| author | haftmann | 
| Thu, 18 Mar 2010 13:56:32 +0100 | |
| changeset 35817 | d8b8527102f5 | 
| parent 35056 | d97b5c3af6d5 | 
| child 35844 | 65258d2c3214 | 
| permissions | -rw-r--r-- | 
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 1 | (* Title: HOL/Library/Infinite_Set.thy | 
| 20809 | 2 | Author: Stephan Merz | 
| 3 | *) | |
| 4 | ||
| 5 | header {* Infinite Sets and Related Concepts *}
 | |
| 6 | ||
| 7 | theory Infinite_Set | |
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29901diff
changeset | 8 | imports Main | 
| 20809 | 9 | begin | 
| 10 | ||
| 11 | subsection "Infinite Sets" | |
| 12 | ||
| 13 | text {*
 | |
| 14 | Some elementary facts about infinite sets, mostly by Stefan Merz. | |
| 15 | Beware! Because "infinite" merely abbreviates a negation, these | |
| 16 |   lemmas may not work well with @{text "blast"}.
 | |
| 17 | *} | |
| 18 | ||
| 19 | abbreviation | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 20 | infinite :: "'a set \<Rightarrow> bool" where | 
| 20809 | 21 | "infinite S == \<not> finite S" | 
| 22 | ||
| 23 | text {*
 | |
| 24 | Infinite sets are non-empty, and if we remove some elements from an | |
| 25 | infinite set, the result is still infinite. | |
| 26 | *} | |
| 27 | ||
| 28 | lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
 | |
| 29 | by auto | |
| 30 | ||
| 31 | lemma infinite_remove: | |
| 32 |   "infinite S \<Longrightarrow> infinite (S - {a})"
 | |
| 33 | by simp | |
| 34 | ||
| 35 | lemma Diff_infinite_finite: | |
| 36 | assumes T: "finite T" and S: "infinite S" | |
| 37 | shows "infinite (S - T)" | |
| 38 | using T | |
| 39 | proof induct | |
| 40 | from S | |
| 41 |   show "infinite (S - {})" by auto
 | |
| 42 | next | |
| 43 | fix T x | |
| 44 | assume ih: "infinite (S - T)" | |
| 45 |   have "S - (insert x T) = (S - T) - {x}"
 | |
| 46 | by (rule Diff_insert) | |
| 47 | with ih | |
| 48 | show "infinite (S - (insert x T))" | |
| 49 | by (simp add: infinite_remove) | |
| 50 | qed | |
| 51 | ||
| 52 | lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)" | |
| 53 | by simp | |
| 54 | ||
| 55 | lemma infinite_super: | |
| 56 | assumes T: "S \<subseteq> T" and S: "infinite S" | |
| 57 | shows "infinite T" | |
| 58 | proof | |
| 59 | assume "finite T" | |
| 60 | with T have "finite S" by (simp add: finite_subset) | |
| 61 | with S show False by simp | |
| 62 | qed | |
| 63 | ||
| 64 | text {*
 | |
| 65 | As a concrete example, we prove that the set of natural numbers is | |
| 66 | infinite. | |
| 67 | *} | |
| 68 | ||
| 69 | lemma finite_nat_bounded: | |
| 70 | assumes S: "finite (S::nat set)" | |
| 71 |   shows "\<exists>k. S \<subseteq> {..<k}"  (is "\<exists>k. ?bounded S k")
 | |
| 72 | using S | |
| 73 | proof induct | |
| 74 |   have "?bounded {} 0" by simp
 | |
| 75 |   then show "\<exists>k. ?bounded {} k" ..
