| 35303 |      1 | (* Author: Florian Haftmann, TU Muenchen *)
 | 
|  |      2 | 
 | 
|  |      3 | header {* Lists with elements distinct as canonical example for datatype invariants *}
 | 
|  |      4 | 
 | 
|  |      5 | theory Dlist
 | 
|  |      6 | imports Main Fset
 | 
|  |      7 | begin
 | 
|  |      8 | 
 | 
|  |      9 | section {* Prelude *}
 | 
|  |     10 | 
 | 
|  |     11 | text {* Without canonical argument order, higher-order things tend to get confusing quite fast: *}
 | 
|  |     12 | 
 | 
|  |     13 | setup {* Sign.map_naming (Name_Space.add_path "List") *}
 | 
|  |     14 | 
 | 
|  |     15 | primrec member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
|  |     16 |     "member [] y \<longleftrightarrow> False"
 | 
|  |     17 |   | "member (x#xs) y \<longleftrightarrow> x = y \<or> member xs y"
 | 
|  |     18 | 
 | 
|  |     19 | lemma member_set:
 | 
|  |     20 |   "member = set"
 | 
|  |     21 | proof (rule ext)+
 | 
|  |     22 |   fix xs :: "'a list" and x :: 'a
 | 
|  |     23 |   have "member xs x \<longleftrightarrow> x \<in> set xs" by (induct xs) auto
 | 
|  |     24 |   then show "member xs x = set xs x" by (simp add: mem_def)
 | 
|  |     25 | qed
 | 
|  |     26 | 
 | 
|  |     27 | lemma not_set_compl:
 | 
|  |     28 |   "Not \<circ> set xs = - set xs"
 | 
|  |     29 |   by (simp add: fun_Compl_def bool_Compl_def comp_def expand_fun_eq)
 | 
|  |     30 | 
 | 
|  |     31 | primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
|  |     32 |     "fold f [] s = s"
 | 
|  |     33 |   | "fold f (x#xs) s = fold f xs (f x s)"
 | 
|  |     34 | 
 | 
|  |     35 | lemma foldl_fold:
 | 
|  |     36 |   "foldl f s xs = List.fold (\<lambda>x s. f s x) xs s"
 | 
|  |     37 |   by (induct xs arbitrary: s) simp_all
 | 
|  |     38 | 
 | 
|  |     39 | setup {* Sign.map_naming Name_Space.parent_path *}
 | 
|  |     40 | 
 | 
|  |     41 | 
 | 
|  |     42 | section {* The type of distinct lists *}
 | 
|  |     43 | 
 | 
|  |     44 | typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
 | 
|  |     45 |   morphisms list_of_dlist Abs_dlist
 | 
|  |     46 | proof
 | 
|  |     47 |   show "[] \<in> ?dlist" by simp
 | 
|  |     48 | qed
 | 
|  |     49 | 
 | 
|  |     50 | text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 | 
|  |     51 | 
 | 
|  |     52 | definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
 | 
|  |     53 |   [code del]: "Dlist xs = Abs_dlist (remdups xs)"
 | 
|  |     54 | 
 | 
|  |     55 | lemma distinct_list_of_dlist [simp]:
 | 
|  |     56 |   "distinct (list_of_dlist dxs)"
 | 
|  |     57 |   using list_of_dlist [of dxs] by simp
 | 
|  |     58 | 
 | 
|  |     59 | lemma list_of_dlist_Dlist [simp]:
 | 
|  |     60 |   "list_of_dlist (Dlist xs) = remdups xs"
 | 
|  |     61 |   by (simp add: Dlist_def Abs_dlist_inverse)
 | 
|  |     62 | 
 | 
|  |     63 | lemma Dlist_list_of_dlist [simp]:
 | 
|  |     64 |   "Dlist (list_of_dlist dxs) = dxs"
 | 
|  |     65 |   by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
 | 
|  |     66 | 
 | 
|  |     67 | 
 | 
|  |     68 | text {* Fundamental operations: *}
 | 
|  |     69 | 
 | 
|  |     70 | definition empty :: "'a dlist" where
 | 
|  |     71 |   "empty = Dlist []"
 | 
|  |     72 | 
 | 
|  |     73 | definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | 
|  |     74 |   "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))"
 | 
|  |     75 | 
 | 
|  |     76 | definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | 
|  |     77 |   "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))"
 | 
|  |     78 | 
 | 
|  |     79 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
 | 
|  |     80 |   "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))"
 | 
|  |     81 | 
 | 
|  |     82 | definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | 
|  |     83 |   "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))"
 | 
|  |     84 | 
 | 
|  |     85 | 
 | 
|  |     86 | text {* Derived operations: *}
 | 
|  |     87 | 
 | 
