| author | wenzelm |
| Mon, 06 Nov 2000 22:56:07 +0100 | |
| changeset 10408 | d8b3613158b1 |
| parent 9508 | 4d01dbf6ded7 |
| child 11049 | 7eef34adb852 |
| permissions | -rw-r--r-- |
|
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
1 |
(* Title: IntFact.thy |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
3 |
Author: Thomas M. Rasmussen |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
4 |
Copyright 2000 University of Cambridge |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
5 |
*) |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
6 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
7 |
IntFact = IntPrimes + |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
8 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
9 |
consts |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
10 |
zfact :: int => int |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
11 |
setprod :: int set => int |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
12 |
d22set :: int => int set |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
13 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
14 |
recdef zfact "measure ((% n.(nat n)) ::int=>nat)" |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
15 |
"zfact n = (if n<=#0 then #1 else n*zfact(n-#1))" |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
16 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
17 |
defs |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
18 |
setprod_def "setprod A == (if finite A then fold (op*) #1 A else #1)" |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
19 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
20 |
recdef d22set "measure ((%a.(nat a)) ::int=>nat)" |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
21 |
"d22set a = (if #1<a then insert a (d22set (a-#1)) else {})"
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
22 |
|
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
23 |
end |