Author: Tobias Nipkow |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
3 |
Author: Andrei Popescu, TU Muenchen |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
4 |
*) |
26273 | 5 |
|
60758 | 6 |
section \<open>Orders as Relations\<close> |
26273 | 7 |
|
8 |
theory Order_Relation |
|
55027 | 9 |
imports Wfrec |
26273 | 10 |
begin |
11 |
||
63572 | 12 |
subsection \<open>Orders on a set\<close> |
26295 | 13 |
|
30198 | 14 |
definition "preorder_on A r \<equiv> refl_on A r \<and> trans r" |
26295 | 15 |
|
16 |
definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" |
|
26273 | 17 |
|
26295 | 18 |
definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" |
19 |
||
20 |
definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" |
|
21 |
||
22 |
definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" |
|
26273 | 23 |
|
26295 | 24 |
lemmas order_on_defs = |
25 |
preorder_on_def partial_order_on_def linear_order_on_def |
|
26 |
strict_linear_order_on_def well_order_on_def |
|
27 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
28 |
lemma partial_order_onD: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
29 |
assumes "partial_order_on A r" shows "refl_on A r" and "trans r" and "antisym r" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
30 |
using assms unfolding partial_order_on_def preorder_on_def by auto |
26273 | 31 |
|
26295 | 32 |
lemma preorder_on_empty[simp]: "preorder_on {} {}" |
63572 | 33 |
by (simp add: preorder_on_def trans_def) |
26295 | 34 |
|
35 |
lemma partial_order_on_empty[simp]: "partial_order_on {} {}" |
|
63572 | 36 |
by (simp add: partial_order_on_def) |
26273 | 37 |
|
26295 | 38 |
lemma lnear_order_on_empty[simp]: "linear_order_on {} {}" |
63572 | 39 |
by (simp add: linear_order_on_def) |
26295 | 40 |
|
41 |
lemma well_order_on_empty[simp]: "well_order_on {} {}" |
|
63572 | 42 |
by (simp add: well_order_on_def) |
26295 | 43 |
|
26273 | 44 |
|
63572 | 45 |
lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r" |
46 |
by (simp add: preorder_on_def) |
|
26295 | 47 |
|
63572 | 48 |
lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r" |
49 |
by (simp add: partial_order_on_def) |
|
26273 | 50 |
|
63572 | 51 |
lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r" |
52 |
by (simp add: linear_order_on_def) |
|
26295 | 53 |
|
26273 | 54 |
|
70180 | 55 |
lemma partial_order_on_acyclic: |
56 |
"partial_order_on A r \<Longrightarrow> acyclic (r - Id)" |
|
57 |
by (simp add: acyclic_irrefl partial_order_on_def preorder_on_def trans_diff_Id) |
|
58 |
||
59 |
lemma partial_order_on_well_order_on: |
|
60 |
"finite r \<Longrightarrow> partial_order_on A r \<Longrightarrow> wf (r - Id)" |
|
61 |
by (simp add: finite_acyclic_wf partial_order_on_acyclic) |
|
62 |
||
63572 | 63 |
lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)" |
64 |
by (simp add: order_on_defs trans_diff_Id) |
|
26295 | 65 |
|
63563
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents:
63561
diff
changeset
|
66 |
lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}" |
63572 | 67 |
by (simp add: order_on_defs) |
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
68 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
69 |
lemma linear_order_on_acyclic: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
70 |
assumes "linear_order_on A r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
71 |
shows "acyclic (r - Id)" |
63572 | 72 |
using strict_linear_order_on_diff_Id[OF assms] |
73 |
by (auto simp add: acyclic_irrefl strict_linear_order_on_def) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
74 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
75 |
lemma linear_order_on_well_order_on: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
76 |
assumes "finite r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
77 |
shows "linear_order_on A r \<longleftrightarrow> well_order_on A r" |
63572 | 78 |
unfolding well_order_on_def |
79 |
using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
80 |
|
26295 | 81 |
|
63572 | 82 |
subsection \<open>Orders on the field\<close> |
26273 | 83 |
|
30198 | 84 |
abbreviation "Refl r \<equiv> refl_on (Field r) r" |
26295 | 85 |
|
86 |
abbreviation "Preorder r \<equiv> preorder_on (Field r) r" |
|
87 |
||
88 |
abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" |
|
26273 | 89 |
|
26295 | 90 |
abbreviation "Total r \<equiv> total_on (Field r) r" |
91 |
||
92 |
abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" |
|
93 |
||
94 |
abbreviation "Well_order r \<equiv> well_order_on (Field r) r" |
|
95 |
||
26273 | 96 |
|
97 |
lemma subset_Image_Image_iff: |
|
63572 | 98 |
"Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow> |
99 |
r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)" |
|
100 |
apply (simp add: preorder_on_def refl_on_def Image_def subset_eq) |
|
101 |
apply (simp only: trans_def) |
|
102 |
apply fast |
|
103 |
done |
|
26273 | 104 |
|
105 |