 | |
| 76 | next | |
| 77 | fix S x | |
| 78 | assume "\<exists>k. ?bounded S k" | |
| 79 | then obtain k where k: "?bounded S k" .. | |
| 80 | show "\<exists>k. ?bounded (insert x S) k" | |
| 81 | proof (cases "x < k") | |
| 82 | case True | |
| 83 | with k show ?thesis by auto | |
| 84 | next | |
| 85 | case False | |
| 86 | with k have "?bounded S (Suc x)" by auto | |
| 87 | then show ?thesis by auto | |
| 88 | qed | |
| 89 | qed | |
| 90 | ||
| 91 | lemma finite_nat_iff_bounded: | |
| 92 |   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})"  (is "?lhs = ?rhs")
 | |
| 93 | proof | |
| 94 | assume ?lhs | |
| 95 | then show ?rhs by (rule finite_nat_bounded) | |
| 96 | next | |
| 97 | assume ?rhs | |
| 98 |   then obtain k where "S \<subseteq> {..<k}" ..
 | |
| 99 | then show "finite S" | |
| 100 | by (rule finite_subset) simp | |
| 101 | qed | |
| 102 | ||
| 103 | lemma finite_nat_iff_bounded_le: | |
| 104 |   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})"  (is "?lhs = ?rhs")
 | |
| 105 | proof | |
| 106 | assume ?lhs | |
| 107 |   then obtain k where "S \<subseteq> {..<k}"
 | |
| 108 | by (blast dest: finite_nat_bounded) | |
| 109 |   then have "S \<subseteq> {..k}" by auto
 | |
| 110 | then show ?rhs .. | |
| 111 | next | |
| 112 | assume ?rhs | |
| 113 |   then obtain k where "S \<subseteq> {..k}" ..
 | |
| 114 | then show "finite S" | |
| 115 | by (rule finite_subset) simp | |
| 116 | qed | |
| 117 | ||
| 118 | lemma infinite_nat_iff_unbounded: | |
| 119 | "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)" | |
| 120 | (is "?lhs = ?rhs") | |
| 121 | proof | |
| 122 | assume ?lhs | |
| 123 | show ?rhs | |
| 124 | proof (rule ccontr) | |
| 125 | assume "\<not> ?rhs" | |
| 126 | then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast | |
| 127 |     then have "S \<subseteq> {..m}"
 | |
| 128 | by (auto simp add: sym [OF linorder_not_less]) | |
| 129 | with `?lhs` show False | |
| 130 | by (simp add: finite_nat_iff_bounded_le) | |
| 131 | qed | |
| 132 | next | |
| 133 | assume ?rhs | |
| 134 | show ?lhs | |
| 135 | proof | |
| 136 | assume "finite S" | |
| 137 |     then obtain m where "S \<subseteq> {..m}"
 | |
| 138 | by (auto simp add: finite_nat_iff_bounded_le) | |
| 139 | then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto | |
| 140 | with `?rhs` show False by blast | |
| 141 | qed | |
| 142 | qed | |
| 143 | ||
| 144 | lemma infinite_nat_iff_unbounded_le: | |
| 145 | "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)" | |
| 146 | (is "?lhs = ?rhs") | |
| 147 | proof | |
| 148 | assume ?lhs | |
| 149 | show ?rhs | |
| 150 | proof | |
| 151 | fix m | |
| 152 | from `?lhs` obtain n where "m<n \<and> n\<in>S" | |
| 153 | by (auto simp add: infinite_nat_iff_unbounded) | |
| 154 | then have "m\<le>n \<and> n\<in>S" by simp | |
| 155 | then show "\<exists>n. m \<le> n \<and> n \<in> S" .. | |
| 156 | qed | |
| 157 | next | |
| 158 | assume ?rhs | |
| 159 | show ?lhs | |
| 160 | proof (auto simp add: infinite_nat_iff_unbounded) | |
| 161 | fix m | |
| 162 | from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S" | |
| 163 | by blast | |
| 164 | then have "m<n \<and> n\<in>S" by simp | |
| 165 | then show "\<exists>n. m < n \<and> n \<in> S" .. | |
| 166 | qed | |
| 167 | qed | |
| 168 | ||
| 169 | text {*
 | |
| 170 | For a set of natural numbers to be infinite, it is enough to know | |
| 171 |   that for any number larger than some @{text k}, there is some larger
 | |
| 172 | number that is an element of the set. | |
| 173 | *} | |
| 174 | ||
| 175 | lemma unbounded_k_infinite: | |
| 176 | assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)" | |
| 177 | shows "infinite (S::nat set)" | |
| 178 | proof - | |
| 179 |   {
 | |
| 180 | fix m have "\<exists>n. m<n \<and> n\<in>S" | |
| 181 | proof (cases "k<m") | |
| 182 | case True | |
