| author | blanchet | 
| Thu, 07 Aug 2014 12:17:41 +0200 | |
| changeset 57816 | d8bbb97689d3 | 
| parent 57698 | afef6616cbae | 
| permissions | -rw-r--r-- | 
| 55059 | 1 | (* Title: HOL/BNF_Comp.thy | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 57698 | 3 | Author: Jasmin Blanchette, TU Muenchen | 
| 4 | Copyright 2012, 2013, 2014 | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 5 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 6 | Composition of bounded natural functors. | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 7 | *) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 8 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 9 | header {* Composition of Bounded Natural Functors *}
 | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 10 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 11 | theory BNF_Comp | 
| 55936 | 12 | imports BNF_Def | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 13 | begin | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 14 | |
| 49312 | 15 | lemma empty_natural: "(\<lambda>_. {}) o f = image g o (\<lambda>_. {})"
 | 
| 16 | by (rule ext) simp | |
| 17 | ||
| 18 | lemma Union_natural: "Union o image (image f) = image f o Union" | |
| 55066 | 19 | by (rule ext) (auto simp only: comp_apply) | 
| 49312 | 20 | |
| 21 | lemma in_Union_o_assoc: "x \<in> (Union o gset o gmap) A \<Longrightarrow> x \<in> (Union o (gset o gmap)) A" | |
| 55066 | 22 | by (unfold comp_assoc) | 
| 49312 | 23 | |
| 24 | lemma comp_single_set_bd: | |
| 25 | assumes fbd_Card_order: "Card_order fbd" and | |
| 26 | fset_bd: "\<And>x. |fset x| \<le>o fbd" and | |
| 27 | gset_bd: "\<And>x. |gset x| \<le>o gbd" | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 28 | shows "|\<Union>(fset ` gset x)| \<le>o gbd *c fbd" | 
| 56166 | 29 | apply simp | 
| 49312 | 30 | apply (rule ordLeq_transitive) | 
| 31 | apply (rule card_of_UNION_Sigma) | |
| 32 | apply (subst SIGMA_CSUM) | |
| 33 | apply (rule ordLeq_transitive) | |
| 34 | apply (rule card_of_Csum_Times') | |
| 35 | apply (rule fbd_Card_order) | |
| 36 | apply (rule ballI) | |
| 37 | apply (rule fset_bd) | |
| 38 | apply (rule ordLeq_transitive) | |
| 39 | apply (rule cprod_mono1) | |
| 40 | apply (rule gset_bd) | |
| 41 | apply (rule ordIso_imp_ordLeq) | |
| 42 | apply (rule ordIso_refl) | |
| 43 | apply (rule Card_order_cprod) | |
| 44 | done | |
| 45 | ||
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 46 | lemma csum_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p +c p' =o r +c r \<Longrightarrow> p +c p' =o r" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 47 | apply (erule ordIso_transitive) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 48 | apply (frule csum_absorb2') | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 49 | apply (erule ordLeq_refl) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 50 | by simp | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 51 | |
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 52 | lemma cprod_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p *c p' =o r *c r \<Longrightarrow> p *c p' =o r" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 53 | apply (erule ordIso_transitive) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 54 | apply (rule cprod_infinite) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 55 | by simp | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 56 | |
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 57 | lemma Union_image_insert: "\<Union>(f ` insert a B) = f a \<union> \<Union>(f ` B)" | 
| 49312 | 58 | by simp | 
| 59 | ||
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 60 | lemma Union_image_empty: "A \<union> \<Union>(f ` {}) = A"
 | 
| 49312 | 61 | by simp | 
| 62 | ||
| 63 | lemma image_o_collect: "collect ((\<lambda>f. image g o f) ` F) = image g o collect F" | |
| 64 | by (rule ext) (auto simp add: collect_def) | |
| 65 | ||
| 66 | lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})"
 | |
| 67 | by blast | |
| 68 | ||
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 69 | lemma UN_image_subset: "\<Union>(f ` g x) \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})"
 | 
| 49312 | 70 | by blast | 
| 71 | ||
| 52141 
eff000cab70f
weaker precendence of syntax for big intersection and union on sets
 haftmann parents: 
51893diff
changeset | 72 | lemma comp_set_bd_Union_o_collect: "|\<Union>\<Union>((\<lambda>f. f x) ` X)| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd" | 
| 56166 | 73 | by (unfold comp_apply collect_def) simp | 