lemma subset_Image1_Image1_iff: |
|
63572 | 106 |
"Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r" |
107 |
by (simp add: subset_Image_Image_iff) |
|
26273 | 108 |
|
109 |
lemma Refl_antisym_eq_Image1_Image1_iff: |
|
63572 | 110 |
assumes "Refl r" |
111 |
and as: "antisym r" |
|
112 |
and abf: "a \<in> Field r" "b \<in> Field r" |
|
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
113 |
shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
63572 | 114 |
(is "?lhs \<longleftrightarrow> ?rhs") |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
115 |
proof |
63572 | 116 |
assume ?lhs |
117 |
then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" |
|
118 |
by (simp add: set_eq_iff) |
|
119 |
have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def) |
|
120 |
then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all |
|
121 |
then show ?rhs |
|
122 |
using \<open>antisym r\<close>[unfolded antisym_def] by blast |
|
123 |
next |
|
124 |
assume ?rhs |
|
125 |
then show ?lhs by fast |
|
126 |
qed |
|
26273 | 127 |
|
128 |
lemma Partial_order_eq_Image1_Image1_iff: |
|
63572 | 129 |
"Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
130 |
by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff) |
|
26295 | 131 |
|
52182 | 132 |
lemma Total_Id_Field: |
63572 | 133 |
assumes "Total r" |
134 |
and not_Id: "\<not> r \<subseteq> Id" |
|
135 |
shows "Field r = Field (r - Id)" |
|
136 |
using mono_Field[of "r - Id" r] Diff_subset[of r Id] |
|
137 |
proof auto |
|
52182 | 138 |
fix a assume *: "a \<in> Field r" |
63572 | 139 |
from not_Id have "r \<noteq> {}" by fast |
140 |
with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto |
|
141 |
then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def) |
|
142 |
with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto |
|
143 |
with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def) |
|
144 |
with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast |
|
52182 | 145 |
qed |
146 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
147 |
subsection\<open>Relations given by a predicate and the field\<close> |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
148 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
149 |
definition relation_of :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
150 |
where "relation_of P A \<equiv> { (a, b) \<in> A \<times> A. P a b }" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
151 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
152 |
lemma Field_relation_of: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
153 |
assumes "refl_on A (relation_of P A)" shows "Field (relation_of P A) = A" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
154 |
using assms unfolding refl_on_def Field_def by auto |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
155 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
156 |
lemma partial_order_on_relation_ofI: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
157 |
assumes refl: "\<And>a. a \<in> A \<Longrightarrow> P a a" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
158 |
and trans: "\<And>a b c. \<lbrakk> a \<in> A; b \<in> A; c \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b c \<Longrightarrow> P a c" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
159 |
and antisym: "\<And>a b. \<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b a \<Longrightarrow> a = b" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
160 |
shows "partial_order_on A (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
161 |
proof - |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
162 |
from refl have "refl_on A (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
163 |
unfolding refl_on_def relation_of_def by auto |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
164 |
moreover have "trans (relation_of P A)" and "antisym (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
165 |
unfolding relation_of_def |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
166 |
by (auto intro: transI dest: trans, auto intro: antisymI dest: antisym) |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
167 |
ultimately show ?thesis |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
168 |
unfolding partial_order_on_def preorder_on_def by simp |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
169 |
qed |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
170 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
171 |
lemma Partial_order_relation_ofI: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
172 |
assumes "partial_order_on A (relation_of P A)" shows "Partial_order (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
173 |
using Field_relation_of assms partial_order_on_def preorder_on_def by fastforce |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
174 |
|
26295 | 175 |
|
63572 | 176 |
subsection \<open>Orders on a type\<close> |
26295 | 177 |
|