| 183 | with k show ?thesis by blast | |
| 184 | next | |
| 185 | case False | |
| 186 | from k obtain n where "Suc k < n \<and> n\<in>S" by auto | |
| 187 | with False have "m<n \<and> n\<in>S" by auto | |
| 188 | then show ?thesis .. | |
| 189 | qed | |
| 190 | } | |
| 191 | then show ?thesis | |
| 192 | by (auto simp add: infinite_nat_iff_unbounded) | |
| 193 | qed | |
| 194 | ||
| 35056 | 195 | (* duplicates Finite_Set.infinite_UNIV_nat *) | 
| 196 | lemma nat_infinite: "infinite (UNIV :: nat set)" | |
| 20809 | 197 | by (auto simp add: infinite_nat_iff_unbounded) | 
| 198 | ||
| 35056 | 199 | lemma nat_not_finite: "finite (UNIV::nat set) \<Longrightarrow> R" | 
| 20809 | 200 | by simp | 
| 201 | ||
| 202 | text {*
 | |
| 203 | Every infinite set contains a countable subset. More precisely we | |
| 204 |   show that a set @{text S} is infinite if and only if there exists an
 | |
| 205 |   injective function from the naturals into @{text S}.
 | |
| 206 | *} | |
| 207 | ||
| 208 | lemma range_inj_infinite: | |
| 209 | "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)" | |
| 210 | proof | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 211 | assume "finite (range f)" and "inj f" | 
| 20809 | 212 | then have "finite (UNIV::nat set)" | 
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 213 | by (rule finite_imageD) | 
| 20809 | 214 | then show False by simp | 
| 215 | qed | |
| 216 | ||
| 22226 | 217 | lemma int_infinite [simp]: | 
| 218 | shows "infinite (UNIV::int set)" | |
| 219 | proof - | |
| 220 | from inj_int have "infinite (range int)" by (rule range_inj_infinite) | |
| 221 | moreover | |
| 222 | have "range int \<subseteq> (UNIV::int set)" by simp | |
| 223 | ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super) | |
| 224 | qed | |
| 225 | ||
| 20809 | 226 | text {*
 | 
| 227 | The ``only if'' direction is harder because it requires the | |
| 228 | construction of a sequence of pairwise different elements of an | |
| 229 |   infinite set @{text S}. The idea is to construct a sequence of
 | |
| 230 |   non-empty and infinite subsets of @{text S} obtained by successively
 | |
| 231 |   removing elements of @{text S}.
 | |
| 232 | *} | |
| 233 | ||
| 234 | lemma linorder_injI: | |
| 235 | assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y" | |
| 236 | shows "inj f" | |
| 237 | proof (rule inj_onI) | |
| 238 | fix x y | |
| 239 | assume f_eq: "f x = f y" | |
| 240 | show "x = y" | |
| 241 | proof (rule linorder_cases) | |
| 242 | assume "x < y" | |
| 243 | with hyp have "f x \<noteq> f y" by blast | |
| 244 | with f_eq show ?thesis by simp | |
| 245 | next | |
| 246 | assume "x = y" | |
| 247 | then show ?thesis . | |
| 248 | next | |
| 249 | assume "y < x" | |
| 250 | with hyp have "f y \<noteq> f x" by blast | |
| 251 | with f_eq show ?thesis by simp | |
| 252 | qed | |
| 253 | qed | |
| 254 | ||
| 255 | lemma infinite_countable_subset: | |
| 256 | assumes inf: "infinite (S::'a set)" | |
| 257 | shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S" | |
| 258 | proof - | |
| 259 |   def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | |
| 260 | def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)" | |
| 261 | have Sseq_inf: "\<And>n. infinite (Sseq n)" | |
| 262 | proof - | |
| 263 | fix n | |
| 264 | show "infinite (Sseq n)" | |
| 265 | proof (induct n) | |
| 266 | from inf show "infinite (Sseq 0)" | |
| 267 | by (simp add: Sseq_def) | |
| 268 | next | |
| 269 | fix n | |
| 270 | assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))" | |
| 271 | by (simp add: Sseq_def infinite_remove) | |
| 272 | qed | |
| 273 | qed | |
| 274 | have Sseq_S: "\<And>n. Sseq n \<subseteq> S" | |
| 275 | proof - | |
| 276 | fix n | |
| 277 | show "Sseq n \<subseteq> S" | |
| 278 | by (induct n) (auto simp add: Sseq_def) | |
| 279 | qed | |
| 280 | have Sseq_pick: "\<And>n. pick n \<in> Sseq n" | |