|  |     88 | definition null :: "'a dlist \<Rightarrow> bool" where
 | 
|  |     89 |   "null dxs = List.null (list_of_dlist dxs)"
 | 
|  |     90 | 
 | 
|  |     91 | definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
|  |     92 |   "member dxs = List.member (list_of_dlist dxs)"
 | 
|  |     93 | 
 | 
|  |     94 | definition length :: "'a dlist \<Rightarrow> nat" where
 | 
|  |     95 |   "length dxs = List.length (list_of_dlist dxs)"
 | 
|  |     96 | 
 | 
|  |     97 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
|  |     98 |   "fold f dxs = List.fold f (list_of_dlist dxs)"
 | 
|  |     99 | 
 | 
|  |    100 | 
 | 
|  |    101 | section {* Executable version obeying invariant *}
 | 
|  |    102 | 
 | 
|  |    103 | code_abstype Dlist list_of_dlist
 | 
|  |    104 |   by simp
 | 
|  |    105 | 
 | 
|  |    106 | lemma list_of_dlist_empty [simp, code abstract]:
 | 
|  |    107 |   "list_of_dlist empty = []"
 | 
|  |    108 |   by (simp add: empty_def)
 | 
|  |    109 | 
 | 
|  |    110 | lemma list_of_dlist_insert [simp, code abstract]:
 | 
|  |    111 |   "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)"
 | 
|  |    112 |   by (simp add: insert_def)
 | 
|  |    113 | 
 | 
|  |    114 | lemma list_of_dlist_remove [simp, code abstract]:
 | 
|  |    115 |   "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)"
 | 
|  |    116 |   by (simp add: remove_def)
 | 
|  |    117 | 
 | 
|  |    118 | lemma list_of_dlist_map [simp, code abstract]:
 | 
|  |    119 |   "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))"
 | 
|  |    120 |   by (simp add: map_def)
 | 
|  |    121 | 
 | 
|  |    122 | lemma list_of_dlist_filter [simp, code abstract]:
 | 
|  |    123 |   "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)"
 | 
|  |    124 |   by (simp add: filter_def)
 | 
|  |    125 | 
 | 
|  |    126 | 
 | 
|  |    127 | section {* Implementation of sets by distinct lists -- canonical! *}
 | 
|  |    128 | 
 | 
|  |    129 | definition Set :: "'a dlist \<Rightarrow> 'a fset" where
 | 
|  |    130 |   "Set dxs = Fset.Set (list_of_dlist dxs)"
 | 
|  |    131 | 
 | 
|  |    132 | definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
 | 
|  |    133 |   "Coset dxs = Fset.Coset (list_of_dlist dxs)"
 | 
|  |    134 | 
 | 
|  |    135 | code_datatype Set Coset
 | 
|  |    136 | 
 | 
|  |    137 | declare member_code [code del]
 | 
|  |    138 | declare is_empty_Set [code del]
 | 
|  |    139 | declare empty_Set [code del]
 | 
|  |    140 | declare UNIV_Set [code del]
 | 
|  |    141 | declare insert_Set [code del]
 | 
|  |    142 | declare remove_Set [code del]
 | 
|  |    143 | declare map_Set [code del]
 | 
|  |    144 | declare filter_Set [code del]
 | 
|  |    145 | declare forall_Set [code del]
 | 
|  |    146 | declare exists_Set [code del]
 | 
|  |    147 | declare card_Set [code del]
 | 
|  |    148 | declare subfset_eq_forall [code del]
 | 
|  |    149 | declare subfset_subfset_eq [code del]
 | 
|  |    150 | declare eq_fset_subfset_eq [code del]
 | 
|  |    151 | declare inter_project [code del]
 | 
|  |    152 | declare subtract_remove [code del]
 | 
|  |    153 | declare union_insert [code del]
 | 
|  |    154 | declare Infimum_inf [code del]
 | 
|  |    155 | declare Supremum_sup [code del]
 | 
|  |    156 | 
 | 
|  |    157 | lemma Set_Dlist [simp]:
 | 
|  |    158 |   "Set (Dlist xs) = Fset (set xs)"
 | 
|  |    159 |   by (simp add: Set_def Fset.Set_def)
 | 
|  |    160 | 
 | 
|  |    161 | lemma Coset_Dlist [simp]:
 | 
|  |    162 |   "Coset (Dlist xs) = Fset (- set xs)"
 | 
|  |    163 |   by (simp add: Coset_def Fset.Coset_def)
 | 
|  |    164 | 
 | 
|  |    165 | lemma member_Set [simp]:
 | 
|  |    166 |   "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
 | 
|  |    167 |   by (simp add: Set_def member_set)
 | 
|  |    168 | 
 | 
|  |    169 | lemma member_Coset [simp]:
 | 
|  |    170 |   "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
 | 
|  |    171 |   by (simp add: Coset_def member_set not_set_compl)
 | 
|  |    172 | 
 | 