178 |
abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" |
|
179 |
||
180 |
abbreviation "linear_order \<equiv> linear_order_on UNIV" |
|
181 |
||
54551 | 182 |
abbreviation "well_order \<equiv> well_order_on UNIV" |
26273 | 183 |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
184 |
|
60758 | 185 |
subsection \<open>Order-like relations\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
186 |
|
63572 | 187 |
text \<open> |
188 |
In this subsection, we develop basic concepts and results pertaining |
|
189 |
to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or |
|
190 |
total relations. We also further define upper and lower bounds operators. |
|
191 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
192 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
193 |
|
60758 | 194 |
subsubsection \<open>Auxiliaries\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
195 |
|
63572 | 196 |
lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" |
197 |
by (auto simp add: refl_on_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
198 |
|
63572 | 199 |
corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" |
200 |
by (auto simp add: refl_on_domain order_on_defs) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
201 |
|
63572 | 202 |
lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r" |
203 |
by (auto simp add: refl_on_def Field_def order_on_defs) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
204 |
|
63572 | 205 |
lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" |
206 |
using well_order_on_Field [of A] by auto |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
207 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
208 |
lemma Total_subset_Id: |
63572 | 209 |
assumes "Total r" |
210 |
and "r \<subseteq> Id" |
|
211 |
shows "r = {} \<or> (\<exists>a. r = {(a, a)})" |
|
212 |
proof - |
|
213 |
have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}" |
|
214 |
proof - |
|
215 |
from that obtain a b where ab: "(a, b) \<in> r" by fast |
|
216 |
with \<open>r \<subseteq> Id\<close> have "a = b" by blast |
|
217 |
with ab have aa: "(a, a) \<in> r" by simp |
|
218 |
have "a = c \<and> a = d" if "(c, d) \<in> r" for c d |
|
219 |
proof - |
|
220 |
from that have "{a, c, d} \<subseteq> Field r" |
|
221 |
using ab unfolding Field_def by blast |
|
222 |
then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)" |
|
223 |
using \<open>Total r\<close> unfolding total_on_def by blast |
|
224 |
with \<open>r \<subseteq> Id\<close> show ?thesis by blast |
|
225 |
qed |
|
226 |
then have "r \<subseteq> {(a, a)}" by auto |
|
227 |
with aa show ?thesis by blast |
|
228 |
qed |
|
229 |
then show ?thesis by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
230 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
231 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
232 |
lemma Linear_order_in_diff_Id: |
63572 | 233 |
assumes "Linear_order r" |
234 |
and "a \<in> Field r" |
|
235 |
and "b \<in> Field r" |
|
236 |
shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id" |
|
237 |
using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
238 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
239 |
|
60758 | 240 |
subsubsection \<open>The upper and lower bounds operators\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
241 |
|
63572 | 242 |
text \<open> |
243 |
Here we define upper (``above") and lower (``below") bounds operators. We |
|
244 |
think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of |
|
245 |
some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is |
|
246 |
the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of |
|
247 |
the first letter in the name reminds that the operator acts on sets, rather |
|
248 |
than on individual elements. |
|
249 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
250 |
|
63572 | 251 |
definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
252 |
where "under r a \<equiv> {b. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
253 |
|
63572 | 254 |
definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
255 |
where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
256 |
|
63572 | 257 |
definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
258 |
where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
259 |
|
63572 | 260 |
definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
261 |
where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
262 |
|
63572 | 263 |
definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
264 |
where "above r a \<equiv> {b. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
265 |
|
63572 | 266 |
definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
267 |
where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
268 |
|
63572 | 269 |
definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
270 |
where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
271 |
|
63572 | 272 |
definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
273 |
where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
274 |
|
55173 | 275 |
definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" |
63572 | 276 |
where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" |
55173 | 277 |
|
63572 | 278 |
text \<open> |
279 |
Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded |
|
280 |
comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being |
|
281 |
empty. |
|
282 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
283 |
|
63572 | 284 |
lemma underS_subset_under: "underS r a \<subseteq> under r a" |
285 |
by (auto simp add: underS_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
286 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
287 |
lemma underS_notIn: "a \<notin> underS r a" |
63572 | 288 |
by (simp add: underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
289 |
|
63572 | 290 |
lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a" |
291 |
by (simp add: refl_on_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
292 |
|
63572 | 293 |
lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}" |
294 |
by (auto simp add: AboveS_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
295 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
296 |
lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" |
63572 | 297 |
by (auto simp add: AboveS_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
298 |
|
63572 | 299 |
lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}" |
300 |
unfolding under_def underS_def |
|
301 |
using refl_on_def[of _ r] by fastforce |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
302 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
303 |
lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}" |
63572 | 304 |
by (auto simp: Field_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
305 |
|
63572 | 306 |
lemma under_Field: "under r a \<subseteq> Field r" |
307 |
by (auto simp: under_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
308 |
|
63572 | 309 |
lemma underS_Field: "underS r a \<subseteq> Field r" |
310 |
by (auto simp: underS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
311 |
|
63572 | 312 |
lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r" |
313 |
using underS_notIn underS_Field by fast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
314 |
|
63572 | 315 |
lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r" |
316 |
by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
317 |
|
63572 | 318 |
lemma AboveS_Field: "AboveS r A \<subseteq> Field r" |
319 |
by (auto simp: AboveS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
320 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
321 |
lemma under_incr: |
63572 | 322 |
assumes "trans r" |
323 |
and "(a, b) \<in> r" |
|
324 |
shows "under r a \<subseteq> under r b" |
|
325 |
unfolding under_def |
|
326 |
proof auto |
|
327 |
fix x assume "(x, a) \<in> r" |
|
328 |
with assms trans_def[of r] show "(x, b) \<in> r" by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
329 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
330 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
331 |
lemma underS_incr: |
63572 | 332 |
assumes "trans r" |
333 |
and "antisym r" |
|
334 |
and ab: "(a, b) \<in> r" |
|
335 |
shows "underS r a \<subseteq> underS r b" |
|
336 |
unfolding underS_def |
|
337 |
proof auto |
|
338 |
assume *: "b \<noteq> a" and **: "(b, a) \<in> r" |
|
339 |
with \<open>antisym r\<close> antisym_def[of r] ab show False |
|
340 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
341 |
next |
63572 | 342 |
fix x assume "x \<noteq> a" "(x, a) \<in> r" |
343 |
with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r" |
|
344 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
345 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
346 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
347 |
lemma underS_incl_iff: |
63572 | 348 |
assumes LO: "Linear_order r" |
349 |
and INa: "a \<in> Field r" |
|
350 |
and INb: "b \<in> Field r" |
|
351 |
shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r" |
|
352 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
353 |
proof |
63572 | 354 |
assume ?rhs |
355 |
with \<open>Linear_order r\<close> show ?lhs |
|
356 |
by (simp add: order_on_defs underS_incr) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
357 |
next |
63572 | 358 |
assume *: ?lhs |
359 |
have "(a, b) \<in> r" if "a = b" |
|
360 |
using assms that by (simp add: order_on_defs refl_on_def) |
|
361 |
moreover have False if "a \<noteq> b" "(b, a) \<in> r" |
|
362 |
proof - |
|
363 |
from that have "b \<in> underS r a" unfolding underS_def by blast |
|
364 |
with * have "b \<in> underS r b" by blast |
|
365 |
then show ?thesis by (simp add: underS_notIn) |
|
366 |
qed |
|
367 |
ultimately show "(a,b) \<in> r" |
|
368 |
using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