| 281 | proof - | |
| 282 | fix n | |
| 283 | show "pick n \<in> Sseq n" | |
| 284 | proof (unfold pick_def, rule someI_ex) | |
| 285 | from Sseq_inf have "infinite (Sseq n)" . | |
| 286 |       then have "Sseq n \<noteq> {}" by auto
 | |
| 287 | then show "\<exists>x. x \<in> Sseq n" by auto | |
| 288 | qed | |
| 289 | qed | |
| 290 | with Sseq_S have rng: "range pick \<subseteq> S" | |
| 291 | by auto | |
| 292 | have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)" | |
| 293 | proof - | |
| 294 | fix n m | |
| 295 | show "pick n \<notin> Sseq (n + Suc m)" | |
| 296 | by (induct m) (auto simp add: Sseq_def pick_def) | |
| 297 | qed | |
| 298 | have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)" | |
| 299 | proof - | |
| 300 | fix n m | |
| 301 | from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" . | |
| 302 | moreover from pick_Sseq_gt | |
| 303 | have "pick n \<notin> Sseq (n + Suc m)" . | |
| 304 | ultimately show "pick n \<noteq> pick (n + Suc m)" | |
| 305 | by auto | |
| 306 | qed | |
| 307 | have inj: "inj pick" | |
| 308 | proof (rule linorder_injI) | |
| 309 | fix i j :: nat | |
| 310 | assume "i < j" | |
| 311 | show "pick i \<noteq> pick j" | |
| 312 | proof | |
| 313 | assume eq: "pick i = pick j" | |
| 314 | from `i < j` obtain k where "j = i + Suc k" | |
| 315 | by (auto simp add: less_iff_Suc_add) | |
| 316 | with pick_pick have "pick i \<noteq> pick j" by simp | |
| 317 | with eq show False by simp | |
| 318 | qed | |
| 319 | qed | |
| 320 | from rng inj show ?thesis by auto | |
| 321 | qed | |
| 322 | ||
| 323 | lemma infinite_iff_countable_subset: | |
| 324 | "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)" | |
| 325 | by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super) | |
| 326 | ||
| 327 | text {*
 | |
| 328 | For any function with infinite domain and finite range there is some | |
| 329 | element that is the image of infinitely many domain elements. In | |
| 330 | particular, any infinite sequence of elements from a finite set | |
| 331 | contains some element that occurs infinitely often. | |
| 332 | *} | |
| 333 | ||
| 334 | lemma inf_img_fin_dom: | |
| 335 | assumes img: "finite (f`A)" and dom: "infinite A" | |
| 336 |   shows "\<exists>y \<in> f`A. infinite (f -` {y})"
 | |
| 337 | proof (rule ccontr) | |
| 338 | assume "\<not> ?thesis" | |
| 339 |   with img have "finite (UN y:f`A. f -` {y})" by (blast intro: finite_UN_I)
 | |
| 340 |   moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
 | |
| 341 | moreover note dom | |
| 342 | ultimately show False by (simp add: infinite_super) | |
| 343 | qed | |
| 344 | ||
| 345 | lemma inf_img_fin_domE: | |
| 346 | assumes "finite (f`A)" and "infinite A" | |
| 347 |   obtains y where "y \<in> f`A" and "infinite (f -` {y})"
 | |
| 23394 | 348 | using assms by (blast dest: inf_img_fin_dom) | 
| 20809 | 349 | |
| 350 | ||
| 351 | subsection "Infinitely Many and Almost All" | |
| 352 | ||
| 353 | text {*
 | |
| 354 | We often need to reason about the existence of infinitely many | |
| 355 | (resp., all but finitely many) objects satisfying some predicate, so | |
| 356 | we introduce corresponding binders and their proof rules. | |
| 357 | *} | |
| 358 | ||
| 359 | definition | |
| 22432 
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
 berghofe parents: 
22226diff
changeset | 360 |   Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "INFM " 10) where
 | 
| 20809 | 361 |   "Inf_many P = infinite {x. P x}"
 | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 362 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 363 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 364 |   Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "MOST " 10) where
 | 
| 22432 
1d00d26fee0d
Renamed INF to INFM to avoid clash with INF operator defined in FixedPoint theory.