|  |    173 | lemma is_empty_Set [code]:
 | 
|  |    174 |   "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
 | 
|  |    175 |   by (simp add: null_def null_empty member_set)
 | 
|  |    176 | 
 | 
|  |    177 | lemma bot_code [code]:
 | 
|  |    178 |   "bot = Set empty"
 | 
|  |    179 |   by (simp add: empty_def)
 | 
|  |    180 | 
 | 
|  |    181 | lemma top_code [code]:
 | 
|  |    182 |   "top = Coset empty"
 | 
|  |    183 |   by (simp add: empty_def)
 | 
|  |    184 | 
 | 
|  |    185 | lemma insert_code [code]:
 | 
|  |    186 |   "Fset.insert x (Set dxs) = Set (insert x dxs)"
 | 
|  |    187 |   "Fset.insert x (Coset dxs) = Coset (remove x dxs)"
 | 
|  |    188 |   by (simp_all add: insert_def remove_def member_set not_set_compl)
 | 
|  |    189 | 
 | 
|  |    190 | lemma remove_code [code]:
 | 
|  |    191 |   "Fset.remove x (Set dxs) = Set (remove x dxs)"
 | 
|  |    192 |   "Fset.remove x (Coset dxs) = Coset (insert x dxs)"
 | 
|  |    193 |   by (auto simp add: insert_def remove_def member_set not_set_compl)
 | 
|  |    194 | 
 | 
|  |    195 | lemma member_code [code]:
 | 
|  |    196 |   "Fset.member (Set dxs) = member dxs"
 | 
|  |    197 |   "Fset.member (Coset dxs) = Not \<circ> member dxs"
 | 
|  |    198 |   by (simp_all add: member_def)
 | 
|  |    199 | 
 | 
|  |    200 | lemma map_code [code]:
 | 
|  |    201 |   "Fset.map f (Set dxs) = Set (map f dxs)"
 | 
|  |    202 |   by (simp add: member_set)
 | 
|  |    203 |   
 | 
|  |    204 | lemma filter_code [code]:
 | 
|  |    205 |   "Fset.filter f (Set dxs) = Set (filter f dxs)"
 | 
|  |    206 |   by (simp add: member_set)
 | 
|  |    207 | 
 | 
|  |    208 | lemma forall_Set [code]:
 | 
|  |    209 |   "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
 | 
|  |    210 |   by (simp add: member_set list_all_iff)
 | 
|  |    211 | 
 | 
|  |    212 | lemma exists_Set [code]:
 | 
|  |    213 |   "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
 | 
|  |    214 |   by (simp add: member_set list_ex_iff)
 | 
|  |    215 | 
 | 
|  |    216 | lemma card_code [code]:
 | 
|  |    217 |   "Fset.card (Set dxs) = length dxs"
 | 
|  |    218 |   by (simp add: length_def member_set distinct_card)
 | 
|  |    219 | 
 | 
|  |    220 | lemma foldl_list_of_dlist:
 | 
|  |    221 |   "foldl f s (list_of_dlist dxs) = fold (\<lambda>x s. f s x) dxs s"
 | 
|  |    222 |   by (simp add: foldl_fold fold_def)
 | 
|  |    223 | 
 | 
|  |    224 | lemma inter_code [code]:
 | 
|  |    225 |   "inf A (Set xs) = Set (filter (Fset.member A) xs)"
 | 
|  |    226 |   "inf A (Coset xs) = fold Fset.remove xs A"
 | 
|  |    227 |   by (simp_all only: Set_def Coset_def foldl_list_of_dlist inter_project list_of_dlist_filter)
 | 
|  |    228 | 
 | 
|  |    229 | lemma subtract_code [code]:
 | 
|  |    230 |   "A - Set xs = fold Fset.remove xs A"
 | 
|  |    231 |   "A - Coset xs = Set (filter (Fset.member A) xs)"
 | 
|  |    232 |   by (simp_all only: Set_def Coset_def foldl_list_of_dlist subtract_remove list_of_dlist_filter)
 | 
|  |    233 | 
 | 
|  |    234 | lemma union_code [code]:
 | 
|  |    235 |   "sup (Set xs) A = fold Fset.insert xs A"
 | 
|  |    236 |   "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
 | 
|  |    237 |   by (simp_all only: Set_def Coset_def foldl_list_of_dlist union_insert list_of_dlist_filter)
 | 
|  |    238 | 
 | 
|  |    239 | context complete_lattice
 | 
|  |    240 | begin
 | 
|  |    241 | 
 | 
|  |    242 | lemma Infimum_code [code]:
 | 
|  |    243 |   "Infimum (Set As) = fold inf As top"
 | 
|  |    244 |   by (simp only: Set_def Infimum_inf foldl_list_of_dlist inf.commute)
 | 
|  |    245 | 
 | 
|  |    246 | lemma Supremum_code [code]:
 | 
|  |    247 |   "Supremum (Set As) = fold sup As bot"
 | 
|  |    248 |   by (simp only: Set_def Supremum_sup foldl_list_of_dlist sup.commute)
 | 
|  |    249 | 
 | 
|  |    250 | end
 | 
|  |    251 | 
 | 
|  |    252 | hide (open) const member fold empty insert remove map filter null member length fold
 | 
|  |    253 | 
 | 
|  |    254 | end
 |