369 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
370 |
|
70180 | 371 |
lemma finite_Partial_order_induct[consumes 3, case_names step]: |
372 |
assumes "Partial_order r" |
|
373 |
and "x \<in> Field r" |
|
374 |
and "finite r" |
|
375 |
and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" |
|
376 |
shows "P x" |
|
377 |
using assms(2) |
|
378 |
proof (induct rule: wf_induct[of "r\<inverse> - Id"]) |
|
379 |
case 1 |
|
380 |
from assms(1,3) show "wf (r\<inverse> - Id)" |
|
381 |
using partial_order_on_well_order_on partial_order_on_converse by blast |
|
382 |
next |
|
383 |
case prems: (2 x) |
|
384 |
show ?case |
|
385 |
by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) |
|
386 |
qed |
|
387 |
||
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
388 |
lemma finite_Linear_order_induct[consumes 3, case_names step]: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
389 |
assumes "Linear_order r" |
63572 | 390 |
and "x \<in> Field r" |
391 |
and "finite r" |
|
392 |
and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
393 |
shows "P x" |
63572 | 394 |
using assms(2) |
395 |
proof (induct rule: wf_induct[of "r\<inverse> - Id"]) |
|
396 |
case 1 |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
397 |
from assms(1,3) show "wf (r\<inverse> - Id)" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
398 |
using linear_order_on_well_order_on linear_order_on_converse |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
399 |
unfolding well_order_on_def by blast |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
400 |
next |
63572 | 401 |
case prems: (2 x) |
402 |
show ?case |
|
403 |
by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
404 |
qed |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
405 |
|
55027 | 406 |
|
60758 | 407 |
subsection \<open>Variations on Well-Founded Relations\<close> |
55027 | 408 |
|
60758 | 409 |
text \<open> |
68484 | 410 |
This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>: |
63572 | 411 |
\<^item> means for slightly more direct definitions by well-founded recursion; |
412 |
\<^item> variations of well-founded induction; |
|
413 |
\<^item> means for proving a linear order to be a well-order. |
|
60758 | 414 |
\<close> |
55027 | 415 |
|
416 |
||
60758 | 417 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 418 |
|
63572 | 419 |
text \<open> |
420 |
A transitive relation is well-founded iff it is ``locally'' well-founded, |
|
421 |
i.e., iff its restriction to the lower bounds of of any element is |
|
422 |
well-founded. |
|
423 |
\<close> |
|
55027 | 424 |
|
425 |
lemma trans_wf_iff: |
|
63572 | 426 |
assumes "trans r" |
427 |
shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))" |
|
428 |
proof - |
|
429 |
define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a |
|
430 |
have "wf (R a)" if "wf r" for a |
|
431 |
using that R_def wf_subset[of r "R a"] by auto |
|
55027 | 432 |
moreover |
63572 | 433 |
have "wf r" if *: "\<forall>a. wf(R a)" |
434 |
unfolding wf_def |
|
435 |
proof clarify |
|
436 |
fix phi a |
|
437 |
assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" |
|
438 |
define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b |
|
439 |
with * have "wf (R a)" by auto |
|
440 |
then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" |
|
441 |
unfolding wf_def by blast |
|
442 |
also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" |
|
443 |
proof (auto simp add: chi_def R_def) |
|
444 |
fix b |
|
445 |
assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" |
|
446 |
then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" |
|
447 |
using assms trans_def[of r] by blast |
|
448 |
with ** show "phi b" by blast |
|
449 |
qed |
|
450 |
finally have "\<forall>b. chi b" . |
|
451 |
with ** chi_def show "phi a" by blast |
|
452 |
qed |
|
453 |
ultimately show ?thesis unfolding R_def by blast |
|
55027 | 454 |
qed |
455 |
||
63952
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
456 |
text\<open>A transitive relation is well-founded if all initial segments are finite.\<close> |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
457 |
corollary wf_finite_segments: |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
458 |
assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
459 |
shows "wf (r)" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
460 |
proof (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms) |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
461 |
fix a |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
462 |
have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
463 |
using assms unfolding trans_def Field_def by blast |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
464 |
then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
465 |
using assms acyclic_def assms irrefl_def by fastforce |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
466 |
qed |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