 berghofe parents: 
22226diff
changeset | 365 | "Alm_all P = (\<not> (INFM x. \<not> P x))" | 
| 20809 | 366 | |
| 21210 | 367 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 368 | Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and | 
| 20809 | 369 | Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) | 
| 370 | ||
| 21210 | 371 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 372 | Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and | 
| 20809 | 373 | Alm_all (binder "\<forall>\<^sub>\<infinity>" 10) | 
| 374 | ||
| 34112 | 375 | lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}"
 | 
| 376 | unfolding Inf_many_def .. | |
| 377 | ||
| 378 | lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}"
 | |
| 379 | unfolding Alm_all_def Inf_many_def by simp | |
| 380 | ||
| 381 | (* legacy name *) | |
| 382 | lemmas MOST_iff_finiteNeg = MOST_iff_cofinite | |
| 383 | ||
| 384 | lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)" | |
| 385 | unfolding Alm_all_def not_not .. | |
| 20809 | 386 | |
| 34112 | 387 | lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)" | 
| 388 | unfolding Alm_all_def not_not .. | |
| 389 | ||
| 390 | lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)" | |
| 391 | unfolding Inf_many_def by simp | |
| 392 | ||
| 393 | lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)" | |
| 394 | unfolding Alm_all_def by simp | |
| 395 | ||
| 396 | lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)" | |
| 397 | by (erule contrapos_pp, simp) | |
| 20809 | 398 | |
| 399 | lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x" | |
| 34112 | 400 | by simp | 
| 401 | ||
| 402 | lemma INFM_E: assumes "INFM x. P x" obtains x where "P x" | |
| 403 | using INFM_EX [OF assms] by (rule exE) | |
| 404 | ||
| 405 | lemma MOST_I: assumes "\<And>x. P x" shows "MOST x. P x" | |
| 406 | using assms by simp | |
| 20809 | 407 | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 408 | lemma INFM_mono: | 
| 20809 | 409 | assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x" | 
| 410 | shows "\<exists>\<^sub>\<infinity>x. Q x" | |
| 411 | proof - | |
| 412 |   from inf have "infinite {x. P x}" unfolding Inf_many_def .