| 49312 | 74 | |
| 75 | lemma wpull_cong: | |
| 76 | "\<lbrakk>A' = A; B1' = B1; B2' = B2; wpull A B1 B2 f1 f2 p1 p2\<rbrakk> \<Longrightarrow> wpull A' B1' B2' f1 f2 p1 p2" | |
| 77 | by simp | |
| 78 | ||
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 79 | lemma Grp_fst_snd: "(Grp (Collect (split R)) fst)^--1 OO Grp (Collect (split R)) snd = R" | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 80 | unfolding Grp_def fun_eq_iff relcompp.simps by auto | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 81 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 82 | lemma OO_Grp_cong: "A = B \<Longrightarrow> (Grp A f)^--1 OO Grp A g = (Grp B f)^--1 OO Grp B g" | 
| 55705 | 83 | by (rule arg_cong) | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
49512diff
changeset | 84 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 85 | lemma vimage2p_relcompp_mono: "R OO S \<le> T \<Longrightarrow> | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 86 | vimage2p f g R OO vimage2p g h S \<le> vimage2p f h T" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 87 | unfolding vimage2p_def by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 88 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 89 | lemma type_copy_map_cong0: "M (g x) = N (h x) \<Longrightarrow> (f o M o g) x = (f o N o h) x" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 90 | by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 91 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 92 | lemma type_copy_set_bd: "(\<And>y. |S y| \<le>o bd) \<Longrightarrow> |(S o Rep) x| \<le>o bd" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 93 | by auto | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 94 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 95 | lemma vimage2p_cong: "R = S \<Longrightarrow> vimage2p f g R = vimage2p f g S" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 96 | by simp | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 97 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 98 | context | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 99 | fixes Rep Abs | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 100 | assumes type_copy: "type_definition Rep Abs UNIV" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 101 | begin | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 102 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 103 | lemma type_copy_map_id0: "M = id \<Longrightarrow> Abs o M o Rep = id" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 104 | using type_definition.Rep_inverse[OF type_copy] by auto | 
| 55811 | 105 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 106 | lemma type_copy_map_comp0: "M = M1 o M2 \<Longrightarrow> f o M o g = (f o M1 o Rep) o (Abs o M2 o g)" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 107 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto | 
| 55811 | 108 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 109 | lemma type_copy_set_map0: "S o M = image f o S' \<Longrightarrow> (S o Rep) o (Abs o M o g) = image f o (S' o g)" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 110 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by (auto simp: o_def fun_eq_iff) | 
| 55811 | 111 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 112 | lemma type_copy_wit: "x \<in> (S o Rep) (Abs y) \<Longrightarrow> x \<in> S y" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 113 | using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto | 
| 55811 | 114 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 115 | lemma type_copy_vimage2p_Grp_Rep: "vimage2p f Rep (Grp (Collect P) h) = | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 116 | Grp (Collect (\<lambda>x. P (f x))) (Abs o h o f)" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 117 | unfolding vimage2p_def Grp_def fun_eq_iff | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 118 | by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 119 | type_definition.Rep_inverse[OF type_copy] dest: sym) | 
| 55811 | 120 | |
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 121 | lemma type_copy_vimage2p_Grp_Abs: | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 122 | "\<And>h. vimage2p g Abs (Grp (Collect P) h) = Grp (Collect (\<lambda>x. P (g x))) (Rep o h o g)" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 123 | unfolding vimage2p_def Grp_def fun_eq_iff | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 124 | by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I] | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 125 | type_definition.Rep_inverse[OF type_copy] dest: sym) | 