467 |
|
61799 | 468 |
text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded, |
63572 | 469 |
allowing one to assume the set included in the field.\<close> |
55027 | 470 |
|
63572 | 471 |
lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))" |
55027 | 472 |
proof- |
63572 | 473 |
let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)" |
474 |
have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)" |
|
475 |
apply (auto simp: ex_in_conv [THEN sym]) |
|
476 |
apply (erule wfE_min) |
|
477 |
apply assumption |
|
478 |
apply blast |
|
479 |
apply (rule wfI_min) |
|
480 |
apply fast |
|
481 |
done |
|
482 |
also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)" |
|
55027 | 483 |
proof |
484 |
assume "\<forall>A. ?phi A" |
|
63572 | 485 |
then show "\<forall>B \<subseteq> Field r. ?phi B" by simp |
55027 | 486 |
next |
63572 | 487 |
assume *: "\<forall>B \<subseteq> Field r. ?phi B" |
55027 | 488 |
show "\<forall>A. ?phi A" |
63572 | 489 |
proof clarify |
490 |
fix A :: "'a set" |
|
491 |
assume **: "A \<noteq> {}" |
|
492 |
define B where "B = A \<inter> Field r" |
|
493 |
show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r" |
|
494 |
proof (cases "B = {}") |
|
495 |
case True |
|
496 |
with ** obtain a where a: "a \<in> A" "a \<notin> Field r" |
|
497 |
unfolding B_def by blast |
|
498 |
with a have "\<forall>a' \<in> A. (a',a) \<notin> r" |
|
499 |
unfolding Field_def by blast |
|
500 |
with a show ?thesis by blast |
|
55027 | 501 |
next |
63572 | 502 |
case False |
503 |
have "B \<subseteq> Field r" unfolding B_def by blast |
|
504 |
with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r" |
|
505 |
by blast |
|
506 |
have "(a', a) \<notin> r" if "a' \<in> A" for a' |
|
507 |
proof |
|
508 |
assume a'a: "(a', a) \<in> r" |
|
509 |
with that have "a' \<in> B" unfolding B_def Field_def by blast |
|
510 |
with a a'a show False by blast |
|
55027 | 511 |
qed |
63572 | 512 |
with a show ?thesis unfolding B_def by blast |
55027 | 513 |
qed |
514 |
qed |
|
515 |
qed |
|
516 |
finally show ?thesis by blast |
|
517 |
qed |
|
518 |
||
519 |
||
60758 | 520 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 521 |
|
63572 | 522 |
text \<open> |
523 |
The next lemma and its corollary enable one to prove that a linear order is |
|
524 |
a well-order in a way which is more standard than via well-foundedness of |
|
525 |
the strict version of the relation. |
|
526 |
\<close> |
|
55027 | 527 |
|
528 |
lemma Linear_order_wf_diff_Id: |
|
63572 | 529 |
assumes "Linear_order r" |
530 |
shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
531 |
proof (cases "r \<subseteq> Id") |
|
532 |
case True |
|
533 |
then have *: "r - Id = {}" by blast |
|
534 |
have "wf (r - Id)" by (simp add: *) |
|
535 |
moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" |
|
536 |
if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A |
|
537 |
proof - |
|
538 |
from \<open>Linear_order r\<close> True |
|
539 |
obtain a where a: "r = {} \<or> r = {(a, a)}" |
|
540 |
unfolding order_on_defs using Total_subset_Id [of r] by blast |
|
541 |
with * ** have "A = {a} \<and> r = {(a, a)}" |
|
542 |
unfolding Field_def by blast |
|
543 |
with a show ?thesis by blast |
|
544 |
qed |
|
55027 | 545 |
ultimately show ?thesis by blast |
546 |
next |
|
63572 | 547 |
case False |
548 |
with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)" |
|
549 |
unfolding order_on_defs using Total_Id_Field [of r] by blast |
|
55027 | 550 |
show ?thesis |
551 |
proof |
|
63572 | 552 |
assume *: "wf (r - Id)" |
553 |
show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
|
554 |
proof clarify |
|
555 |
fix A |
|
556 |
assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}" |
|
557 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
558 |
using Field * unfolding wf_eq_minimal2 by simp |
|
559 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
560 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast |
|
561 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast |
|
55027 | 562 |
qed |
563 |
next |
|
63572 | 564 |
assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
565 |
show "wf (r - Id)" |
|
566 |
unfolding wf_eq_minimal2 |
|
567 |
proof clarify |
|
568 |
fix A |
|
569 |
assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}" |
|
570 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" |
|
571 |
using Field * by simp |
|
572 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
573 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast |
|
574 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
575 |
by blast |
|
55027 | 576 |
qed |
577 |
qed |
|
578 |
qed |
|
579 |
||
580 |
corollary Linear_order_Well_order_iff: |
|
63572 | 581 |
"Linear_order r \<Longrightarrow> |
582 |
Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
583 |
unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast |
|
55027 | 584 |
|
26273 | 585 |
end |