 | |
| 413 |   moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
 | |
| 414 | ultimately show ?thesis | |
| 415 | by (simp add: Inf_many_def infinite_super) | |
| 416 | qed | |
| 417 | ||
| 418 | lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x" | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 419 | unfolding Alm_all_def by (blast intro: INFM_mono) | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 420 | |
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 421 | lemma INFM_disj_distrib: | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 422 | "(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)" | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 423 | unfolding Inf_many_def by (simp add: Collect_disj_eq) | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 424 | |
| 34112 | 425 | lemma INFM_imp_distrib: | 
| 426 | "(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))" | |
| 427 | by (simp only: imp_conv_disj INFM_disj_distrib not_MOST) | |
| 428 | ||
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 429 | lemma MOST_conj_distrib: | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 430 | "(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)" | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 431 | unfolding Alm_all_def by (simp add: INFM_disj_distrib del: disj_not1) | 
| 20809 | 432 | |
| 34112 | 433 | lemma MOST_conjI: | 
| 434 | "MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x" | |
| 435 | by (simp add: MOST_conj_distrib) | |
| 436 | ||
| 34113 | 437 | lemma INFM_conjI: | 
| 438 | "INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x" | |
| 439 | unfolding MOST_iff_cofinite INFM_iff_infinite | |
| 440 | apply (drule (1) Diff_infinite_finite) | |
| 441 | apply (simp add: Collect_conj_eq Collect_neg_eq) | |
| 442 | done | |
| 443 | ||
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 444 | lemma MOST_rev_mp: | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 445 | assumes "\<forall>\<^sub>\<infinity>x. P x" and "\<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x" | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 446 | shows "\<forall>\<^sub>\<infinity>x. Q x" | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 447 | proof - | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 448 | have "\<forall>\<^sub>\<infinity>x. P x \<and> (P x \<longrightarrow> Q x)" | 
| 34112 | 449 | using assms by (rule MOST_conjI) | 
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 450 | thus ?thesis by (rule MOST_mono) simp | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 451 | qed | 
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 452 | |
| 34112 | 453 | lemma MOST_imp_iff: | 
| 454 | assumes "MOST x. P x" | |
| 455 | shows "(MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)" | |
| 456 | proof | |
| 457 | assume "MOST x. P x \<longrightarrow> Q x" | |
| 458 | with assms show "MOST x. Q x" by (rule MOST_rev_mp) | |
| 459 | next | |
| 460 | assume "MOST x. Q x" | |
| 461 | then show "MOST x. P x \<longrightarrow> Q x" by (rule MOST_mono) simp | |
| 462 | qed | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 463 | |
| 34112 | 464 | lemma INFM_MOST_simps [simp]: | 
| 465 | "\<And>P Q. (INFM x. P x \<and> Q) \<longleftrightarrow> (INFM x. P x) \<and> Q" | |
| 466 | "\<And>P Q. (INFM x. P \<and> Q x) \<longleftrightarrow> P \<and> (INFM x. Q x)" | |
| 467 | "\<And>P Q. (MOST x. P x \<or> Q) \<longleftrightarrow> (MOST x. P x) \<or> Q" | |
| 468 | "\<And>P Q. (MOST x. P \<or> Q x) \<longleftrightarrow> P \<or> (MOST x. Q x)" | |
| 469 | "\<And>P Q. (MOST x. P x \<longrightarrow> Q) \<longleftrightarrow> ((INFM x. P x) \<longrightarrow> Q)" | |
| 470 | "\<And>P Q. (MOST x. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (MOST x. Q x))" | |
| 471 | unfolding Alm_all_def Inf_many_def | |
| 472 | by (simp_all add: Collect_conj_eq) | |
| 473 | ||
| 474 | text {* Properties of quantifiers with injective functions. *}
 | |
| 475 | ||
| 476 | lemma INFM_inj: | |
| 477 | "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x" | |
| 478 | unfolding INFM_iff_infinite | |
| 479 | by (clarify, drule (1) finite_vimageI, simp) | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 480 | |
| 34112 | 481 | lemma MOST_inj: | 
| 482 | "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)" | |
| 483 | unfolding MOST_iff_cofinite | |
| 484 | by (drule (1) finite_vimageI, simp) | |
| 485 | ||
| 486 | text {* Properties of quantifiers with singletons. *}
 | |
| 487 | ||
| 488 | lemma not_INFM_eq [simp]: | |