| 55811 | 126 | |
| 127 | lemma type_copy_ex_RepI: "(\<exists>b. F b) = (\<exists>b. F (Rep b))" | |
| 128 | proof safe | |
| 129 | fix b assume "F b" | |
| 130 | show "\<exists>b'. F (Rep b')" | |
| 131 | proof (rule exI) | |
| 132 | from `F b` show "F (Rep (Abs b))" using type_definition.Abs_inverse[OF type_copy] by auto | |
| 133 | qed | |
| 134 | qed blast | |
| 135 | ||
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 136 | lemma vimage2p_relcompp_converse: | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 137 | "vimage2p f g (R^--1 OO S) = (vimage2p Rep f R)^--1 OO vimage2p Rep g S" | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 138 | unfolding vimage2p_def relcompp.simps conversep.simps fun_eq_iff image_def | 
| 55811 | 139 | by (auto simp: type_copy_ex_RepI) | 
| 55803 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 140 | |
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 141 | end | 
| 
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
 traytel parents: 
55705diff
changeset | 142 | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 143 | bnf DEADID: 'a | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 144 | map: "id :: 'a \<Rightarrow> 'a" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 145 | bd: natLeq | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 146 | rel: "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 147 | by (auto simp add: Grp_def natLeq_card_order natLeq_cinfinite) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 148 | |
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 149 | definition id_bnf_comp :: "'a \<Rightarrow> 'a" where "id_bnf_comp \<equiv> (\<lambda>x. x)" | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 150 | |
| 56016 
8875cdcfc85b
unfold intermediate definitions after sealing the bnf
 traytel parents: 
55936diff
changeset | 151 | lemma id_bnf_comp_apply: "id_bnf_comp x = x" | 
| 
8875cdcfc85b
unfold intermediate definitions after sealing the bnf
 traytel parents: 
55936diff
changeset | 152 | unfolding id_bnf_comp_def by simp | 
| 
8875cdcfc85b
unfold intermediate definitions after sealing the bnf
 traytel parents: 
55936diff
changeset | 153 | |
| 55935 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 154 | bnf ID: 'a | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 155 |   map: "id_bnf_comp :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 156 |   sets: "\<lambda>x. {x}"
 | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 157 | bd: natLeq | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 158 |   rel: "id_bnf_comp :: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 159 | unfolding id_bnf_comp_def | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 160 | apply (auto simp: Grp_def fun_eq_iff relcompp.simps natLeq_card_order natLeq_cinfinite) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 161 | apply (rule ordLess_imp_ordLeq[OF finite_ordLess_infinite[OF _ natLeq_Well_order]]) | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 162 | apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3] | 
| 
8f20d09d294e
move special BNFs used for composition only to BNF_Comp;
 traytel parents: 
55930diff
changeset | 163 | done | 
| 55854 
ee270328a781
make 'typedef' optional, depending on size of original type
 blanchet parents: 
55851diff
changeset | 164 | |
| 55855 
98ad5680173a
use same identity function for abs and rep (doesn't seem to confuse any proofs)
 blanchet parents: 
55854diff
changeset | 165 | lemma type_definition_id_bnf_comp_UNIV: "type_definition id_bnf_comp id_bnf_comp UNIV" | 
| 
98ad5680173a
use same identity function for abs and rep (doesn't seem to confuse any proofs)
 blanchet parents: 
55854diff
changeset | 166 | unfolding id_bnf_comp_def by unfold_locales auto | 
| 55854 
ee270328a781
make 'typedef' optional, depending on size of original type
 blanchet parents: 
55851diff
changeset | 167 | |
| 55062 | 168 | ML_file "Tools/BNF/bnf_comp_tactics.ML" | 
| 169 | ML_file "Tools/BNF/bnf_comp.ML" | |
| 49309 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
 blanchet parents: 
49308diff
changeset | 170 | |
| 55873 | 171 | hide_const (open) id_bnf_comp | 
| 172 | hide_fact (open) id_bnf_comp_def type_definition_id_bnf_comp_UNIV | |
| 55854 
ee270328a781
make 'typedef' optional, depending on size of original type
 blanchet parents: 
55851diff
changeset | 173 | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 174 | end |