| 489 | "\<not> (INFM x. x = a)" | |
| 490 | "\<not> (INFM x. a = x)" | |
| 491 | unfolding INFM_iff_infinite by simp_all | |
| 492 | ||
| 493 | lemma MOST_neq [simp]: | |
| 494 | "MOST x. x \<noteq> a" | |
| 495 | "MOST x. a \<noteq> x" | |
| 496 | unfolding MOST_iff_cofinite by simp_all | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 497 | |
| 34112 | 498 | lemma INFM_neq [simp]: | 
| 499 | "(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)" | |
| 500 | "(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)" | |
| 501 | unfolding INFM_iff_infinite by simp_all | |
| 502 | ||
| 503 | lemma MOST_eq [simp]: | |
| 504 | "(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)" | |
| 505 | "(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)" | |
| 506 | unfolding MOST_iff_cofinite by simp_all | |
| 507 | ||
| 508 | lemma MOST_eq_imp: | |
| 509 | "MOST x. x = a \<longrightarrow> P x" | |
| 510 | "MOST x. a = x \<longrightarrow> P x" | |
| 511 | unfolding MOST_iff_cofinite by simp_all | |
| 512 | ||
| 513 | text {* Properties of quantifiers over the naturals. *}
 | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 514 | |
| 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 515 | lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)" | 
| 20809 | 516 | by (simp add: Inf_many_def infinite_nat_iff_unbounded) | 
| 517 | ||
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 518 | lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)" | 
| 20809 | 519 | by (simp add: Inf_many_def infinite_nat_iff_unbounded_le) | 
| 520 | ||
| 521 | lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)" | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 522 | by (simp add: Alm_all_def INFM_nat) | 
| 20809 | 523 | |
| 524 | lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)" | |
| 27407 
68e111812b83
rename lemmas INF_foo to INFM_foo; add new lemmas about MOST and INFM
 huffman parents: 
27368diff
changeset | 525 | by (simp add: Alm_all_def INFM_nat_le) | 
| 20809 | 526 | |
| 527 | ||
| 528 | subsection "Enumeration of an Infinite Set" | |
| 529 | ||
| 530 | text {*
 | |
| 531 | The set's element type must be wellordered (e.g. the natural numbers). | |
| 532 | *} | |
| 533 | ||
| 34941 | 534 | primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a" where | 
| 535 | enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)" | |
| 536 |   | enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
 | |
| 20809 | 537 | |
| 538 | lemma enumerate_Suc': | |
| 539 |     "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
 | |
| 540 | by simp | |
| 541 | ||
| 542 | lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S" | |
| 29901 | 543 | apply (induct n arbitrary: S) | 
| 544 | apply (fastsimp intro: LeastI dest!: infinite_imp_nonempty) | |
| 545 | apply simp | |
| 546 | apply (metis Collect_def Collect_mem_eq DiffE infinite_remove) | |
| 547 | done | |
| 20809 | 548 | |
| 549 | declare enumerate_0 [simp del] enumerate_Suc [simp del] | |
| 550 | ||
| 551 | lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)" | |
| 552 | apply (induct n arbitrary: S) | |
| 553 | apply (rule order_le_neq_trans) | |
| 554 | apply (simp add: enumerate_0 Least_le enumerate_in_set) | |
| 555 | apply (simp only: enumerate_Suc') | |
| 556 |    apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
 | |
| 557 | apply (blast intro: sym) | |
| 558 | apply (simp add: enumerate_in_set del: Diff_iff) | |
| 559 | apply (simp add: enumerate_Suc') | |
| 560 | done | |
| 561 | ||
| 562 | lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n" | |
| 563 | apply (erule less_Suc_induct) | |
| 564 | apply (auto intro: enumerate_step) | |
| 565 | done | |
| 566 | ||
| 567 | ||
| 568 | subsection "Miscellaneous" | |
| 569 | ||
| 570 | text {*
 | |
| 571 | A few trivial lemmas about sets that contain at most one element. | |
| 572 | These simplify the reasoning about deterministic automata. | |
| 573 | *} | |
| 574 | ||
| 575 | definition | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 576 | atmost_one :: "'a set \<Rightarrow> bool" where | 
| 20809 | 577 | "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)" | 
| 578 | ||
| 579 | lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
 | |
| 580 | by (simp add: atmost_one_def) | |
| 581 | ||
| 582 | lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
 | |
| 583 | by (simp add: atmost_one_def) | |
| 584 | ||
| 585 | lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x" | |
| 586 | by (simp add: atmost_one_def) | |
| 587 | ||
| 588 | end |